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BASIC AC THEORY
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1.1 What is alternating current (AC)?

Most students of electricity begin their study with what is known as direct current (DC), which
is electricity flowing in a constant direction, and/or possessing a voltage with constant polarity.
DC is the kind of electricity made by a battery (with definite positive and negative terminals),
or the kind of charge generated by rubbing certain types of materials against each other.

As useful and as easy to understand as DC is, it is not the only “kind” of electricity in use.
Certain sources of electricity (most notably, rotary electro-mechanical generators) naturally
produce voltages alternating in polarity, reversing positive and negative over time. Either as
a voltage switching polarity or as a current switching direction back and forth, this “kind” of
electricity is known as Alternating Current (AC): Figure 1.1

Whereas the familiar battery symbol is used as a generic symbol for any DC voltage source,
the circle with the wavy line inside is the generic symbol for any AC voltage source.

One might wonder why anyone would bother with such a thing as AC. It is true that in
some cases AC holds no practical advantage over DC. In applications where electricity is used
to dissipate energy in the form of heat, the polarity or direction of current is irrelevant, so
long as there is enough voltage and current to the load to produce the desired heat (power
dissipation). However, with AC it is possible to build electric generators, motors and power

1
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DIRECT CURRENT ALTERNATING CURRENT
(DC) (AC)
-~ | -~ | -
- ©
| — ---- | —

Figure 1.1: Direct vs alternating current

distribution systems that are far more efficient than DC, and so we find AC used predominately
across the world in high power applications. To explain the details of why this is so, a bit of
background knowledge about AC is necessary.

If a machine is constructed to rotate a magnetic field around a set of stationary wire coils
with the turning of a shaft, AC voltage will be produced across the wire coils as that shaft
is rotated, in accordance with Faraday’s Law of electromagnetic induction. This is the basic
operating principle of an AC generator, also known as an alternator: Figure 1.2

Step #1 Step #2

D

no current!

VA
Load

Step #3

D

no current!

VA
Load

Figure 1.2: Alternator operation
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Notice how the polarity of the voltage across the wire coils reverses as the opposite poles of
the rotating magnet pass by. Connected to a load, this reversing voltage polarity will create a
reversing current direction in the circuit. The faster the alternator’s shaft is turned, the faster
the magnet will spin, resulting in an alternating voltage and current that switches directions
more often in a given amount of time.

While DC generators work on the same general principle of electromagnetic induction, their
construction is not as simple as their AC counterparts. With a DC generator, the coil of wire
is mounted in the shaft where the magnet is on the AC alternator, and electrical connections
are made to this spinning coil via stationary carbon “brushes” contacting copper strips on the
rotating shaft. All this is necessary to switch the coil’s changing output polarity to the external
circuit so the external circuit sees a constant polarity: Figure 1.3

vs(( &) Ins]
e

VWA
Load

(e | #3)
S

VWA VWA
Load Load

Figure 1.3: DC generator operation

The generator shown above will produce two pulses of voltage per revolution of the shaft,
both pulses in the same direction (polarity). In order for a DC generator to produce constant
voltage, rather than brief pulses of voltage once every 1/2 revolution, there are multiple sets
of coils making intermittent contact with the brushes. The diagram shown above is a bit more
simplified than what you would see in real life.

The problems involved with making and breaking electrical contact with a moving coil
should be obvious (sparking and heat), especially if the shaft of the generator is revolving
at high speed. If the atmosphere surrounding the machine contains flammable or explosive
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vapors, the practical problems of spark-producing brush contacts are even greater. An AC gen-
erator (alternator) does not require brushes and commutators to work, and so is immune to
these problems experienced by DC generators.

The benefits of AC over DC with regard to generator design is also reflected in electric
motors. While DC motors require the use of brushes to make electrical contact with moving
coils of wire, AC motors do not. In fact, AC and DC motor designs are very similar to their
generator counterparts (identical for the sake of this tutorial), the AC motor being dependent
upon the reversing magnetic field produced by alternating current through its stationary coils
of wire to rotate the rotating magnet around on its shaft, and the DC motor being dependent on
the brush contacts making and breaking connections to reverse current through the rotating
coil every 1/2 rotation (180 degrees).

So we know that AC generators and AC motors tend to be simpler than DC generators
and DC motors. This relative simplicity translates into greater reliability and lower cost of
manufacture. But what else is AC good for? Surely there must be more to it than design details
of generators and motors! Indeed there is. There is an effect of electromagnetism known as
mutual induction, whereby two or more coils of wire placed so that the changing magnetic field
created by one induces a voltage in the other. If we have two mutually inductive coils and we
energize one coil with AC, we will create an AC voltage in the other coil. When used as such,
this device is known as a transformer: Figure 1.4

Transformer

AC
voltage (Vv H Induced AC
sourge > voltage

o —
<<

Figure 1.4: Transformer “transforms” AC voltage and current.

The fundamental significance of a transformer is its ability to step voltage up or down from
the powered coil to the unpowered coil. The AC voltage induced in the unpowered (“secondary”)
coil is equal to the AC voltage across the powered (“primary”) coil multiplied by the ratio of
secondary coil turns to primary coil turns. If the secondary coil is powering a load, the current
through the secondary coil is just the opposite: primary coil current multiplied by the ratio
of primary to secondary turns. This relationship has a very close mechanical analogy, using
torque and speed to represent voltage and current, respectively: Figure 1.5

If the winding ratio is reversed so that the primary coil has less turns than the secondary
coil, the transformer “steps up” the voltage from the source level to a higher level at the load:
Figure 1.6

The transformer’s ability to step AC voltage up or down with ease gives AC an advantage
unmatched by DC in the realm of power distribution in figure 1.7. When transmitting electrical
power over long distances, it is far more efficient to do so with stepped-up voltages and stepped-
down currents (smaller-diameter wire with less resistive power losses), then step the voltage
back down and the current back up for industry, business, or consumer use.

Transformer technology has made long-range electric power distribution practical. Without
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Speed multiplication geartrain
"Step-down" transformer

Large gear
(many teeth)

Small gear high voltage

(few teeth)

Aﬁ low voltage
voltage man ~
source /\D ey =few turns S Load

high current

low torque

high speed low current

high torque
low speed

Figure 1.5: Speed multiplication gear train steps torque down and speed up. Step-down trans-
former steps voltage down and current up.

Speed reduction geartrain "Step-up” transformer

Large gear -
(many teeth) high voltage

Small gear

(few teeth) low voltage
AC = many turns % Load

voltage

source

low torque high torque low current

high speed low speed

Figure 1.6: Speed reduction gear train steps torque up and speed down. Step-up transformer
steps voltage up and current down.

high voltage

Power Plant \ ~._
Step-up A 00 A 0 AL A T
H .. . to other customers
low voltage

Step-down ——

Home or
Business low voltage

Figure 1.7: Transformers enable efficient long distance high voltage transmission of electric
energy.
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the ability to efficiently step voltage up and down, it would be cost-prohibitive to construct
power systems for anything but close-range (within a few miles at most) use.

As useful as transformers are, they only work with AC, not DC. Because the phenomenon of
mutual inductance relies on changing magnetic fields, and direct current (DC) can only produce
steady magnetic fields, transformers simply will not work with direct current. Of course, direct
current may be interrupted (pulsed) through the primary winding of a transformer to create
a changing magnetic field (as is done in automotive ignition systems to produce high-voltage
spark plug power from a low-voltage DC battery), but pulsed DC is not that different from
AC. Perhaps more than any other reason, this is why AC finds such widespread application in
power systems.

e REVIEW:

e DC stands for “Direct Current,” meaning voltage or current that maintains constant po-
larity or direction, respectively, over time.

e AC stands for “Alternating Current,” meaning voltage or current that changes polarity or
direction, respectively, over time.

e AC electromechanical generators, known as alternators, are of simpler construction than
DC electromechanical generators.

e AC and DC motor design follows respective generator design principles very closely.

e A transformer is a pair of mutually-inductive coils used to convey AC power from one coil
to the other. Often, the number of turns in each coil is set to create a voltage increase or
decrease from the powered (primary) coil to the unpowered (secondary) coil.

e Secondary voltage = Primary voltage (secondary turns / primary turns)

e Secondary current = Primary current (primary turns / secondary turns)

1.2 AC waveforms

When an alternator produces AC voltage, the voltage switches polarity over time, but does
so in a very particular manner. When graphed over time, the “wave” traced by this voltage
of alternating polarity from an alternator takes on a distinct shape, known as a sine wave:
Figure 1.8

In the voltage plot from an electromechanical alternator, the change from one polarity to
the other is a smooth one, the voltage level changing most rapidly at the zero (“crossover”)
point and most slowly at its peak. If we were to graph the trigonometric function of “sine” over
a horizontal range of 0 to 360 degrees, we would find the exact same pattern as in Table 1.1.

The reason why an electromechanical alternator outputs sine-wave AC is due to the physics
of its operation. The voltage produced by the stationary coils by the motion of the rotating
magnet is proportional to the rate at which the magnetic flux is changing perpendicular to the
coils (Faraday’s Law of Electromagnetic Induction). That rate is greatest when the magnet
poles are closest to the coils, and least when the magnet poles are furthest away from the coils.
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(the sine wave)

Time —

Figure 1.8: Graph of AC voltage over time (the sine wave).

Table 1.1: Trigonometric “sine” function.

Angle (°) | sin(angle) | wave || Angle (°) | sin(angle) | wave
0 0.0000 Zero 180 0.0000 Zero
15 0.2588 + 195 -0.2588 -
30 0.5000 + 210 -0.5000 -
45 0.7071 + 225 -0.7071 -
60 0.8660 + 240 -0.8660 -
75 0.9659 + 255 -0.9659 -
90 1.0000 | +peak 270 -1.0000 | -peak
105 0.9659 + 285 -0.9659 -
120 0.8660 + 300 -0.8660 -
135 0.7071 + 315 -0.7071 -
150 0.5000 + 330 -0.5000 -
165 0.2588 + 345 -0.2588 -
180 0.0000 Zero 360 0.0000 Zero
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Mathematically, the rate of magnetic flux change due to a rotating magnet follows that of a
sine function, so the voltage produced by the coils follows that same function.

If we were to follow the changing voltage produced by a coil in an alternator from any
point on the sine wave graph to that point when the wave shape begins to repeat itself, we
would have marked exactly one cycle of that wave. This is most easily shown by spanning the
distance between identical peaks, but may be measured between any corresponding points on
the graph. The degree marks on the horizontal axis of the graph represent the domain of the
trigonometric sine function, and also the angular position of our simple two-pole alternator
shaft as it rotates: Figure 1.9

|«<— one wave cycle —»

|«<— one wave cycle —»]

Alternator shaft —
position (degrees)

Figure 1.9: Alternator voltage as function of shaft position (time).

Since the horizontal axis of this graph can mark the passage of time as well as shaft position
in degrees, the dimension marked for one cycle is often measured in a unit of time, most often
seconds or fractions of a second. When expressed as a measurement, this is often called the
period of a wave. The period of a wave in degrees is always 360, but the amount of time one
period occupies depends on the rate voltage oscillates back and forth.

A more popular measure for describing the alternating rate of an AC voltage or current
wave than period is the rate of that back-and-forth oscillation. This is called frequency. The
modern unit for frequency is the Hertz (abbreviated Hz), which represents the number of wave
cycles completed during one second of time. In the United States of America, the standard
power-line frequency is 60 Hz, meaning that the AC voltage oscillates at a rate of 60 complete
back-and-forth cycles every second. In Europe, where the power system frequency is 50 Hz,
the AC voltage only completes 50 cycles every second. A radio station transmitter broadcasting
at a frequency of 100 MHz generates an AC voltage oscillating at a rate of 100 million cycles
every second.

Prior to the canonization of the Hertz unit, frequency was simply expressed as “cycles per
second.” Older meters and electronic equipment often bore frequency units of “CPS” (Cycles
Per Second) instead of Hz. Many people believe the change from self-explanatory units like
CPS to Hertz constitutes a step backward in clarity. A similar change occurred when the unit
of “Celsius” replaced that of “Centigrade” for metric temperature measurement. The name
Centigrade was based on a 100-count (“Centi-”) scale (“-grade”) representing the melting and
boiling points of H5O, respectively. The name Celsius, on the other hand, gives no hint as to
the unit’s origin or meaning.
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Period and frequency are mathematical reciprocals of one another. That is to say, if a wave
has a period of 10 seconds, its frequency will be 0.1 Hz, or 1/10 of a cycle per second:

1

Frequency in Hertz = —
Period in seconds

An instrument called an oscilloscope, Figure 1.10, is used to display a changing voltage over
time on a graphical screen. You may be familiar with the appearance of an ECG or EKG (elec-
trocardiograph) machine, used by physicians to graph the oscillations of a patient’s heart over
time. The ECG is a special-purpose oscilloscope expressly designed for medical use. General-
purpose oscilloscopes have the ability to display voltage from virtually any voltage source,
plotted as a graph with time as the independent variable. The relationship between period
and frequency is very useful to know when displaying an AC voltage or current waveform on
an oscilloscope screen. By measuring the period of the wave on the horizontal axis of the oscil-
loscope screen and reciprocating that time value (in seconds), you can determine the frequency
in Hertz.

OSCILLOSCOPE
vertical
/ \ Y
1 ¥ ®
S— DC_GND _AC
V/div —
trigger @
———
timebase
— Am
._ X
) | ®
S—" DC_GND AC
s/div —
Frequency = L = ! = 62.5Hz

period 16 ms

Figure 1.10: Time period of sinewave is shown on oscilloscope.

Voltage and current are by no means the only physical variables subject to variation over
time. Much more common to our everyday experience is sound, which is nothing more than the
alternating compression and decompression (pressure waves) of air molecules, interpreted by
our ears as a physical sensation. Because alternating current is a wave phenomenon, it shares
many of the properties of other wave phenomena, like sound. For this reason, sound (especially
structured music) provides an excellent analogy for relating AC concepts.

In musical terms, frequency is equivalent to pitch. Low-pitch notes such as those produced
by a tuba or bassoon consist of air molecule vibrations that are relatively slow (low frequency).
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High-pitch notes such as those produced by a flute or whistle consist of the same type of vibra-
tions in the air, only vibrating at a much faster rate (higher frequency). Figure 1.11 is a table
showing the actual frequencies for a range of common musical notes.

Note Musical designation Frequency (in hertz)
A A, 220.00
A sharp (or B flat) A*or B® 233.08
B B, 246.94
C (middle) c 261.63
C sharp (or D flat) c*orD" 277.18
D D 293.66
D sharp (or E flat) D* or E 311.13
E E 329.63
F F 349.23
F sharp (or G flat) F orGP 369.99
G G 392.00
G sharp (or A flat) G" or A° 415.30
A A 440.00
A sharp (or B flat) A*or B® 466.16
B B 493.88
C ct 523.25

Figure 1.11: The frequency in Hertz (Hz) is shown for various musical notes.

Astute observers will notice that all notes on the table bearing the same letter designation
are related by a frequency ratio of 2:1. For example, the first frequency shown (designated with
the letter “A”) is 220 Hz. The next highest “A” note has a frequency of 440 Hz — exactly twice as
many sound wave cycles per second. The same 2:1 ratio holds true for the first A sharp (233.08
Hz) and the next A sharp (466.16 Hz), and for all note pairs found in the table.

Audibly, two notes whose frequencies are exactly double each other sound remarkably sim-
ilar. This similarity in sound is musically recognized, the shortest span on a musical scale
separating such note pairs being called an octave. Following this rule, the next highest “A”
note (one octave above 440 Hz) will be 880 Hz, the next lowest “A” (one octave below 220 Hz)
will be 110 Hz. A view of a piano keyboard helps to put this scale into perspective: Figure 1.12

As you can see, one octave is equal to seven white keys’ worth of distance on a piano key-
board. The familiar musical mnemonic (doe-ray-mee-fah-so-lah-tee) — yes, the same pattern
immortalized in the whimsical Rodgers and Hammerstein song sung in The Sound of Music —
covers one octave from C to C.

While electromechanical alternators and many other physical phenomena naturally pro-
duce sine waves, this is not the only kind of alternating wave in existence. Other “waveforms”
of AC are commonly produced within electronic circuitry. Here are but a few sample waveforms
and their common designations in figure 1.13
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Figure 1.12: An octave is shown on a musical keyboard.

Square wave Triangle wave
[<— one wave cycle — [<— one wave cycle —

Sawtooth wave

/]
-

Figure 1.13: Some common waveshapes (waveforms).
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These waveforms are by no means the only kinds of waveforms in existence. They're simply
a few that are common enough to have been given distinct names. Even in circuits that are
supposed to manifest “pure” sine, square, triangle, or sawtooth voltage/current waveforms, the
real-life result is often a distorted version of the intended waveshape. Some waveforms are
so complex that they defy classification as a particular “type” (including waveforms associated
with many kinds of musical instruments). Generally speaking, any waveshape bearing close
resemblance to a perfect sine wave is termed sinusoidal, anything different being labeled as
non-sinusoidal. Being that the waveform of an AC voltage or current is crucial to its impact in
a circuit, we need to be aware of the fact that AC waves come in a variety of shapes.

e REVIEW:

e AC produced by an electromechanical alternator follows the graphical shape of a sine
wave.

e One cycle of a wave is one complete evolution of its shape until the point that it is ready
to repeat itself.

e The period of a wave is the amount of time it takes to complete one cycle.

e Frequency is the number of complete cycles that a wave completes in a given amount of
time. Usually measured in Hertz (Hz), 1 Hz being equal to one complete wave cycle per
second.

e Frequency = 1/(period in seconds)

1.3 Measurements of AC magnitude

So far we know that AC voltage alternates in polarity and AC current alternates in direction.
We also know that AC can alternate in a variety of different ways, and by tracing the alter-
nation over time we can plot it as a “waveform.” We can measure the rate of alternation by
measuring the time it takes for a wave to evolve before it repeats itself (the “period”), and
express this as cycles per unit time, or “frequency.” In music, frequency is the same as pitch,
which is the essential property distinguishing one note from another.

However, we encounter a measurement problem if we try to express how large or small an
AC quantity is. With DC, where quantities of voltage and current are generally stable, we have
little trouble expressing how much voltage or current we have in any part of a circuit. But how
do you grant a single measurement of magnitude to something that is constantly changing?

One way to express the intensity, or magnitude (also called the amplitude), of an AC quan-
tity is to measure its peak height on a waveform graph. This is known as the peak or crest
value of an AC waveform: Figure 1.14

Another way is to measure the total height between opposite peaks. This is known as the
peak-to-peak (P-P) value of an AC waveform: Figure 1.15

Unfortunately, either one of these expressions of waveform amplitude can be misleading
when comparing two different types of waves. For example, a square wave peaking at 10 volts
is obviously a greater amount of voltage for a greater amount of time than a triangle wave
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Figure 1.14: Peak voltage of a waveform.
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Figure 1.15: Peak-to-peak voltage of a waveform.
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Figure 1.16: A square wave produces a greater heating effect than the same peak voltage
triangle wave.
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peaking at 10 volts. The effects of these two AC voltages powering a load would be quite
different: Figure 1.16

One way of expressing the amplitude of different waveshapes in a more equivalent fashion
is to mathematically average the values of all the points on a waveform’s graph to a single,
aggregate number. This amplitude measure is known simply as the average value of the wave-
form. If we average all the points on the waveform algebraically (that is, to consider their sign,
either positive or negative), the average value for most waveforms is technically zero, because
all the positive points cancel out all the negative points over a full cycle: Figure 1.17

True average value of all points
(considering their signs) is zero!

Figure 1.17: The average value of a sinewave is zero.

This, of course, will be true for any waveform having equal-area portions above and below
the “zero” line of a plot. However, as a practical measure of a waveform’s aggregate value,
“average” is usually defined as the mathematical mean of all the points’ absolute values over a
cycle. In other words, we calculate the practical average value of the waveform by considering
all points on the wave as positive quantities, as if the waveform looked like this: Figure 1.18

Practical average of points, all
—values assumed to be positive.

Figure 1.18: Waveform seen by AC “average responding” meter.

Polarity-insensitive mechanical meter movements (meters designed to respond equally to
the positive and negative half-cycles of an alternating voltage or current) register in proportion
to the waveform’s (practical) average value, because the inertia of the pointer against the ten-
sion of the spring naturally averages the force produced by the varying voltage/current values
over time. Conversely, polarity-sensitive meter movements vibrate uselessly if exposed to AC
voltage or current, their needles oscillating rapidly about the zero mark, indicating the true
(algebraic) average value of zero for a symmetrical waveform. When the “average” value of a
waveform is referenced in this text, it will be assumed that the “practical” definition of average
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is intended unless otherwise specified.

Another method of deriving an aggregate value for waveform amplitude is based on the
waveform’s ability to do useful work when applied to a load resistance. Unfortunately, an AC
measurement based on work performed by a waveform is not the same as that waveform’s
“average” value, because the power dissipated by a given load (work performed per unit time)
is not directly proportional to the magnitude of either the voltage or current impressed upon
it. Rather, power is proportional to the square of the voltage or current applied to a resistance
(P = E2/R, and P = I’R). Although the mathematics of such an amplitude measurement might
not be straightforward, the utility of it is.

Consider a bandsaw and a jigsaw, two pieces of modern woodworking equipment. Both
types of saws cut with a thin, toothed, motor-powered metal blade to cut wood. But while
the bandsaw uses a continuous motion of the blade to cut, the jigsaw uses a back-and-forth
motion. The comparison of alternating current (AC) to direct current (DC) may be likened to
the comparison of these two saw types: Figure 1.19

Bandsaw

Jigsaw
blade
motlonl
wood
wood T l*
1
1
blade
motion
(analogous to DC) (analogous to AC)

Figure 1.19: Bandsaw-jigsaw analogy of DC vs AC.

The problem of trying to describe the changing quantities of AC voltage or current in a
single, aggregate measurement is also present in this saw analogy: how might we express the
speed of a jigsaw blade? A bandsaw blade moves with a constant speed, similar to the way DC
voltage pushes or DC current moves with a constant magnitude. A jigsaw blade, on the other
hand, moves back and forth, its blade speed constantly changing. What is more, the back-and-
forth motion of any two jigsaws may not be of the same type, depending on the mechanical
design of the saws. One jigsaw might move its blade with a sine-wave motion, while another
with a triangle-wave motion. To rate a jigsaw based on its peak blade speed would be quite
misleading when comparing one jigsaw to another (or a jigsaw with a bandsaw!). Despite the
fact that these different saws move their blades in different manners, they are equal in one
respect: they all cut wood, and a quantitative comparison of this common function can serve
as a common basis for which to rate blade speed.

Picture a jigsaw and bandsaw side-by-side, equipped with identical blades (same tooth
pitch, angle, etc.), equally capable of cutting the same thickness of the same type of wood at the
same rate. We might say that the two saws were equivalent or equal in their cutting capacity.
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Might this comparison be used to assign a “bandsaw equivalent” blade speed to the jigsaw’s
back-and-forth blade motion; to relate the wood-cutting effectiveness of one to the other? This
is the general idea used to assign a “DC equivalent” measurement to any AC voltage or cur-
rent: whatever magnitude of DC voltage or current would produce the same amount of heat
energy dissipation through an equal resistance:Figure 1.20

<«—5A RMS---» <—5A
10V 20 %{ 10V — 2Q %
RMS \ —|_ \
—~-- A RMS — 50 W 5A—= 5H50W
power power
\ dissipated / dissipated

Equal power dissipated through
equal resistance loads

Figure 1.20: An RMS voltage produces the same heating effect as a the same DC voltage

In the two circuits above, we have the same amount of load resistance (2 ?) dissipating the
same amount of power in the form of heat (50 watts), one powered by AC and the other by
DC. Because the AC voltage source pictured above is equivalent (in terms of power delivered
to a load) to a 10 volt DC battery, we would call this a “10 volt” AC source. More specifically,
we would denote its voltage value as being 10 volts RMS. The qualifier “RMS” stands for
Root Mean Square, the algorithm used to obtain the DC equivalent value from points on a
graph (essentially, the procedure consists of squaring all the positive and negative points on a
waveform graph, averaging those squared values, then taking the square root of that average
to obtain the final answer). Sometimes the alternative terms equivalent or DC equivalent are
used instead of “RMS,” but the quantity and principle are both the same.

RMS amplitude measurement is the best way to relate AC quantities to DC quantities, or
other AC quantities of differing waveform shapes, when dealing with measurements of elec-
tric power. For other considerations, peak or peak-to-peak measurements may be the best to
employ. For instance, when determining the proper size of wire (ampacity) to conduct electric
power from a source to a load, RMS current measurement is the best to use, because the prin-
cipal concern with current is overheating of the wire, which is a function of power dissipation
caused by current through the resistance of the wire. However, when rating insulators for
service in high-voltage AC applications, peak voltage measurements are the most appropriate,
because the principal concern here is insulator “flashover” caused by brief spikes of voltage,
irrespective of time.

Peak and peak-to-peak measurements are best performed with an oscilloscope, which can
capture the crests of the waveform with a high degree of accuracy due to the fast action of
the cathode-ray-tube in response to changes in voltage. For RMS measurements, analog meter
movements (D’Arsonval, Weston, iron vane, electrodynamometer) will work so long as they
have been calibrated in RMS figures. Because the mechanical inertia and dampening effects
of an electromechanical meter movement makes the deflection of the needle naturally pro-
portional to the average value of the AC, not the true RMS value, analog meters must be
specifically calibrated (or mis-calibrated, depending on how you look at it) to indicate voltage
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or current in RMS units. The accuracy of this calibration depends on an assumed waveshape,
usually a sine wave.

Electronic meters specifically designed for RMS measurement are best for the task. Some
instrument manufacturers have designed ingenious methods for determining the RMS value
of any waveform. One such manufacturer produces “T'rue-RMS” meters with a tiny resistive
heating element powered by a voltage proportional to that being measured. The heating effect
of that resistance element is measured thermally to give a true RMS value with no mathemat-
ical calculations whatsoever, just the laws of physics in action in fulfillment of the definition of
RMS. The accuracy of this type of RMS measurement is independent of waveshape.

For “pure” waveforms, simple conversion coefficients exist for equating Peak, Peak-to-Peak,
Average (practical, not algebraic), and RMS measurements to one another: Figure 1.21

o
|

RMS = 0.707 (Peak)

RMS = Peak RMS = 0.577 (Peak)
AVG = 0.637 (Peak)

AVG = Peak AVG = 0.5 (Peak)
P-P = 2 (Peak)

P-P =2 (Peak) P-P =2 (Peak)

Figure 1.21: Conversion factors for common waveforms.

In addition to RMS, average, peak (crest), and peak-to-peak measures of an AC waveform,
there are ratios expressing the proportionality between some of these fundamental measure-
ments. The crest factor of an AC waveform, for instance, is the ratio of its peak (crest) value
divided by its RMS value. The form factor of an AC waveform is the ratio of its RMS value
divided by its average value. Square-shaped waveforms always have crest and form factors
equal to 1, since the peak is the same as the RMS and average values. Sinusoidal waveforms
have an RMS value of 0.707 (the reciprocal of the square root of 2) and a form factor of 1.11
(0.707/0.636). Triangle- and sawtooth-shaped waveforms have RMS values of 0.577 (the recip-
rocal of square root of 3) and form factors of 1.15 (0.577/0.5).

Bear in mind that the conversion constants shown here for peak, RMS, and average ampli-
tudes of sine waves, square waves, and triangle waves hold true only for pure forms of these
waveshapes. The RMS and average values of distorted waveshapes are not related by the same
ratios: Figure 1.22

RMS = ???
AVG = ?7?
P-P = 2 (Peak)

Figure 1.22: Arbitrary waveforms have no simple conversions.

This is a very important concept to understand when using an analog meter movement
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to measure AC voltage or current. An analog movement, calibrated to indicate sine-wave
RMS amplitude, will only be accurate when measuring pure sine waves. If the waveform of
the voltage or current being measured is anything but a pure sine wave, the indication given
by the meter will not be the true RMS value of the waveform, because the degree of needle
deflection in an analog meter movement is proportional to the average value of the waveform,
not the RMS. RMS meter calibration is obtained by “skewing” the span of the meter so that it
displays a small multiple of the average value, which will be equal to be the RMS value for a
particular waveshape and a particular waveshape only.

Since the sine-wave shape is most common in electrical measurements, it is the waveshape
assumed for analog meter calibration, and the small multiple used in the calibration of the me-
ter is 1.1107 (the form factor: 0.707/0.636: the ratio of RMS divided by average for a sinusoidal
waveform). Any waveshape other than a pure sine wave will have a different ratio of RMS and
average values, and thus a meter calibrated for sine-wave voltage or current will not indicate
true RMS when reading a non-sinusoidal wave. Bear in mind that this limitation applies only
to simple, analog AC meters not employing “True-RMS” technology.

e REVIEW:

e The amplitude of an AC waveform is its height as depicted on a graph over time. An am-
plitude measurement can take the form of peak, peak-to-peak, average, or RMS quantity.

e Peak amplitude is the height of an AC waveform as measured from the zero mark to the
highest positive or lowest negative point on a graph. Also known as the crest amplitude
of a wave.

e Peak-to-peak amplitude is the total height of an AC waveform as measured from maxi-
mum positive to maximum negative peaks on a graph. Often abbreviated as “P-P”.

e Average amplitude is the mathematical “mean” of all a waveform’s points over the period
of one cycle. Technically, the average amplitude of any waveform with equal-area portions
above and below the “zero” line on a graph is zero. However, as a practical measure of
amplitude, a waveform’s average value is often calculated as the mathematical mean of
all the points’ absolute values (taking all the negative values and considering them as
positive). For a sine wave, the average value so calculated is approximately 0.637 of its
peak value.

e “RMS” stands for Root Mean Square, and is a way of expressing an AC quantity of volt-
age or current in terms functionally equivalent to DC. For example, 10 volts AC RMS is
the amount of voltage that would produce the same amount of heat dissipation across a
resistor of given value as a 10 volt DC power supply. Also known as the “equivalent” or
“DC equivalent” value of an AC voltage or current. For a sine wave, the RMS value is
approximately 0.707 of its peak value.

e The crest factor of an AC waveform is the ratio of its peak (crest) to its RMS value.
e The form factor of an AC waveform is the ratio of its RMS value to its average value.

e Analog, electromechanical meter movements respond proportionally to the average value
of an AC voltage or current. When RMS indication is desired, the meter’s calibration
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must be “skewed” accordingly. This means that the accuracy of an electromechanical
meter’s RMS indication is dependent on the purity of the waveform: whether it is the

exact same waveshape as the waveform used in calibrating.

1.4 Simple AC circuit calculations

Over the course of the next few chapters, you will learn that AC circuit measurements and cal-
culations can get very complicated due to the complex nature of alternating current in circuits
with inductance and capacitance. However, with simple circuits (figure 1.23) involving nothing
more than an AC power source and resistance, the same laws and rules of DC apply simply

and directly.

10v (V)

Rs

R% 500 Q

WA
400 Q

Figure 1.23: AC circuit calculations for resistive circuits are the same as for DC.

Rioa =R1 + Ry + Ry

= Etota 10V
total — =

° Riota totdl 1kQ
Eri = lioaR1 Ers = lioaR2
Er,=1V Er, =5V

Series resistances still add, parallel resistances still diminish, and the Laws of Kirchhoff
and Ohm still hold true. Actually, as we will discover later on, these rules and laws always
hold true, its just that we have to express the quantities of voltage, current, and opposition to
current in more advanced mathematical forms. With purely resistive circuits, however, these
complexities of AC are of no practical consequence, and so we can treat the numbers as though

Ers = lioaRs
Ers =4V

we were dealing with simple DC quantities.
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Because all these mathematical relationships still hold true, we can make use of our famil-
iar “table” method of organizing circuit values just as with DC:

R, R, R, Total
E 1 5 4 10 Volts
I 10m 10m 10m 10m Amps
R 100 500 400 1k Ohms

One major caveat needs to be given here: all measurements of AC voltage and current
must be expressed in the same terms (peak, peak-to-peak, average, or RMS). If the source
voltage is given in peak AC volts, then all currents and voltages subsequently calculated are
cast in terms of peak units. If the source voltage is given in AC RMS volts, then all calculated
currents and voltages are cast in AC RMS units as well. This holds true for any calculation
based on Ohm’s Laws, Kirchhoff’s Laws, etc. Unless otherwise stated, all values of voltage and
current in AC circuits are generally assumed to be RMS rather than peak, average, or peak-to-
peak. In some areas of electronics, peak measurements are assumed, but in most applications
(especially industrial electronics) the assumption is RMS.

e REVIEW:

e All the old rules and laws of DC (Kirchhoff’s Voltage and Current Laws, Ohm’s Law) still
hold true for AC. However, with more complex circuits, we may need to represent the AC
quantities in more complex form. More on this later, I promise!

e The “table” method of organizing circuit values is still a valid analysis tool for AC circuits.

1.5 AC phase

Things start to get complicated when we need to relate two or more AC voltages or currents
that are out of step with each other. By “out of step,” I mean that the two waveforms are not
synchronized: that their peaks and zero points do not match up at the same points in time.
The graph in figure 1.24 illustrates an example of this.

A B A B
A B
A B
A B A B

Figure 1.24: Out of phase waveforms

The two waves shown above (A versus B) are of the same amplitude and frequency, but
they are out of step with each other. In technical terms, this is called a phase shift. Earlier
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we saw how we could plot a “sine wave” by calculating the trigonometric sine function for
angles ranging from 0 to 360 degrees, a full circle. The starting point of a sine wave was zero
amplitude at zero degrees, progressing to full positive amplitude at 90 degrees, zero at 180
degrees, full negative at 270 degrees, and back to the starting point of zero at 360 degrees. We
can use this angle scale along the horizontal axis of our waveform plot to express just how far
out of step one wave is with another: Figure 1.25

degrees

©) ©)
A 0 9 180 270 360 90 180 270 360

B 0O 9 180 270 360 90 180 270 360
©) ©)

degrees
Figure 1.25: Wave A leads wave B by 45°

The shift between these two waveforms is about 45 degrees, the “A” wave being ahead of
the “B” wave. A sampling of different phase shifts is given in the following graphs to better
illustrate this concept: Figure 1.26

Because the waveforms in the above examples are at the same frequency, they will be out of
step by the same angular amount at every point in time. For this reason, we can express phase
shift for two or more waveforms of the same frequency as a constant quantity for the entire
wave, and not just an expression of shift between any two particular points along the waves.
That is, it is safe to say something like, “voltage ’A’ is 45 degrees out of phase with voltage 'B’.”
Whichever waveform is ahead in its evolution is said to be leading and the one behind is said
to be lagging.

Phase shift, like voltage, is always a measurement relative between two things. There’s
really no such thing as a waveform with an absolute phase measurement because there’s no
known universal reference for phase. Typically in the analysis of AC circuits, the voltage
waveform of the power supply is used as a reference for phase, that voltage stated as “xxx
volts at 0 degrees.” Any other AC voltage or current in that circuit will have its phase shift
expressed in terms relative to that source voltage.

This is what makes AC circuit calculations more complicated than DC. When applying
Ohm’s Law and Kirchhoff’s Laws, quantities of AC voltage and current must reflect phase
shift as well as amplitude. Mathematical operations of addition, subtraction, multiplication,
and division must operate on these quantities of phase shift as well as amplitude. Fortunately,
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Phase shift = 90 degrees
A B Ais ahead of B
(A "leads" B)

Phase shift = 90 degrees
B A B is ahead of A
(B "leads" A)

Phase shift = 180 degrees
A and B waveforms are
mirror-images of each other

Phase shift = 0 degrees
AB A and B waveforms are
in perfect step with each other

Figure 1.26: Examples of phase shifts.
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there is a mathematical system of quantities called complex numbers ideally suited for this
task of representing amplitude and phase.

Because the subject of complex numbers is so essential to the understanding of AC circuits,
the next chapter will be devoted to that subject alone.

e REVIEW:
e Phase shift is where two or more waveforms are out of step with each other.

e The amount of phase shift between two waves can be expressed in terms of degrees, as
defined by the degree units on the horizontal axis of the waveform graph used in plotting
the trigonometric sine function.

e A leading waveform is defined as one waveform that is ahead of another in its evolution.
A lagging waveform is one that is behind another. Example:

Phase shift = 90 degrees
A B Aleads B; B lags A

e Calculations for AC circuit analysis must take into consideration both amplitude and
phase shift of voltage and current waveforms to be completely accurate. This requires
the use of a mathematical system called complex numbers.

1.6 Principles of radio

One of the more fascinating applications of electricity is in the generation of invisible ripples
of energy called radio waves. The limited scope of this lesson on alternating current does not
permit full exploration of the concept, some of the basic principles will be covered.

With Oersted’s accidental discovery of electromagnetism, it was realized that electricity and
magnetism were related to each other. When an electric current was passed through a conduc-
tor, a magnetic field was generated perpendicular to the axis of flow. Likewise, if a conductor
was exposed to a change in magnetic flux perpendicular to the conductor, a voltage was pro-
duced along the length of that conductor. So far, scientists knew that electricity and magnetism
always seemed to affect each other at right angles. However, a major discovery lay hidden just
beneath this seemingly simple concept of related perpendicularity, and its unveiling was one
of the pivotal moments in modern science.

This breakthrough in physics is hard to overstate. The man responsible for this concep-
tual revolution was the Scottish physicist James Clerk Maxwell (1831-1879), who “unified” the
study of electricity and magnetism in four relatively tidy equations. In essence, what he dis-
covered was that electric and magnetic fields were intrinsically related to one another, with or
without the presence of a conductive path for electrons to flow. Stated more formally, Maxwell’s
discovery was this:
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A changing electric field produces a perpendicular magnetic field, and
A changing magnetic field produces a perpendicular electric field.

All of this can take place in open space, the alternating electric and magnetic fields support-
ing each other as they travel through space at the speed of light. This dynamic structure of
electric and magnetic fields propagating through space is better known as an electromagnetic
wave.

There are many kinds of natural radiative energy composed of electromagnetic waves. Even
light is electromagnetic in nature. So are X-rays and “gamma” ray radiation. The only dif-
ference between these kinds of electromagnetic radiation is the frequency of their oscillation
(alternation of the electric and magnetic fields back and forth in polarity). By using a source of
AC voltage and a special device called an antenna, we can create electromagnetic waves (of a
much lower frequency than that of light) with ease.

An antenna is nothing more than a device built to produce a dispersing electric or magnetic
field. Two fundamental types of antennae are the dipole and the loop: Figure 1.27

Basic antenna designs

DIPOLE LoOP
")
I\
")
I\

Figure 1.27: Dipole and loop antennae

While the dipole looks like nothing more than an open circuit, and the loop a short circuit,
these pieces of wire are effective radiators of electromagnetic fields when connected to AC
sources of the proper frequency. The two open wires of the dipole act as a sort of capacitor
(two conductors separated by a dielectric), with the electric field open to dispersal instead of
being concentrated between two closely-spaced plates. The closed wire path of the loop antenna
acts like an inductor with a large air core, again providing ample opportunity for the field to
disperse away from the antenna instead of being concentrated and contained as in a normal
inductor.

As the powered dipole radiates its changing electric field into space, a changing magnetic
field is produced at right angles, thus sustaining the electric field further into space, and so
on as the wave propagates at the speed of light. As the powered loop antenna radiates its
changing magnetic field into space, a changing electric field is produced at right angles, with
the same end-result of a continuous electromagnetic wave sent away from the antenna. Either
antenna achieves the same basic task: the controlled production of an electromagnetic field.

When attached to a source of high-frequency AC power, an antenna acts as a transmitting
device, converting AC voltage and current into electromagnetic wave energy. Antennas also
have the ability to intercept electromagnetic waves and convert their energy into AC voltage
and current. In this mode, an antenna acts as a receiving device: Figure 1.28
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Figure 1.28: Basic radio transmitter and receiver

While there is much more that may be said about antenna technology, this brief introduction
is enough to give you the general idea of what’s going on (and perhaps enough information to
provoke a few experiments).

e REVIEW:

e James Maxwell discovered that changing electric fields produce perpendicular magnetic
fields, and vice versa, even in empty space.

e A twin set of electric and magnetic fields, oscillating at right angles to each other and
traveling at the speed of light, constitutes an electromagnetic wave.

e An antenna is a device made of wire, designed to radiate a changing electric field or
changing magnetic field when powered by a high-frequency AC source, or intercept an
electromagnetic field and convert it to an AC voltage or current.

e The dipole antenna consists of two pieces of wire (not touching), primarily generating an
electric field when energized, and secondarily producing a magnetic field in space.

e The loop antenna consists of a loop of wire, primarily generating a magnetic field when
energized, and secondarily producing an electric field in space.

1.7 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most
recent to first. See Appendix 2 (Contributor List) for dates and contact information.

Harvey Lew (February 7, 2004): Corrected typographical error: “circuit” should have been
“circle”.
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2.1 Introduction

If I needed to describe the distance between two cities, I could provide an answer consisting of
a single number in miles, kilometers, or some other unit of linear measurement. However, if I
were to describe how to travel from one city to another, I would have to provide more informa-
tion than just the distance between those two cities; I would also have to provide information
about the direction to travel, as well.

The kind of information that expresses a single dimension, such as linear distance, is called
a scalar quantity in mathematics. Scalar numbers are the kind of numbers you’ve used in most
all of your mathematical applications so far. The voltage produced by a battery, for example,
is a scalar quantity. So is the resistance of a piece of wire (ohms), or the current through it
(amps).

However, when we begin to analyze alternating current circuits, we find that quantities
of voltage, current, and even resistance (called impedance in AC) are not the familiar one-
dimensional quantities we’re used to measuring in DC circuits. Rather, these quantities, be-
cause they’re dynamic (alternating in direction and amplitude), possess other dimensions that

27
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must be taken into account. Frequency and phase shift are two of these dimensions that come
into play. Even with relatively simple AC circuits, where we’re only dealing with a single fre-
quency, we still have the dimension of phase shift to contend with in addition to the amplitude.

In order to successfully analyze AC circuits, we need to work with mathematical objects
and techniques capable of representing these multi-dimensional quantities. Here is where
we need to abandon scalar numbers for something better suited: complex numbers. Just like
the example of giving directions from one city to another, AC quantities in a single-frequency
circuit have both amplitude (analogy: distance) and phase shift (analogy: direction). A complex
number is a single mathematical quantity able to express these two dimensions of amplitude
and phase shift at once.

Complex numbers are easier to grasp when they’re represented graphically. If I draw a line
with a certain length (magnitude) and angle (direction), I have a graphic representation of a
complex number which is commonly known in physics as a vector: (Figure 2.1)

_— -
length =7 length =10
angle = 0 degrees angle = 180 degrees
length=5 length =4
angle = 90 degrees angle = 270 degrees
(-90 degrees)
length = 9.43
length = 5.66 angle = 302.01 degrees
angle = 45 degrees (-57.99 degrees)

Figure 2.1: A vector has both magnitude and direction.

Like distances and directions on a map, there must be some common frame of reference for
angle figures to have any meaning. In this case, directly right is considered to be 0°, and angles
are counted in a positive direction going counter-clockwise: (Figure 2.2)

The idea of representing a number in graphical form is nothing new. We all learned this in
grade school with the “number line:” (Figure 2.3)

We even learned how addition and subtraction works by seeing how lengths (magnitudes)
stacked up to give a final answer: (Figure 2.4)

Later, we learned that there were ways to designate the values between the whole numbers
marked on the line. These were fractional or decimal quantities: (Figure 2.5)

Later yet we learned that the number line could extend to the left of zero as well: (Fig-
ure 2.6)
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The vector "compass”

90°

180° 0°

270° (-90°)

Figure 2.2: The vector compass

0 1 2 3 4 5 6 7 8 9 10
Figure 2.3: Number line.
5+3=8

I~ 8 -

[ 5 3 —

I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Figure 2.4: Addition on a “number line”.
3-1/2 or 3.5

| | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

Figure 2.5: Locating a fraction on the “number line”
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Figure 2.6: “Number line” shows both positive and negative numbers.

These fields of numbers (whole, integer, rational, irrational, real, etc.) learned in grade
school share a common trait: they’re all one-dimensional. The straightness of the number
line illustrates this graphically. You can move up or down the number line, but all “motion”
along that line is restricted to a single axis (horizontal). One-dimensional, scalar numbers are
perfectly adequate for counting beads, representing weight, or measuring DC battery voltage,
but they fall short of being able to represent something more complex like the distance and
direction between two cities, or the amplitude and phase of an AC waveform. To represent
these kinds of quantities, we need multidimensional representations. In other words, we need
a number line that can point in different directions, and that’s exactly what a vector is.

e REVIEW:

e A scalar number is the type of mathematical object that people are used to using in
everyday life: a one-dimensional quantity like temperature, length, weight, etc.

e A complex number is a mathematical quantity representing two dimensions of magnitude
and direction.

e A vector is a graphical representation of a complex number. It looks like an arrow, with
a starting point, a tip, a definite length, and a definite direction. Sometimes the word
phasor is used in electrical applications where the angle of the vector represents phase
shift between waveforms.

2.2 Vectors and AC waveforms

OK, so how exactly can we represent AC quantities of voltage or current in the form of a vector?
The length of the vector represents the magnitude (or amplitude) of the waveform, like this:
(Figure 2.7)

The greater the amplitude of the waveform, the greater the length of its corresponding
vector. The angle of the vector, however, represents the phase shift in degrees between the
waveform in question and another waveform acting as a “reference” in time. Usually, when the
phase of a waveform in a circuit is expressed, it is referenced to the power supply voltage wave-
form (arbitrarily stated to be “at” 0°). Remember that phase is always a relative measurement
between two waveforms rather than an absolute property. (Figure 2.8) (Figure 2.9)

The greater the phase shift in degrees between two waveforms, the greater the angle dif-
ference between the corresponding vectors. Being a relative measurement, like voltage, phase
shift (vector angle) only has meaning in reference to some standard waveform. Generally this
“reference” waveform is the main AC power supply voltage in the circuit. If there is more than
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Waveform Vector representation

TN .
% S

Amplitude |._ Length —>|

Figure 2.7: Vector length represents AC voltage magnitude.
Waveforms Phase relations Vector representations

(of "A" waveform with
reference to "B" waveform)

Phase shift = 0 degrees
A's A and B waveforms are — AB
in perfect step with each other

A
Phase shift = 90 degrees
A Ais ahead of B 90 degrees
(A'leads"B) ... -8B
, Phase shift = 90 degrees - » B
B/ B is ahead of A -90 degrees
(B "leads" A)
A
Phase shift = 180 degrees 180 degrees
A and B waveforms are A ~—— e B

mirror-images of each other

Figure 2.8: Vector angle is the phase with respect to another waveform.
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— ]
phase shift

Figure 2.9: Phase shift between waves and vector phase angle

one AC voltage source, then one of those sources is arbitrarily chosen to be the phase reference
for all other measurements in the circuit.

This concept of a reference point is not unlike that of the “ground” point in a circuit for
the benefit of voltage reference. With a clearly defined point in the circuit declared to be
“ground,” it becomes possible to talk about voltage “on” or “at” single points in a circuit, being
understood that those voltages (always relative between fwo points) are referenced to “ground.”
Correspondingly, with a clearly defined point of reference for phase it becomes possible to speak
of voltages and currents in an AC circuit having definite phase angles. For example, if the
current in an AC circuit is described as “24.3 milliamps at -64 degrees,” it means that the
current waveform has an amplitude of 24.3 mA, and it lags 64° behind the reference waveform,
usually assumed to be the main source voltage waveform.

e REVIEW:

e When used to describe an AC quantity, the length of a vector represents the amplitude
of the wave while the angle of a vector represents the phase angle of the wave relative to
some other (reference) waveform.

2.3 Simple vector addition

Remember that vectors are mathematical objects just like numbers on a number line: they
can be added, subtracted, multiplied, and divided. Addition is perhaps the easiest vector op-
eration to visualize, so we’ll begin with that. If vectors with common angles are added, their
magnitudes (lengths) add up just like regular scalar quantities: (Figure 2.10)

length=6  length=8 total length=6+8 =14
angle = 0 degrees  angle = 0 degrees angle = 0 degrees

Figure 2.10: Vector magnitudes add like scalars for a common angle.

Similarly, if AC voltage sources with the same phase angle are connected together in series,
their voltages add just as you might expect with DC batteries: (Figure 2.11)

Please note the (+) and (-) polarity marks next to the leads of the two AC sources. Even
though we know AC doesn’t have “polarity” in the same sense that DC does, these marks are
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6V 8V
Odeg+ Odeg+ 6V+ 8V+
VN VN i} I i} I
) ) 1] 1]
- +
- (:I)-A(ljgg > <—-+—>

Figure 2.11: “In phase” AC voltages add like DC battery voltages.

essential to knowing how to reference the given phase angles of the voltages. This will become
more apparent in the next example.

If vectors directly opposing each other (180° out of phase) are added together, their magni-
tudes (Iengths) subtract just like positive and negative scalar quantities subtract when added:
(Figure 2.12)

length = 6>angle =0 degrees

) length =8 angle = 180 degrees

total length = 6 - 8 = -2 at 0 degrees
- or 2 at 180 degrees

Figure 2.12: Directly opposing vector magnitudes subtract.

Similarly, if opposing AC voltage sources are connected in series, their voltages subtract as
you might expect with DC batteries connected in an opposing fashion: (Figure 2.13)

Determining whether or not these voltage sources are opposing each other requires an ex-
amination of their polarity markings and their phase angles. Notice how the polarity markings
in the above diagram seem to indicate additive voltages (from left to right, we see - and + on
the 6 volt source, - and + on the 8 volt source). Even though these polarity markings would
normally indicate an additive effect in a DC circuit (the two voltages working together to pro-
duce a greater total voltage), in this AC circuit they’re actually pushing in opposite directions
because one of those voltages has a phase angle of 0° and the other a phase angle of 180°. The
result, of course, is a total voltage of 2 volts.

We could have just as well shown the opposing voltages subtracting in series like this:
(Figure 2.14)

Note how the polarities appear to be opposed to each other now, due to the reversal of
wire connections on the 8 volt source. Since both sources are described as having equal phase
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6V
Odngr 180deJ9 6V+ +8V
VR VR " [ |-
) ) 1] 11
- +
D 2V N + -
D 180 deg g
\_/_\

Figure 2.13: Opposing AC voltages subtract like opposing battery voltages.

Figure 2.14: Opposing voltages in spite of equal phase angles.
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angles (0°), they truly are opposed to one another, and the overall effect is the same as the
former scenario with “additive” polarities and differing phase angles: a total voltage of only 2
volts. (Figure 2.15)

A
=
(o0}
o
Q.
(1)

(o]

Y

A
Y

2V
0 deg

Figure 2.15: Just as there are two ways to express the phase of the sources, there are two ways
to express the resultant their sum.

The resultant voltage can be expressed in two different ways: 2 volts at 180° with the (-)
symbol on the left and the (+) symbol on the right, or 2 volts at 0° with the (+) symbol on the
left and the (-) symbol on the right. A reversal of wires from an AC voltage source is the same
as phase-shifting that source by 180°. (Figure 2.16)

8V 8V
180 deg These voltage sources 0 deg

C + are equivalent! +C

Figure 2.16: Example of equivalent voltage sources.

2.4 Complex vector addition

If vectors with uncommon angles are added, their magnitudes (lengths) add up quite differ-
ently than that of scalar magnitudes: (Figure 2.17)

If two AC voltages — 90° out of phase — are added together by being connected in series, their
voltage magnitudes do not directly add or subtract as with scalar voltages in DC. Instead, these
voltage quantities are complex quantities, and just like the above vectors, which add up in a
trigonometric fashion, a 6 volt source at 0° added to an 8 volt source at 90° results in 10 volts
at a phase angle of 53.13°: (Figure 2.18)

Compared to DC circuit analysis, this is very strange indeed. Note that its possible to obtain
voltmeter indications of 6 and 8 volts, respectively, across the two AC voltage sources, yet only
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Vector addition

'eTgthgslfs 6 at 0 degrees
angle = 53. —
%egrees length = 8 + 8at 90 degrees
angle = 90 degrees
10 at 53.13 degrees
length =6

angle = 0 degrees

Figure 2.17: Vector magnitudes do not directly add for unequal angles.

(
¢

6V 8V
0 deg+ 90 deg+
N N
) )
- Tov 1+,
53.13 deg

U

Figure 2.18: The 6V and 8V sources add to 10V with the help of trigonometry.
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read 10 volts for a total voltage!

There is no suitable DC analogy for what we're seeing here with two AC voltages slightly
out of phase. DC voltages can only directly aid or directly oppose, with nothing in between.
With AC, two voltages can be aiding or opposing one another to any degree between fully-
aiding and fully-opposing, inclusive. Without the use of vector (complex number) notation to
describe AC quantities, it would be very difficult to perform mathematical calculations for AC
circuit analysis.

In the next section, we’ll learn how to represent vector quantities in symbolic rather than
graphical form. Vector and triangle diagrams suffice to illustrate the general concept, but more
precise methods of symbolism must be used if any serious calculations are to be performed on
these quantities.

e REVIEW:

e DC voltages can only either directly aid or directly oppose each other when connected in
series. AC voltages may aid or oppose to any degree depending on the phase shift between
them.

2.5 Polar and rectangular notation

In order to work with these complex numbers without drawing vectors, we first need some kind
of standard mathematical notation. There are two basic forms of complex number notation:
polar and rectangular.

Polar form is where a complex number is denoted by the length (otherwise known as the
magnitude, absolute value, or modulus) and the angle of its vector (usually denoted by an
angle symbol that looks like this: /). To use the map analogy, polar notation for the vector
from New York City to San Diego would be something like “2400 miles, southwest.” Here are
two examples of vectors and their polar notations: (Figure 2.19)

8.06 [ -29.74°
N_\oe [ 330.26%)
8.49 [ 45°

Note: the proper notation for designating a vector’s angle
is this symbol: O

T 5¥0 182 7.810 230.19°

(7.81 0 -129.81°

Figure 2.19: Vectors with polar notations.
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Standard orientation for vector angles in AC circuit calculations defines 0° as being to the
right (horizontal), making 90° straight up, 180° to the left, and 270° straight down. Please note
that vectors angled “down” can have angles represented in polar form as positive numbers in
excess of 180, or negative numbers less than 180. For example, a vector angled / 270° (straight
down) can also be said to have an angle of -90°. (Figure 2.20) The above vector on the right
(7.81 / 230.19°) can also be denoted as 7.81 / -129.81°.

The vector "compass”

90°

180° o°

270° (-90°%)
Figure 2.20: The vector compass

Rectangular form, on the other hand, is where a complex number is denoted by its re-
spective horizontal and vertical components. In essence, the angled vector is taken to be the
hypotenuse of a right triangle, described by the lengths of the adjacent and opposite sides.
Rather than describing a vector’s length and direction by denoting magnitude and angle, it is
described in terms of “how far left/right” and “how far up/down.”

These two dimensional figures (horizontal and vertical) are symbolized by two numerical
figures. In order to distinguish the horizontal and vertical dimensions from each other, the
vertical is prefixed with a lower-case “i” (in pure mathematics) or “” (in electronics). These
lower-case letters do not represent a physical variable (such as instantaneous current, also
symbolized by a lower-case letter “i”), but rather are mathematical operators used to distin-
guish the vector’s vertical component from its horizontal component. As a complete complex
number, the horizontal and vertical quantities are written as a sum: (Figure 2.21)

The horizontal component is referred to as the real component, since that dimension is
compatible with normal, scalar (“real”) numbers. The vertical component is referred to as the
imaginary component, since that dimension lies in a different direction, totally alien to the
scale of the real numbers. (Figure 2.22)

The “real” axis of the graph corresponds to the familiar number line we saw earlier: the one
with both positive and negative values on it. The “imaginary” axis of the graph corresponds to
another number line situated at 90° to the “real” one. Vectors being two-dimensional things,
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—_—
4+ija 4+jo
"4 right and 4 up” "4 right and 0 up/down”
-
4-ja -4 +j0
"4 right and 4 down" "4 left and O up/down"

39

-4 +ij4
"4 left and 4 up"

-4 -j4
"4 left and 4 down"

Figure 2.21: In “rectangular” form the vector’s length and direction are denoted in terms of its
horizontal and vertical span, the first number representing the the horizontal (“real”) and the
second number (with the “j” prefix) representing the vertical (“imaginary”) dimensions.

+ "imaginary"
+

_ llrealll

+ ||rea|u

)
- "imaginary”

Figure 2.22: Vector compass showing real and imaginary axes
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we must have a two-dimensional “map” upon which to express them, thus the two number
lines perpendicular to each other: (Figure 2.23)

s

"imagina_ry"
number lihe | 2

—— "real" number line —

Figure 2.23: Vector compass with real and imaginary (“j”) number lines.

Either method of notation is valid for complex numbers. The primary reason for having
two methods of notation is for ease of longhand calculation, rectangular form lending itself to
addition and subtraction, and polar form lending itself to multiplication and division.

Conversion between the two notational forms involves simple trigonometry. To convert from
polar to rectangular, find the real component by multiplying the polar magnitude by the cosine
of the angle, and the imaginary component by multiplying the polar magnitude by the sine of
the angle. This may be understood more readily by drawing the quantities as sides of a right
triangle, the hypotenuse of the triangle representing the vector itself (its length and angle
with respect to the horizontal constituting the polar form), the horizontal and vertical sides
representing the “real” and “imaginary” rectangular components, respectively: (Figure 2.24)
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+j3

Figure 2.24: Magnitude vector in terms of real (4) and imaginary (j3) components.

50 36.87° (polar form)

(5)(cos36.87°) =4  (real component)
(5)(sin36.87°) =3 (imaginary component)

4+j3 (rectangular form)

To convert from rectangular to polar, find the polar magnitude through the use of the
Pythagorean Theorem (the polar magnitude is the hypotenuse of a right triangle, and the real
and imaginary components are the adjacent and opposite sides, respectively), and the angle by
taking the arctangent of the imaginary component divided by the real component:

4+]j3 (rectangular form)
c="Va+b? (pythagorean theorem)

polar magnitude ="V 4% + 3

polar magnitude = 5

_ 3
polar angle = arctan o

polar angle = 36.87°

5036.87°  (polar form)

e REVIEW:

e Polar notation denotes a complex number in terms of its vector’s length and angular
direction from the starting point. Example: fly 45 miles / 203° (West by Southwest).
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e Rectangular notation denotes a complex number in terms of its horizontal and vertical
dimensions. Example: drive 41 miles West, then turn and drive 18 miles South.

e In rectangular notation, the first quantity is the “real” component (horizontal dimension
of vector) and the second quantity is the “imaginary” component (vertical dimension of

vector). The imaginary component is preceded by a lower-case “j,” sometimes called the j
operator.

e Both polar and rectangular forms of notation for a complex number can be related graph-
ically in the form of a right triangle, with the hypotenuse representing the vector itself
(polar form: hypotenuse length = magnitude; angle with respect to horizontal side = an-
gle), the horizontal side representing the rectangular “real” component, and the vertical
side representing the rectangular “imaginary” component.

2.6 Complex number arithmetic

Since complex numbers are legitimate mathematical entities, just like scalar numbers, they
can be added, subtracted, multiplied, divided, squared, inverted, and such, just like any other
kind of number. Some scientific calculators are programmed to directly perform these opera-
tions on two or more complex numbers, but these operations can also be done “by hand.” This
section will show you how the basic operations are performed. It is highly recommended that
you equip yourself with a scientific calculator capable of performing arithmetic functions easily
on complex numbers. It will make your study of AC circuit much more pleasant than if you're
forced to do all calculations the longer way.

Addition and subtraction with complex numbers in rectangular form is easy. For addition,
simply add up the real components of the complex numbers to determine the real component
of the sum, and add up the imaginary components of the complex numbers to determine the
imaginary component of the sum:

2+i5 175 - j34 -36+10
+4-j3 +80-j15 +20+j82
6+j2 255 - j49 16 +)92

When subtracting complex numbers in rectangular form, simply subtract the real compo-
nent of the second complex number from the real component of the first to arrive at the real
component of the difference, and subtract the imaginary component of the second complex
number from the imaginary component of the first to arrive the imaginary component of the
difference:

2+j5 175 - j34 -36+j10
-(4-3) - (80-j15) - (20 +82)
2+]8 95-19 -56-]72

For longhand multiplication and division, polar is the favored notation to work with. When
multiplying complex numbers in polar form, simply multiply the polar magnitudes of the com-
plex numbers to determine the polar magnitude of the product, and add the angles of the
complex numbers to determine the angle of the product:
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(35 0 65°)(10 O -12° = 350 O 53°

(124 0 250°)(11 O 100°) = 1364 0 -10°
or
1364 [ 350°

(30 309(50-30% = 150 0°

Division of polar-form complex numbers is also easy: simply divide the polar magnitude
of the first complex number by the polar magnitude of the second complex number to arrive
at the polar magnitude of the quotient, and subtract the angle of the second complex number
from the angle of the first complex number to arrive at the angle of the quotient:

0
BOE _gopp
(0]
% =11.273 [0 150°
(o]
LS PSP

To obtain the reciprocal, or “invert” (1/x), a complex number, simply divide the number (in
polar form) into a scalar value of 1, which is nothing more than a complex number with no
imaginary component (angle = 0):

0
! SRS L 0.02857 O -65°

350 65° 350 65°

1 100°

= =010 12°
100-12° 100 -12°
0
1 __ - 100" _31050-10°
0.0032 0 10 0.0032 0 10

These are the basic operations you will need to know in order to manipulate complex num-
bers in the analysis of AC circuits. Operations with complex numbers are by no means limited
just to addition, subtraction, multiplication, division, and inversion, however. Virtually any
arithmetic operation that can be done with scalar numbers can be done with complex num-
bers, including powers, roots, solving simultaneous equations with complex coefficients, and
even trigonometric functions (although this involves a whole new perspective in trigonometry
called hyperbolic functions which is well beyond the scope of this discussion). Be sure that
you’re familiar with the basic arithmetic operations of addition, subtraction, multiplication,
division, and inversion, and you’ll have little trouble with AC circuit analysis.

e REVIEW:
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e To add complex numbers in rectangular form, add the real components and add the imag-
inary components. Subtraction is similar.

e To multiply complex numbers in polar form, multiply the magnitudes and add the angles.
To divide, divide the magnitudes and subtract one angle from the other.

2.7 More on AC ”polarity”

Complex numbers are useful for AC circuit analysis because they provide a convenient method
of symbolically denoting phase shift between AC quantities like voltage and current. However,
for most people the equivalence between abstract vectors and real circuit quantities is not an
easy one to grasp. Earlier in this chapter we saw how AC voltage sources are given voltage
figures in complex form (magnitude and phase angle), as well as polarity markings. Being that
alternating current has no set “polarity” as direct current does, these polarity markings and
their relationship to phase angle tends to be confusing. This section is written in the attempt
to clarify some of these issues.

Voltage is an inherently relative quantity. When we measure a voltage, we have a choice in
how we connect a voltmeter or other voltage-measuring instrument to the source of voltage, as
there are two points between which the voltage exists, and two test leads on the instrument
with which to make connection. In DC circuits, we denote the polarity of voltage sources and
voltage drops explicitly, using “+” and “-” symbols, and use color-coded meter test leads (red
and black). If a digital voltmeter indicates a negative DC voltage, we know that its test leads
are connected “backward” to the voltage (red lead connected to the “-” and black lead to the
“+7).

Batteries have their polarity designated by way of intrinsic symbology: the short-line side
of a battery is always the negative (-) side and the long-line side always the positive (+): (Fig-
ure 2.25)

6V

ilis

Figure 2.25: Conventional battery polarity.

Although it would be mathematically correct to represent a battery’s voltage as a negative
figure with reversed polarity markings, it would be decidedly unconventional: (Figure 2.26)

Figure 2.26: Decidedly unconventional polarity marking.
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Interpreting such notation might be easier if the “+” and “-” polarity markings were viewed
as reference points for voltmeter test leads, the “+” meaning “red” and the “-” meaning “black.”
A voltmeter connected to the above battery with red lead to the bottom terminal and black
lead to the top terminal would indeed indicate a negative voltage (-6 volts). Actually, this form
of notation and interpretation is not as unusual as you might think: its commonly encoun-
tered in problems of DC network analysis where “+” and “-” polarity marks are initially drawn
according to educated guess, and later interpreted as correct or “backward” according to the
mathematical sign of the figure calculated.

In AC circuits, though, we don’t deal with “negative” quantities of voltage. Instead, we
describe to what degree one voltage aids or opposes another by phase: the time-shift between
two waveforms. We never describe an AC voltage as being negative in sign, because the facility
of polar notation allows for vectors pointing in an opposite direction. If one AC voltage directly
opposes another AC voltage, we simply say that one is 180° out of phase with the other.

Still, voltage is relative between two points, and we have a choice in how we might connect
a voltage-measuring instrument between those two points. The mathematical sign of a DC
voltmeter’s reading has meaning only in the context of its test lead connections: which terminal
the red lead is touching, and which terminal the black lead is touching. Likewise, the phase
angle of an AC voltage has meaning only in the context of knowing which of the two points
is considered the “reference” point. Because of this fact, “+” and “-” polarity marks are often
placed by the terminals of an AC voltage in schematic diagrams to give the stated phase angle
a frame of reference.

Let’s review these principles with some graphical aids. First, the principle of relating test
lead connections to the mathematical sign of a DC voltmeter indication: (Figure 2.27)

The mathematical sign of a digital DC voltmeter’s display has meaning only in the context
of its test lead connections. Consider the use of a DC voltmeter in determining whether or
not two DC voltage sources are aiding or opposing each other, assuming that both sources
are unlabeled as to their polarities. Using the voltmeter to measure across the first source:
(Figure 2.28)

This first measurement of +24 across the left-hand voltage source tells us that the black
lead of the meter really is touching the negative side of voltage source #1, and the red lead of
the meter really is touching the positive. Thus, we know source #1 is a battery facing in this
orientation: (Figure 2.29)

Measuring the other unknown voltage source: (Figure 2.30)

This second voltmeter reading, however, is a negative (-) 17 volts, which tells us that the
black test lead is actually touching the positive side of voltage source #2, while the red test
lead is actually touching the negative. Thus, we know that source #2 is a battery facing in the
opposite direction: (Figure 2.31)

It should be obvious to any experienced student of DC electricity that these two batteries
are opposing one another. By definition, opposing voltages subtract from one another, so we
subtract 17 volts from 24 volts to obtain the total voltage across the two: 7 volts.

We could, however, draw the two sources as nondescript boxes, labeled with the exact volt-
age figures obtained by the voltmeter, the polarity marks indicating voltmeter test lead place-
ment: (Figure 2.32)

According to this diagram, the polarity marks (which indicate meter test lead placement)
indicate the sources aiding each other. By definition, aiding voltage sources add with one an-
other to form the total voltage, so we add 24 volts to -17 volts to obtain 7 volts: still the correct
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Figure 2.27: Test lead colors provide a frame of reference for interpreting the sign (+ or -) of

the meter’s indication.

The meter tells us +24 volts
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Total voltage?

Figure 2.28: (+) Reading indicates black is (-), red is (+).
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24 V
I
Source 1 Source 2

Total voltage?

Figure 2.29: 24V source is polarized (-) to (+).

- The meter tells us -17 volts
Q
[\N@[A
=Y, <A
9 ~ 1
A
EX, \Siurce 1 Sourciy
Total voltage?

Figure 2.30: (-) Reading indicates black is (+), red is (-).

24V 17V
| || || |
RN L

Source 1 Source 2

" Total voltage = 7 V +

Figure 2.31: 17V source is polarized (+) to (-)

24V -7V

Source 1 Source 2

Figure 2.32: Voltmeter readings as read from meters.
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answer. If we let the polarity markings guide our decision to either add or subtract voltage fig-
ures — whether those polarity markings represent the ¢rue polarity or just the meter test lead
orientation — and include the mathematical signs of those voltage figures in our calculations,
the result will always be correct. Again, the polarity markings serve as frames of reference to
place the voltage figures’ mathematical signs in proper context.

The same is true for AC voltages, except that phase angle substitutes for mathematical
sign. In order to relate multiple AC voltages at different phase angles to each other, we need
polarity markings to provide frames of reference for those voltages’ phase angles. (Figure 2.33)

Take for example the following circuit:

10vO0° 6V O 45°
- + - +

VWA
14.861 V [0 16.59°

Figure 2.33: Phase angle substitutes for + sign.

The polarity markings show these two voltage sources aiding each other, so to determine
the total voltage across the resistor we must add the voltage figures of 10V 2 0° and 6 V £/ 45°
together to obtain 14.861 V / 16.59°. However, it would be perfectly acceptable to represent
the 6 volt source as 6 V / 225°, with a reversed set of polarity markings, and still arrive at the
same total voltage: (Figure 2.34)

wovoo 6V O 225°
- + + -

VWA
14.861V 0 16.59°

Figure 2.34: Reversing the voltmeter leads on the 6V source changes the phase angle by 180°.

6 V /£ 45° with negative on the left and positive on the right is exactly the same as 6 V
/ 225° with positive on the left and negative on the right: the reversal of polarity markings
perfectly complements the addition of 180° to the phase angle designation: (Figure 2.35)

Unlike DC voltage sources, whose symbols intrinsically define polarity by means of short
and long lines, AC voltage symbols have no intrinsic polarity marking. Therefore, any polarity
marks must be included as additional symbols on the diagram, and there is no one “correct”
way in which to place them. They must, however, correlate with the given phase angle to
represent the true phase relationship of that voltage with other voltages in the circuit.
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6_V U 4_?0

...Iisequivalentto. ..

6 Y U 22_50

Figure 2.35: Reversing polarity adds 180°to phase angle

e REVIEW:

e Polarity markings are sometimes given to AC voltages in circuit schematics in order to
provide a frame of reference for their phase angles.

2.8 Some examples with AC circuits

Let’s connect three AC voltage sources in series and use complex numbers to determine addi-
tive voltages. All the rules and laws learned in the study of DC circuits apply to AC circuits
as well (Ohm’s Law, Kirchhoff’s Laws, network analysis methods), with the exception of power
calculations (Joule’s Law). The only qualification is that all variables must be expressed in
complex form, taking into account phase as well as magnitude, and all voltages and currents
must be of the same frequency (in order that their phase relationships remain constant). (Fig-
ure 2.36)

22V 0 -64°

12V 0O 35°

w’Bvoee

Figure 2.36: KVL allows addition of complex voltages.

The polarity marks for all three voltage sources are oriented in such a way that their stated
voltages should add to make the total voltage across the load resistor. Notice that although
magnitude and phase angle is given for each AC voltage source, no frequency value is specified.
If this is the case, it is assumed that all frequencies are equal, thus meeting our qualifications
for applying DC rules to an AC circuit (all figures given in complex form, all of the same
frequency). The setup of our equation to find total voltage appears as such:
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Eoa =E1 + E; + E5

Eiora = (22V 0 -64°) + (12V 0 35%) + (15V 0 0°)
Graphically, the vectors add up as shown in Figure 2.37.

220 -64°

1500°

120 3%°

Figure 2.37: Graphic addition of vector voltages.

The sum of these vectors will be a resultant vector originating at the starting point for the
22 volt vector (dot at upper-left of diagram) and terminating at the ending point for the 15 volt
vector (arrow tip at the middle-right of the diagram): (Figure 2.38)

resultant vector

220 -64°

Figure 2.38: Resultant is equivalent to the vector sum of the three original voltages.

In order to determine what the resultant vector’s magnitude and angle are without re-
sorting to graphic images, we can convert each one of these polar-form complex numbers into
rectangular form and add. Remember, we’re adding these figures together because the polarity
marks for the three voltage sources are oriented in an additive manner:
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15V 00°=15+j0V
12V [0 35° = 9.8298 + [6.8829 V/

22V 0 -64°=9.6442 - j19.7735 V

15 +j0 V
9.8298 +j6.8829V
+ 96442 -j19.7735V

34.4740 - j12.8906 V

In polar form, this equates to 36.8052 volts / -20.5018°. What this means in real terms
is that the voltage measured across these three voltage sources will be 36.8052 volts, lagging
the 15 volt (0° phase reference) by 20.5018°. A voltmeter connected across these points in
a real circuit would only indicate the polar magnitude of the voltage (36.8052 volts), not the
angle. An oscilloscope could be used to display two voltage waveforms and thus provide a phase
shift measurement, but not a voltmeter. The same principle holds true for AC ammeters: they
indicate the polar magnitude of the current, not the phase angle.

This is extremely important in relating calculated figures of voltage and current to real
circuits. Although rectangular notation is convenient for addition and subtraction, and was
indeed the final step in our sample problem here, it is not very applicable to practical measure-
ments. Rectangular figures must be converted to polar figures (specifically polar magnitude)
before they can be related to actual circuit measurements.

We can use SPICE to verify the accuracy of our results. In this test circuit, the 10 kQ)
resistor value is quite arbitrary. It’s there so that SPICE does not declare an open-circuit
error and abort analysis. Also, the choice of frequencies for the simulation (60 Hz) is quite
arbitrary, because resistors respond uniformly for all frequencies of AC voltage and current.
There are other components (notably capacitors and inductors) which do not respond uniformly
to different frequencies, but that is another subject! (Figure 2.39)

ac voltage addition
vl 1 0 ac 15 0 sin

v2 2 1 ac 12 35 sin
v3 3 2 ac 22 -64 sin

ri 3 0 10k

.ac lin 1 60 60 I’ musing a frequency of 60 Hz
.print ac v(3,0) vp(3,0) as a default val ue

.end

freq v(3) vp(3)

6. 000E+01 3.681E+01 -2.050E+01

Sure enough, we get a total voltage of 36.81 volts / -20.5° (with reference to the 15 volt
source, whose phase angle was arbitrarily stated at zero degrees so as to be the “reference”
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3 3

22V 0 -64° djvl
T
12V [0 35° @vz Rlilokﬂ
T
.

15V 00° @v?,

0 0

Figure 2.39: Spice circuit schematic.

waveform).

At first glance, this is counter-intuitive. How is it possible to obtain a total voltage of
just over 36 volts with 15 volt, 12 volt, and 22 volt supplies connected in series? With DC,
this would be impossible, as voltage figures will either directly add or subtract, depending on
polarity. But with AC, our “polarity” (phase shift) can vary anywhere in between full-aiding
and full-opposing, and this allows for such paradoxical summing.

What if we took the same circuit and reversed one of the supply’s connections? Its contri-
bution to the total voltage would then be the opposite of what it was before: (Figure 2.40)

+
22V O -64° E,
Polarity reversed on -
source E, ! _ load
12V O 35° E, %
+
+
15V O Q° E;

Figure 2.40: Polarity of E; (12V) is reversed.

Note how the 12 volt supply’s phase angle is still referred to as 35°, even though the leads
have been reversed. Remember that the phase angle of any voltage drop is stated in reference
to its noted polarity. Even though the angle is still written as 35°, the vector will be drawn
180° opposite of what it was before: (Figure 2.41)

The resultant (sum) vector should begin at the upper-left point (origin of the 22 volt vector)
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12 00 35° (reversed) = 12 0 215°
or
-120 3%°

1500°

Figure 2.41: Direction of E, is reversed.

and terminate at the right arrow tip of the 15 volt vector: (Figure 2.42)

220 -64°

resultant vector

12 0 35° (reversed) = 12 00 215°
or
-12[B5 °

1500°

Figure 2.42: Resultant is vector sum of voltage sources.

The connection reversal on the 12 volt supply can be represented in two different ways in
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polar form: by an addition of 180° to its vector angle (making it 12 volts / 215°), or a reversal
of sign on the magnitude (making it -12 volts / 35°). Either way, conversion to rectangular
form yields the same result:

12V 0 35° (reversed) = 12V [0 215°
or
-12Vv 0 35° -0.8298 - |6.8829 V

The resulting addition of voltages in rectangular form, then:
15 +j0 \%
-0.8298 - |6.8829 V
+ 9.6442 -j19.7735V
14.8143 - j 26.6564 V

In polar form, this equates to 30.4964 V / -60.9368°. Once again, we will use SPICE to
verify the results of our calculations:

-9.8298 - [6.8829 V

ac voltage addition

vl 1 0 ac 15 0 sin

v2 1 2 ac 12 35 sin Note the reversal of node nunmbers 2 and 1
v3 3 2 ac 22 -64 sin to simulate the swappi ng of connections
ri 3 0 10k

.ac lin 1 60 60

.print ac v(3,0) vp(3,0)

. end

freq v(3) vp(3)

6. 000E+01 3. 050E+01 -6.094E+01
e REVIEW:

e All the laws and rules of DC circuits apply to AC circuits, with the exception of power
calculations (Joule’s Law), so long as all values are expressed and manipulated in complex
form, and all voltages and currents are at the same frequency.

e When reversing the direction of a vector (equivalent to reversing the polarity of an AC
voltage source in relation to other voltage sources), it can be expressed in either of two
different ways: adding 180° to the angle, or reversing the sign of the magnitude.

e Meter measurements in an AC circuit correspond to the polar magnitudes of calculated
values. Rectangular expressions of complex quantities in an AC circuit have no direct,
empirical equivalent, although they are convenient for performing addition and subtrac-
tion, as Kirchhoff’s Voltage and Current Laws require.
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2.9 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most
recent to first. See Appendix 2 (Contributor List) for dates and contact information.

Jason Starck (June 2000): HTML document formatting, which led to a much better-
looking second edition.
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3.1 AC resistor circuits

ET | —

(\, Er R

E; = Ex I =1k
Figure 3.1: Pure resistive AC circuit: resistor voltage and current are in phase.

If we were to plot the current and voltage for a very simple AC circuit consisting of a source
and a resistor (Figure 3.1), it would look something like this: (Figure 3.2)

57
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Time —

Figure 3.2: Voltage and current “in phase” for resistive circuit.

Because the resistor simply and directly resists the flow of electrons at all periods of time,
the waveform for the voltage drop across the resistor is exactly in phase with the waveform for
the current through it. We can look at any point in time along the horizontal axis of the plot
and compare those values of current and voltage with each other (any “snapshot” look at the
values of a wave are referred to as instantaneous values, meaning the values at that instant in
time). When the instantaneous value for current is zero, the instantaneous voltage across the
resistor is also zero. Likewise, at the moment in time where the current through the resistor
is at its positive peak, the voltage across the resistor is also at its positive peak, and so on. At
any given point in time along the waves, Ohm’s Law holds true for the instantaneous values of
voltage and current.

We can also calculate the power dissipated by this resistor, and plot those values on the
same graph: (Figure 3.3)

Time —

Figure 3.3: Instantaneous AC power in a pure resistive circuit is always positive.

Note that the power is never a negative value. When the current is positive (above the
line), the voltage is also positive, resulting in a power (p=ie) of a positive value. Conversely,
when the current is negative (below the line), the voltage is also negative, which results in a
positive value for power (a negative number multiplied by a negative number equals a positive
number). This consistent “polarity” of power tells us that the resistor is always dissipating
power, taking it from the source and releasing it in the form of heat energy. Whether the
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current is positive or negative, a resistor still dissipates energy.

3.2 AC inductor circuits

Inductors do not behave the same as resistors. Whereas resistors simply oppose the flow of
electrons through them (by dropping a voltage directly proportional to the current), inductors
oppose changes in current through them, by dropping a voltage directly proportional to the
rate of change of current. In accordance with Lenz’s Law, this induced voltage is always of such
a polarity as to try to maintain current at its present value. That is, if current is increasing
in magnitude, the induced voltage will “push against” the electron flow; if current is decreas-
ing, the polarity will reverse and “push with” the electron flow to oppose the decrease. This
opposition to current change is called reactance, rather than resistance.

Expressed mathematically, the relationship between the voltage dropped across the induc-
tor and rate of current change through the inductor is as such:

— di
e=1L o

The expression di/dt is one from calculus, meaning the rate of change of instantaneous cur-
rent (i) over time, in amps per second. The inductance (L) is in Henrys, and the instantaneous
voltage (e), of course, is in volts. Sometimes you will find the rate of instantaneous voltage
expressed as “v” instead of “e” (v = L di/dt), but it means the exact same thing. To show what
happens with alternating current, let’s analyze a simple inductor circuit: (Figure 3.4)

E; I — E
6’ E. L
I L l 900 I L

Figure 3.4: Pure inductive circuit: Inductor current lags inductor voltage by 90°.

If we were to plot the current and voltage for this very simple circuit, it would look some-
thing like this: (Figure 3.5)

Remember, the voltage dropped across an inductor is a reaction against the change in cur-
rent through it. Therefore, the instantaneous voltage is zero whenever the instantaneous
current is at a peak (zero change, or level slope, on the current sine wave), and the instan-
taneous voltage is at a peak wherever the instantaneous current is at maximum change (the
points of steepest slope on the current wave, where it crosses the zero line). This results in a
voltage wave that is 90° out of phase with the current wave. Looking at the graph, the voltage
wave seems to have a “head start” on the current wave; the voltage “leads” the current, and
the current “lags” behind the voltage. (Figure 3.6)

Things get even more interesting when we plot the power for this circuit: (Figure 3.7)

Because instantaneous power is the product of the instantaneous voltage and the instanta-
neous current (p=ie), the power equals zero whenever the instantaneous current or voltage is
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Figure 3.5: Pure inductive circuit, waveforms.

current slope =0 current slope = max. (+)
voltage =0 voltage = max. (+)

; Time —
. current slope = 0
T voltage =0

current slope = max. (-)
voltage = max. (-)

Figure 3.6: Current lags voltage by 90° in a pure inductive circuit.

Figure 3.7: In a pure inductive circuit, instantaneous power may be positive or negative
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zero. Whenever the instantaneous current and voltage are both positive (above the line), the
power is positive. As with the resistor example, the power is also positive when the instanta-
neous current and voltage are both negative (below the line). However, because the current
and voltage waves are 90° out of phase, there are times when one is positive while the other is
negative, resulting in equally frequent occurrences of negative instantaneous power.

But what does negative power mean? It means that the inductor is releasing power back to
the circuit, while a positive power means that it is absorbing power from the circuit. Since the
positive and negative power cycles are equal in magnitude and duration over time, the inductor
releases just as much power back to the circuit as it absorbs over the span of a complete cycle.
What this means in a practical sense is that the reactance of an inductor dissipates a net
energy of zero, quite unlike the resistance of a resistor, which dissipates energy in the form of
heat. Mind you, this is for perfect inductors only, which have no wire resistance.

An inductor’s opposition to change in current translates to an opposition to alternating
current in general, which is by definition always changing in instantaneous magnitude and
direction. This opposition to alternating current is similar to resistance, but different in that
it always results in a phase shift between current and voltage, and it dissipates zero power.
Because of the differences, it has a different name: reactance. Reactance to AC is expressed
in ohms, just like resistance is, except that its mathematical symbol is X instead of R. To be
specific, reactance associate with an inductor is usually symbolized by the capital letter X with
a letter L as a subscript, like this: X;.

Since inductors drop voltage in proportion to the rate of current change, they will drop more
voltage for faster-changing currents, and less voltage for slower-changing currents. What this
means is that reactance in ohms for any inductor is directly proportional to the frequency of
the alternating current. The exact formula for determining reactance is as follows:

X, = 2rfL

If we expose a 10 mH inductor to frequencies of 60, 120, and 2500 Hz, it will manifest the
reactances in Table Figure 3.1.

Table 3.1: Reactance of a 10 mH inductor:

Frequency (Hertz) | Reactance (Ohms)
60 3.7699

120 7.5398

2500 157.0796

In the reactance equation, the term “27f” (everything on the right-hand side except the L)
has a special meaning unto itself. It is the number of radians per second that the alternating
current is “rotating” at, if you imagine one cycle of AC to represent a full circle’s rotation.
A radian is a unit of angular measurement: there are 27 radians in one full circle, just as
there are 360° in a full circle. If the alternator producing the AC is a double-pole unit, it will
produce one cycle for every full turn of shaft rotation, which is every 27 radians, or 360°. If
this constant of 27 is multiplied by frequency in Hertz (cycles per second), the result will be a
figure in radians per second, known as the angular velocity of the AC system.

Angular velocity may be represented by the expression 27f, or it may be represented by its
own symbol, the lower-case Greek letter Omega, which appears similar to our Roman lower-

“oo9,

case “w”: w. Thus, the reactance formula X; = 2xfL could also be written as X;, = wL.
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It must be understood that this “angular velocity” is an expression of how rapidly the AC
waveforms are cycling, a full cycle being equal to 27 radians. It is not necessarily representa-
tive of the actual shaft speed of the alternator producing the AC. If the alternator has more
than two poles, the angular velocity will be a multiple of the shaft speed. For this reason, w is
sometimes expressed in units of electrical radians per second rather than (plain) radians per
second, so as to distinguish it from mechanical motion.

Any way we express the angular velocity of the system, it is apparent that it is directly pro-
portional to reactance in an inductor. As the frequency (or alternator shaft speed) is increased
in an AC system, an inductor will offer greater opposition to the passage of current, and vice
versa. Alternating current in a simple inductive circuit is equal to the voltage (in volts) divided
by the inductive reactance (in ohms), just as either alternating or direct current in a simple re-
sistive circuit is equal to the voltage (in volts) divided by the resistance (in ohms). An example
circuit is shown here: (Figure 3.8)

10V /\D L =X 10 mH
60 Hz

Figure 3.8: Inductive reactance

(inductive reactance of 10 mH inductor at 60 Hz)
X, =3.7699 Q

E
X

10V
3.7699 Q

| =2.6526 A

However, we need to keep in mind that voltage and current are not in phase here. As was
shown earlier, the voltage has a phase shift of +90° with respect to the current. (Figure 3.9) If
we represent these phase angles of voltage and current mathematically in the form of complex
numbers, we find that an inductor’s opposition to current has a phase angle, too:
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Opposition __Voltage
Current
.. 10vOoo°
Opposition =
2.6526 A [D °

Opposition =3.7699 Q [ 90°
or

0+)3.7699 Q

For an inductor:

90° 90°

Opposition
Xv)

Figure 3.9: Current lags voltage by 90° in an inductor.

Mathematically, we say that the phase angle of an inductor’s opposition to current is 90°,
meaning that an inductor’s opposition to current is a positive imaginary quantity. This phase
angle of reactive opposition to current becomes critically important in circuit analysis, espe-
cially for complex AC circuits where reactance and resistance interact. It will prove beneficial
to represent any component’s opposition to current in terms of complex numbers rather than
scalar quantities of resistance and reactance.

e REVIEW:

e Inductive reactance is the opposition that an inductor offers to alternating current due
to its phase-shifted storage and release of energy in its magnetic field. Reactance is
symbolized by the capital letter “X” and is measured in ohms just like resistance (R).

e Inductive reactance can be calculated using this formula: X; = 2#fLL

e The angular velocity of an AC circuit is another way of expressing its frequency, in units
of electrical radians per second instead of cycles per second. It is symbolized by the lower-
case Greek letter “omega,” or w.
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e Inductive reactance increases with increasing frequency. In other words, the higher the
frequency, the more it opposes the AC flow of electrons.

3.3 Series resistor-inductor circuits

In the previous section, we explored what would happen in simple resistor-only and inductor-
only AC circuits. Now we will mix the two components together in series form and investigate
the effects.

Take this circuit as an example to work with: (Figure 3.10)

R R
VWA A%

ET I —>IR ET SQ 10
ORI IR P i (ORI

ILl 70 |

E

E; =Ex+ E, R

| =1g=1,

Figure 3.10: Series resistor inductor circuit: Current lags applied voltage by 0° to 90°.

The resistor will offer 5 ) of resistance to AC current regardless of frequency, while the
inductor will offer 3.7699 ) of reactance to AC current at 60 Hz. Because the resistor’s re-
sistance is a real number (5 Q2 Z 02, or 5 + jO 2), and the inductor’s reactance is an imaginary
number (3.7699 © / 90°, or 0 + j3.7699 (), the combined effect of the two components will be an
opposition to current equal to the complex sum of the two numbers. This combined opposition
will be a vector combination of resistance and reactance. In order to express this opposition
succinctly, we need a more comprehensive term for opposition to current than either resistance
or reactance alone. This term is called impedance, its symbol is Z, and it is also expressed in
the unit of ohms, just like resistance and reactance. In the above example, the total circuit
impedance is:

Za = (5 Q resistance) + (3.7699 Q inductive reactance)

Zow=5Q(R) + 3.7699Q (X,)

Ziow = (5Q 0 0% + (3.7699 Q [ 909
or

(5+j0 Q) + (0 +j3.7699 Q)

Zia =5+j3.7699Q or 6.262Q [ 37.016°
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Impedance is related to voltage and current just as you might expect, in a manner similar
to resistance in Ohm’s Law:
Ohm’s Law for AC circuits:

E=lz =& z-E
Z I

All guantities expressed in

complex, not scalar, form

In fact, this is a far more comprehensive form of Ohm’s Law than what was taught in DC
electronics (E=IR), just as impedance is a far more comprehensive expression of opposition to
the flow of electrons than resistance is. Any resistance and any reactance, separately or in
combination (series/parallel), can be and should be represented as a single impedance in an
AC circuit.

To calculate current in the above circuit, we first need to give a phase angle reference for
the voltage source, which is generally assumed to be zero. (The phase angles of resistive and
inductive impedance are always 0° and +90°, respectively, regardless of the given phase angles
for voltage or current).

| = E
4
ovoo
6.262 Q [ 37.016°

| = 1.597 A O -37.016°

As with the purely inductive circuit, the current wave lags behind the voltage wave (of the
source), although this time the lag is not as great: only 37.016° as opposed to a full 90° as was
the case in the purely inductive circuit. (Figure 3.11)

phase shift =
37.016°

Figure 3.11: Current lags voltage in a series L-R circuit.

For the resistor and the inductor, the phase relationships between voltage and current
haven’t changed. Voltage across the resistor is in phase (0° shift) with the current through
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it; and the voltage across the inductor is +90° out of phase with the current going through it.
We can verify this mathematically:

E=1Z
Er = IrZr
Er = (1.597 A 0 -37.016°)(5Q 1 0°)

Er =7.9847V O -37.016°
Notice that the phase angle of E, is equal to
the phase angle of the current.

The voltage across the resistor has the exact same phase angle as the current through it,
telling us that E and I are in phase (for the resistor only).

E=IZ
E =14,

E, = (1.597 A O -37.016°)(3.7699 Q 0 90%)

E, = 6.0203V [ 52.984°

Notice that the phase angle of E, is exactly
90° more than the phase angle of the current.

The voltage across the inductor has a phase angle of 52.984°, while the current through the

inductor has a phase angle of -37.016°, a difference of exactly 90° between the two. This tells
us that E and I are still 90° out of phase (for the inductor only).

We can also mathematically prove that these complex values add together to make the total
voltage, just as Kirchhoff’s Voltage Law would predict:

Eiota = Er + EL
E,. = (7.9847 V [0 -37.016°) + (6.0203 V [ 52.984%

Eg =10V 0 0°

Let’s check the validity of our calculations with SPICE: (Figure 3.12)
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1 R
5Q
10V L =3 10 mH
60 Hz @
0 0

Figure 3.12: Spice circuit: R-L.

ac r-1 circuit

vl 1 0 ac 10 sin

rit125

120 10m

.ac lin 1 60 60

.print ac v(1,2) v(2,0) i(vl)
.print ac vp(1,2) vp(2,0) ip(vl)

. end

freq v(1, 2) v(2) i(vl)

6. 000E+01 7. 985E+00 6. 020E+00 1. 597E+00
freq vp(1,2) vp(2) ip(vl)

6. O00E+01 -3. 702E+01 5. 298E+01 1. 430E+02

Interpreted SPICE results
Er=7.985V O -37.02°

E, =6.020V O 52.98°

| =1.597 A O 143.0°

Note that just as with DC circuits, SPICE outputs current figures as though they were
negative (180° out of phase) with the supply voltage. Instead of a phase angle of -37.016°,
we get a current phase angle of 143° (-37° + 180°). This is merely an idiosyncrasy of SPICE
and does not represent anything significant in the circuit simulation itself. Note how both
the resistor and inductor voltage phase readings match our calculations (-37.02° and 52.98°,
respectively), just as we expected them to.

With all these figures to keep track of for even such a simple circuit as this, it would be
beneficial for us to use the “table” method. Applying a table to this simple series resistor-
inductor circuit would proceed as such. First, draw up a table for E/I/Z figures and insert all
component values in these terms (in other words, don’t insert actual resistance or inductance
values in Ohms and Henrys, respectively, into the table; rather, convert them into complex
figures of impedance and write those in):
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R L Total

10+j0

E
100 0° Volts

| Amps

7 5+j0 0+j3.7699 ohms

500° 3.7699 00 90°

Although it isn’t necessary, I find it helpful to write both the rectangular and polar forms of
each quantity in the table. If you are using a calculator that has the ability to perform complex
arithmetic without the need for conversion between rectangular and polar forms, then this
extra documentation is completely unnecessary. However, if you are forced to perform complex
arithmetic “longhand” (addition and subtraction in rectangular form, and multiplication and
division in polar form), writing each quantity in both forms will be useful indeed.

Now that our “given” figures are inserted into their respective locations in the table, we can
proceed just as with DC: determine the total impedance from the individual impedances. Since
this is a series circuit, we know that opposition to electron flow (resistance or impedance) adds
to form the total opposition:

R L Total
10+j0
E
100 0° Volts
| Amps
7 5+]j0 0+j3.7699 5+]3.7699 ohms
500° 3.7699 00 90° 6.262 0 37.016° .~

Rule of series
circuits

Ziga =Zr+Z,

Now that we know total voltage and total impedance, we can apply Ohm’s Law (I=E/Z) to
determine total current:
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R L Total

£ 10 +j0

100 0°

| 1.2751 - j0.9614
1.597 0 -37.016°

5+j3.7699
6.262 [ 37.016°

Volts

Amps

5+j0
500°

0+j3.7699

Ohms
3.7699 O 90°

Just as with DC, the total current in a series AC circuit is shared equally by all components.
This is still true because in a series circuit there is only a single path for electrons to flow,
therefore the rate of their flow must uniform throughout. Consequently, we can transfer the
figures for current into the columns for the resistor and inductor alike:

R L Total
10+j0
E
100 0° Volts
1.2751-j0.9614 1.2751-j0.9614 1.2751-j0.9614 Amps
1.597 0 -37.016° 1.597 O -37.016° 1.597 0 -37.016° -
5+j0 0+j3.7699 5+j3.7699
Ohms
500° 3.7699 O 90° 6.262 0 37.016°

Rule of series
circuits:

lota = IR =1L

Now all that’s left to figure is the voltage drop across the resistor and inductor, respectively.
This is done through the use of Ohm’s Law (E=IZ), applied vertically in each column of the
table:
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R L Total
6.3756 - j4.8071 3.6244 + j4.8071 10+j0 Vol
7.9847 (1 -37.016° | 6.0203 [ 52.984° 100 0° olts
1.2751 - j0.9614 1.2751 - j0.9614 1.2751 - j0.9614 Amps
1.597 00 -37.016° 1.597 0 -37.016° 1.597 O -37.016°
5+j0 0 +}3.7699 5 +3.7699
Ohms
500° 3.7699 J 90° 6.262 [0 37.016°
Ohm’s Ohm’s
Law Law
E=1Z E=I1Z

And with that, our table is complete. The exact same rules we applied in the analysis of DC
circuits apply to AC circuits as well, with the caveat that all quantities must be represented
and calculated in complex rather than scalar form. So long as phase shift is properly repre-
sented in our calculations, there is no fundamental difference in how we approach basic AC
circuit analysis versus DC.

Now is a good time to review the relationship between these calculated figures and read-
ings given by actual instrument measurements of voltage and current. The figures here that
directly relate to real-life measurements are those in polar notation, not rectangular! In other
words, if you were to connect a voltmeter across the resistor in this circuit, it would indicate
7.9847 volts, not 6.3756 (real rectangular) or 4.8071 (imaginary rectangular) volts. To describe
this in graphical terms, measurement instruments simply tell you how long the vector is for
that particular quantity (voltage or current).

Rectangular notation, while convenient for arithmetical addition and subtraction, is a more
abstract form of notation than polar in relation to real-world measurements. As I stated before,
I will indicate both polar and rectangular forms of each quantity in my AC circuit tables simply
for convenience of mathematical calculation. This is not absolutely necessary, but may be
helpful for those following along without the benefit of an advanced calculator. If we were to
restrict ourselves to the use of only one form of notation, the best choice would be polar, because
it is the only one that can be directly correlated to real measurements.

Impedance (Z) of a series R-L circuit may be calculated, given the resistance (R) and the
inductive reactance (Xy). Since E=IR, E=IX;, and E=IZ, resistance, reactance, and impedance
are proportional to voltage, respectively. Thus, the voltage phasor diagram can be replaced by
a similar impedance diagram. (Figure 3.13)

Example:
Given: A 40 Q resistor in series with a 79.58 millihenry inductor. Find the impedance at 60
hertz.

X, = 2nfL

X, = 27-60.79. 58x1073
X, = 30 Q
Z=R+jXt

Z =40 +j30
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Voltage Impedance

Figure 3.13: Series: R-L circuit Impedance phasor diagram.

| Z| = sqrt (402 + 30%) = 50 Q
arct angent (30/ 40) = 36.87°
40 + j30 = 50/36.87°

S
N
I

e REVIEW:

e Impedance is the total measure of opposition to electric current and is the complex (vec-
tor) sum of (“real”) resistance and (“imaginary”) reactance. It is symbolized by the letter
“Z” and measured in ohms, just like resistance (R) and reactance (X).

e Impedances (Z) are managed just like resistances (R) in series circuit analysis: series
impedances add to form the total impedance. Just be sure to perform all calculations in
complex (not scalar) form! Zr 11 =21 + Zo + . . . Z,,

e A purely resistive impedance will always have a phase angle of exactly 0° (Zr =R Q /
0°).

e A purely inductive impedance will always have a phase angle of exactly +90° (Z;, = X, Q
£ 90°).

e Ohm’s Law for AC circuits: E=1Z;1=E/Z ;Z =E/l

e When resistors and inductors are mixed together in circuits, the total impedance will
have a phase angle somewhere between 0° and +90°. The circuit current will have a
phase angle somewhere between 0° and -90°.

e Series AC circuits exhibit the same fundamental properties as series DC circuits: cur-
rent is uniform throughout the circuit, voltage drops add to form the total voltage, and
impedances add to form the total impedance.

3.4 Parallel resistor-inductor circuits

Let’s take the same components for our series example circuit and connect them in parallel:
(Figure 3.14)

Because the power source has the same frequency as the series example circuit, and the
resistor and inductor both have the same values of resistance and inductance, respectively,
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E I .
E |—> -53° |
RiR '1L v RI50 L0
VA
L

| =g+ 1,

E=Ex=F

Figure 3.14: Parallel R-L circuit.

they must also have the same values of impedance. So, we can begin our analysis table with
the same “given” values:

R L Total
10+j0
E
100 0° Volts
| Amps
7 5+]j 00 0+ 13.76990 ohms
500 3.7699 O 90

The only difference in our analysis technique this time is that we will apply the rules of
parallel circuits instead of the rules for series circuits. The approach is fundamentally the
same as for DC. We know that voltage is shared uniformly by all components in a parallel
circuit, so we can transfer the figure of total voltage (10 volts / 0°) to all components columns:

R L Total
10+j0 10+j0 10+j0
E 0 o o Volts
1000 1000 1000
| Amps
7 5+j0 0+)3.7699 Ohms
500° 3.7699 [0 90°
Rule of parallel
circuits:
Eoa = Er=EL

Now we can apply Ohm’s Law (I=E/Z) vertically to two columns of the table, calculating
current through the resistor and current through the inductor:
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R L Total
£ 10+]0 10+]0 10+j0 vl
100 0° 100 0° 100 0° olts
| 2+j0 0-]2.6526 Amps
200° 26526 [1 -90°
7 5+j0 0+j3.7699 Ohms
50 0° 3.7699 [ 90°
Ohm'’s Ohm'’s
Law Law
1=E 1=E
Z Z

Just as with DC circuits, branch currents in a parallel AC circuit add to form the total
current (Kirchhoff’s Current Law still holds true for AC as it did for DC):

R L Total

E 10+j0 10+j0 10+j0 |
100 0° 100 0° 100 0° Volts

| 2+0 0-]2.6526 2-]2.6526 Amps
200° 2.6526 [ -90° 332210 -52984° |0

, 5+]0 0+]37699 ohme
500 3.7699 0 90

Rule of parallel
circuits:

lioa =g + 1

Finally, total impedance can be calculated by using Ohm’s Law (Z=E/I) vertically in the
“Total” column. Incidentally, parallel impedance can also be calculated by using a reciprocal
formula identical to that used in calculating parallel resistances.

The only problem with using this formula is that it typically involves a lot of calculator
keystrokes to carry out. And if you’re determined to run through a formula like this “longhand,”
be prepared for a very large amount of work! But, just as with DC circuits, we often have
multiple options in calculating the quantities in our analysis tables, and this example is no
different. No matter which way you calculate total impedance (Ohm’s Law or the reciprocal
formula), you will arrive at the same figure:
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R L Totad
E 10+j0 10+j0 10+j0 Vol
1000° 1000 1000 olts
2+j0 0-j2.6526 2-j2.6526
I Amps
200° 2.6526 0 -90° 3.322 0 -52.984°
. 5+j0 0+]3.7699 18122+/24085 | o
500° 3.7699 0 90° 3.0102 O 52.984°
Ohm’s Rule of parallel
Law or circuits:
E 1
== Z = -
I total 1 1
—_t
Zr Z,
¢ REVIEW:

e Impedances (Z) are managed just like resistances (R) in parallel circuit analysis: parallel
impedances diminish to form the total impedance, using the reciprocal formula. Just be
sure to perform all calculations in complex (not scalar) form! Zr,;o = 1/(1/Z1 + 1/Z5 + . . .
1/Z,,)

e Ohm’s Law for AC circuits: E=1Z ;1 =E/Z ;Z = E/I

e When resistors and inductors are mixed together in parallel circuits (just as in series
circuits), the total impedance will have a phase angle somewhere between 0° and +90°.
The circuit current will have a phase angle somewhere between 0° and -90°.

e Parallel AC circuits exhibit the same fundamental properties as parallel DC circuits:
voltage is uniform throughout the circuit, branch currents add to form the total current,
and impedances diminish (through the reciprocal formula) to form the total impedance.

3.5 Inductor quirks

In an ideal case, an inductor acts as a purely reactive device. That is, its opposition to AC
current is strictly based on inductive reaction to changes in current, and not electron friction as
is the case with resistive components. However, inductors are not quite so pure in their reactive
behavior. To begin with, they’re made of wire, and we know that all wire possesses some
measurable amount of resistance (unless its superconducting wire). This built-in resistance
acts as though it were connected in series with the perfect inductance of the coil, like this:
(Figure 3.15)

Consequently, the impedance of any real inductor will always be a complex combination of
resistance and inductive reactance.

Compounding this problem is something called the skin effect, which is AC’s tendency to
flow through the outer areas of a conductor’s cross-section rather than through the middle.
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Equivalent circuit for a real inductor

% Wire resistance
R

3 Ideal inductor
L

Figure 3.15: Inductor Equivalent circuit of a real inductor.

When electrons flow in a single direction (DC), they use the entire cross-sectional area of the
conductor to move. Electrons switching directions of flow, on the other hand, tend to avoid
travel through the very middle of a conductor, limiting the effective cross-sectional area avail-
able. The skin effect becomes more pronounced as frequency increases.

Also, the alternating magnetic field of an inductor energized with AC may radiate off into
space as part of an electromagnetic wave, especially if the AC is of high frequency. This ra-
diated energy does not return to the inductor, and so it manifests itself as resistance (power
dissipation) in the circuit.

Added to the resistive losses of wire and radiation, there are other effects at work in iron-
core inductors which manifest themselves as additional resistance between the leads. When
an inductor is energized with AC, the alternating magnetic fields produced tend to induce
circulating currents within the iron core known as eddy currents. These electric currents in
the iron core have to overcome the electrical resistance offered by the iron, which is not as
good a conductor as copper. Eddy current losses are primarily counteracted by dividing the
iron core up into many thin sheets (laminations), each one separated from the other by a
thin layer of electrically insulating varnish. With the cross-section of the core divided up into
many electrically isolated sections, current cannot circulate within that cross-sectional area
and there will be no (or very little) resistive losses from that effect.

As you might have expected, eddy current losses in metallic inductor cores manifest them-
selves in the form of heat. The effect is more pronounced at higher frequencies, and can be so
extreme that it is sometimes exploited in manufacturing processes to heat metal objects! In
fact, this process of “inductive heating” is often used in high-purity metal foundry operations,
where metallic elements and alloys must be heated in a vacuum environment to avoid contam-
ination by air, and thus where standard combustion heating technology would be useless. It is
a “non-contact” technology, the heated substance not having to touch the coil(s) producing the
magnetic field.

In high-frequency service, eddy currents can even develop within the cross-section of the
wire itself, contributing to additional resistive effects. To counteract this tendency, special
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wire made of very fine, individually insulated strands called Litz wire (short for Litzendraht)
can be used. The insulation separating strands from each other prevent eddy currents from
circulating through the whole wire’s cross-sectional area.

Additionally, any magnetic hysteresis that needs to be overcome with every reversal of the
inductor’s magnetic field constitutes an expenditure of energy that manifests itself as resis-
tance in the circuit. Some core materials (such as ferrite) are particularly notorious for their
hysteretic effect. Counteracting this effect is best done by means of proper core material selec-
tion and limits on the peak magnetic field intensity generated with each cycle.

Altogether, the stray resistive properties of a real inductor (wire resistance, radiation losses,
eddy currents, and hysteresis losses) are expressed under the single term of “effective resis-
tance:” (Figure 3.16)

Equivalent circuit for a real inductor

% "Effective" resistance
R

3 Ideal inductor
L

Figure 3.16: Equivalent circuit of a real inductor with skin-effect, radiation, eddy current, and
hysteresis losses.

It is worthy to note that the skin effect and radiation losses apply just as well to straight
lengths of wire in an AC circuit as they do a coiled wire. Usually their combined effect is too
small to notice, but at radio frequencies they can be quite large. A radio transmitter antenna,
for example, is designed with the express purpose of dissipating the greatest amount of energy
in the form of electromagnetic radiation.

Effective resistance in an inductor can be a serious consideration for the AC circuit designer.
To help quantify the relative amount of effective resistance in an inductor, another value exists
called the Q factor, or “quality factor” which is calculated as follows:

Xy
Q R

The symbol “Q” has nothing to do with electric charge (coulombs), which tends to be con-
fusing. For some reason, the Powers That Be decided to use the same letter of the alphabet to
denote a totally different quantity.

The higher the value for “Q,” the “purer” the inductor is. Because its so easy to add ad-
ditional resistance if needed, a high-Q inductor is better than a low-Q inductor for design
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purposes. An ideal inductor would have a Q of infinity, with zero effective resistance.

Because inductive reactance (X) varies with frequency, so will Q. However, since the resis-
tive effects of inductors (wire skin effect, radiation losses, eddy current, and hysteresis) also
vary with frequency, Q does not vary proportionally with reactance. In order for a Q value to
have precise meaning, it must be specified at a particular test frequency.

Stray resistance isn’t the only inductor quirk we need to be aware of. Due to the fact that the
multiple turns of wire comprising inductors are separated from each other by an insulating gap
(air, varnish, or some other kind of electrical insulation), we have the potential for capacitance
to develop between turns. AC capacitance will be explored in the next chapter, but it suffices
to say at this point that it behaves very differently from AC inductance, and therefore further
“taints” the reactive purity of real inductors.

3.6 More on the “skin effect”

As previously mentioned, the skin effect is where alternating current tends to avoid travel
through the center of a solid conductor, limiting itself to conduction near the surface. This
effectively limits the cross-sectional conductor area available to carry alternating electron flow,
increasing the resistance of that conductor above what it would normally be for direct current:
(Figure 3.17)

Cross-sectional area of a round
conductor available for conducting
DC current

"DC resistance"

Cross-sectional area of the same
conductor available for conducting
low-frequency AC

"AC resistance"
Cross-sectional area of the same

conductor available for conducting
high-frequency AC

"AC resistance"

Figure 3.17: Skin effect: skin depth decreases with increasing frequency.
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The electrical resistance of the conductor with all its cross-sectional area in use is known
as the “DC resistance,” the “AC resistance” of the same conductor referring to a higher figure
resulting from the skin effect. As you can see, at high frequencies the AC current avoids travel
through most of the conductor’s cross-sectional area. For the purpose of conducting current,
the wire might as well be hollow!

In some radio applications (antennas, most notably) this effect is exploited. Since radio-
frequency (“RF”) AC currents wouldn’t travel through the middle of a conductor anyway, why
not just use hollow metal rods instead of solid metal wires and save both weight and cost?
(Figure 3.18) Most antenna structures and RF power conductors are made of hollow metal
tubes for this reason.

In the following photograph you can see some large inductors used in a 50 kW radio trans-
mitting circuit. The inductors are hollow copper tubes coated with silver, for excellent conduc-
tivity at the “skin” of the tube:

Figure 3.18: High power inductors formed from hollow tubes.

The degree to which frequency affects the effective resistance of a solid wire conductor is
impacted by the gauge of that wire. As a rule, large-gauge wires exhibit a more pronounced
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skin effect (change in resistance from DC) than small-gauge wires at any given frequency. The
equation for approximating skin effect at high frequencies (greater than 1 MHz) is as follows:

Rac = (Rod (1Y T
Where,
Rac = AC resistance at given frequency "f"
Rpc = Resistance at zero frequency (DC)

k = Wire gage factor (see table below)

f = Frequency of AC in MHz (MegaHertz)

Table 3.2 gives approximate values of “k” factor for various round wire sizes.

Table 3.2: “k” factor for various AWG wire sizes.

gage size | k factor || gage size | k factor
4/0 124.5 8 34.8

2/0 99.0 10 27.6

1/0 88.0 14 17.6

2 69.8 18 10.9

4 55.5 22 6.86

6 47.9 - -

For example, a length of number 10-gauge wire with a DC end-to-end resistance of 25 Q)
would have an AC (effective) resistance of 2.182 k) at a frequency of 10 MHz:

Rac = (Rod)(K)V/ f
Rac = (25 Q)(27.6) /10

Rac = 2.182kQ

Please remember that this figure is not impedance, and it does not consider any reactive
effects, inductive or capacitive. This is simply an estimated figure of pure resistance for the
conductor (that opposition to the AC flow of electrons which does dissipate power in the form
of heat), corrected for the skin effect. Reactance, and the combined effects of reactance and
resistance (impedance), are entirely different matters.

3.7 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most
recent to first. See Appendix 2 (Contributor List) for dates and contact information.
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Jim Palmer (June 2001): Identified and offered correction for typographical error in com-
plex number calculation.

Jason Starck (June 2000): HTML document formatting, which led to a much better-
looking second edition.
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4,1 AC resistor circuits

Er || —

(\, Er R

Figure 4.1: Pure resistive AC circuit: voltage and current are in phase.

If we were to plot the current and voltage for a very simple AC circuit consisting of a source
and a resistor, (Figure 4.1) it would look something like this: (Figure 4.2)

Because the resistor allows an amount of current directly proportional to the voltage across
it at all periods of time, the waveform for the current is exactly in phase with the waveform for

81
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Time —

Figure 4.2: Voltage and current “in phase” for resistive circuit.

the voltage. We can look at any point in time along the horizontal axis of the plot and compare
those values of current and voltage with each other (any “snapshot” look at the values of a wave
are referred to as instantaneous values, meaning the values at that instant in time). When the
instantaneous value for voltage is zero, the instantaneous current through the resistor is also
zero. Likewise, at the moment in time where the voltage across the resistor is at its positive
peak, the current through the resistor is also at its positive peak, and so on. At any given point
in time along the waves, Ohm’s Law holds true for the instantaneous values of voltage and
current.

We can also calculate the power dissipated by this resistor, and plot those values on the
same graph: (Figure 4.3)

Time —

Figure 4.3: Instantaneous AC power in a resistive circuit is always positive.

Note that the power is never a negative value. When the current is positive (above the
line), the voltage is also positive, resulting in a power (p=ie) of a positive value. Conversely,
when the current is negative (below the line), the voltage is also negative, which results in a
positive value for power (a negative number multiplied by a negative number equals a positive
number). This consistent “polarity” of power tells us that the resistor is always dissipating
power, taking it from the source and releasing it in the form of heat energy. Whether the
current is positive or negative, a resistor still dissipates energy.
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4.2 AC capacitor circuits

Capacitors do not behave the same as resistors. Whereas resistors allow a flow of electrons
through them directly proportional to the voltage drop, capacitors oppose changes in voltage
by drawing or supplying current as they charge or discharge to the new voltage level. The flow
of electrons “through” a capacitor is directly proportional to the rate of change of voltage across
the capacitor. This opposition to voltage change is another form of reactance, but one that is
precisely opposite to the kind exhibited by inductors.

Expressed mathematically, the relationship between the current “through” the capacitor
and rate of voltage change across the capacitor is as such:

i=C —
dt

The expression de/dt is one from calculus, meaning the rate of change of instantaneous
voltage (e) over time, in volts per second. The capacitance (C) is in Farads, and the instan-
taneous current (i), of course, is in amps. Sometimes you will find the rate of instantaneous
voltage change over time expressed as dv/dt instead of de/dt: using the lower-case letter “v”
instead or “e” to represent voltage, but it means the exact same thing. To show what happens
with alternating current, let’s analyze a simple capacitor circuit: (Figure 4.4)

ET I —>

(\/ VC::C

Er =B |=l¢

Figure 4.4: Pure capacitive circuit: capacitor voltage lags capacitor current by 90°

If we were to plot the current and voltage for this very simple circuit, it would look some-
thing like this: (Figure 4.5)

Figure 4.5: Pure capacitive circuit waveforms.

Remember, the current through a capacitor is a reaction against the change in voltage
across it. Therefore, the instantaneous current is zero whenever the instantaneous voltage is
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at a peak (zero change, or level slope, on the voltage sine wave), and the instantaneous current
is at a peak wherever the instantaneous voltage is at maximum change (the points of steepest
slope on the voltage wave, where it crosses the zero line). This results in a voltage wave that
is -90° out of phase with the current wave. Looking at the graph, the current wave seems to
have a “head start” on the voltage wave; the current “leads” the voltage, and the voltage “lags”
behind the current. (Figure 4.6)

voltage slope =0 voltage slope = max. (+)
current=0 current = max. (+)

| |

e =
i —_— e
Time —
T X\ voltage slope = 0
current=0

voltage slope = max. (-)
current = max. (-)

Figure 4.6: Voltage lags current by 90° in a pure capacitive circuit.

As you might have guessed, the same unusual power wave that we saw with the simple
inductor circuit is present in the simple capacitor circuit, too: (Figure 4.7)

Figure 4.7: In a pure capacitive circuit, the instantaneous power may be positive or negative.

As with the simple inductor circuit, the 90 degree phase shift between voltage and current
results in a power wave that alternates equally between positive and negative. This means
that a capacitor does not dissipate power as it reacts against changes in voltage; it merely
absorbs and releases power, alternately.
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A capacitor’s opposition to change in voltage translates to an opposition to alternating volt-
age in general, which is by definition always changing in instantaneous magnitude and direc-
tion. For any given magnitude of AC voltage at a given frequency, a capacitor of given size will
“conduct” a certain magnitude of AC current. Just as the current through a resistor is a func-
tion of the voltage across the resistor and the resistance offered by the resistor, the AC current
through a capacitor is a function of the AC voltage across it, and the reactance offered by the
capacitor. As with inductors, the reactance of a capacitor is expressed in ohms and symbolized
by the letter X (or X to be more specific).

Since capacitors “conduct” current in proportion to the rate of voltage change, they will pass
more current for faster-changing voltages (as they charge and discharge to the same voltage
peaks in less time), and less current for slower-changing voltages. What this means is that
reactance in ohms for any capacitor is inversely proportional to the frequency of the alternating
current. (Table 4.1)

1
2mC

C:

Table 4.1: Reactance of a 100 uF capacitor:

Frequency (Hertz) | Reactance (Ohms)
60 26.5258

120 13.2629

2500 0.6366

Please note that the relationship of capacitive reactance to frequency is exactly opposite
from that of inductive reactance. Capacitive reactance (in ohms) decreases with increasing AC
frequency. Conversely, inductive reactance (in ohms) increases with increasing AC frequency.
Inductors oppose faster changing currents by producing greater voltage drops; capacitors op-
pose faster changing voltage drops by allowing greater currents.

As with inductors, the reactance equation’s 2xf term may be replaced by the lower-case
Greek letter Omega (w), which is referred to as the angular velocity of the AC circuit. Thus,
the equation X = 1/(27fC) could also be written as X = 1/(wC), with w cast in units of radians
per second.

Alternating current in a simple capacitive circuit is equal to the voltage (in volts) divided
by the capacitive reactance (in ohms), just as either alternating or direct current in a simple
resistive circuit is equal to the voltage (in volts) divided by the resistance (in ohms). The
following circuit illustrates this mathematical relationship by example: (Figure 4.8)

10V |
sotz V) C = 100uF

Figure 4.8: Capacitive reactance.
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Xc = 26,5258 Q

__1ov
26.5258 Q

I =03770 A

However, we need to keep in mind that voltage and current are not in phase here. As was
shown earlier, the current has a phase shift of +90° with respect to the voltage. If we represent
these phase angles of voltage and current mathematically, we can calculate the phase angle of
the capacitor’s reactive opposition to current.

Opposition = Voltage.
Current
(o)
Opposition = 10voo

0.3770 A 00 90°

Opposition =26.5258 Q [ -90°

For a capacitor:

90° o
-90
é

Y

00
E Opposition

(Xc)
Figure 4.9: Voltage lags current by 90° in an inductor.

Mathematically, we say that the phase angle of a capacitor’s opposition to current is -90°,
meaning that a capacitor’s opposition to current is a negative imaginary quantity. (Figure 4.9)
This phase angle of reactive opposition to current becomes critically important in circuit anal-
ysis, especially for complex AC circuits where reactance and resistance interact. It will prove
beneficial to represent any component’s opposition to current in terms of complex numbers,
and not just scalar quantities of resistance and reactance.
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e REVIEW:

e Capacitive reactance is the opposition that a capacitor offers to alternating current due
to its phase-shifted storage and release of energy in its electric field. Reactance is sym-
bolized by the capital letter “X” and is measured in ohms just like resistance (R).

e Capacitive reactance can be calculated using this formula: Xo = 1/(27fC)

e Capacitive reactance decreases with increasing frequency. In other words, the higher the
frequency, the less it opposes (the more it “conducts”) the AC flow of electrons.

4.3 Series resistor-capacitor circuits

In the last section, we learned what would happen in simple resistor-only and capacitor-only
AC circuits. Now we will combine the two components together in series form and investigate
the effects. (Figure 4.10)

R R
VWA
Q\/ VC — 100::
lc uF
E; = Ex+ Ec
| =lg=lc

Figure 4.10: Series capacitor inductor circuit: voltage lags current by 0° to 90°.

The resistor will offer 5 2 of resistance to AC current regardless of frequency, while the
capacitor will offer 26.5258 Q) of reactance to AC current at 60 Hz. Because the resistor’s
resistance is a real number (5 Q) Z 0°, or 5 +j0 ), and the capacitor’s reactance is an imaginary
number (26.5258 Q / -90°, or 0 - j26.5258 (), the combined effect of the two components will
be an opposition to current equal to the complex sum of the two numbers. The term for this
complex opposition to current is impedance, its symbol is Z, and it is also expressed in the unit
of ohms, just like resistance and reactance. In the above example, the total circuit impedance
is:
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Za = (5 Q resistance) + (26.5258 Q capacitive reactance)

Zow = 5Q (R) + 265258 Q (Xo)

Ziya = (5Q 0 0°) + (265258 Q 0 -90%)
or

(5+j0Q) + (0- j26.5258 Q)

Za =5-j265258Q  or 26.993 Q [0-79.325°

Impedance is related to voltage and current just as you might expect, in a manner similar
to resistance in Ohm’s Law:

Ohm'’s Law for AC circuits:

All quantities expressed in
complex, not scalar, form

In fact, this is a far more comprehensive form of Ohm’s Law than what was taught in DC
electronics (E=IR), just as impedance is a far more comprehensive expression of opposition to
the flow of electrons than simple resistance is. Any resistance and any reactance, separately
or in combination (series/parallel), can be and should be represented as a single impedance.

To calculate current in the above circuit, we first need to give a phase angle reference for
the voltage source, which is generally assumed to be zero. (The phase angles of resistive and
capacitive impedance are always 0° and -90°, respectively, regardless of the given phase angles
for voltage or current).

| = E
4

ovooe°
26.933 Q [0 -79.325°

| =370.5mA [ 79.325°

As with the purely capacitive circuit, the current wave is leading the voltage wave (of the
source), although this time the difference is 79.325° instead of a full 90°. (Figure 4.11)

As we learned in the AC inductance chapter, the “table” method of organizing circuit quan-
tities is a very useful tool for AC analysis just as it is for DC analysis. Let’s place out known
figures for this series circuit into a table and continue the analysis using this tool:
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phase shift =
-« 79.325 degrees

Figure 4.11: Voltage lags current (current leads voltage)in a series R-C circuit.

Total
E 10+j0
1000°

| 68.623m + j364.06M
370.5m [ 79.325°

5-j26.5258
26.993 [ -79.325°

Volts

Amps

5+j0
500°

0-j26.5258

Ohms
26.5258 0 -90°

Current in a series circuit is shared equally by all components, so the figures placed in the
“Total” column for current can be distributed to all other columns as well:

R (o Total
10+j0
E
100 0° Volts
| 68.623m + j364.06m |68.623m + j364.06m |68.623m + j364.06m Amps
370.5m 0O 79.325° 370.5m 0O 79.325° 370.5m O 79.325° -~
7 5+j0 0-j26.5258 5-j26.5258 Ohms
500° 26.5258 [ -90° 26.993 0 -79.325°

Rule of series

circuits:

lota = 1R = Ic

Continuing with our analysis, we can apply Ohm’s Law (E=IR) vertically to determine volt-

age across the resistor and capacitor:
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R C Total
E 343.11m +j1.8203 9.6569 - j1.8203 10+j0
1.8523 0 79.325° 9.8269 0 -10.675° 1000
| 68.623m + j364.06m |68.623m +j364.06m |68.623m + j364.06m
370.5m O 79.325° 370.5m O 79.325° 370.5m O 79.325°
7 5+j0 0-j26.5258 5-j26.5258
500° 26.5258 (1 -90° 26.993 [0 -79.325°
Ohm’s Ohm’s
Law Law
E=I1Z E=1Z

Volts

Amps

Ohms

Notice how the voltage across the resistor has the exact same phase angle as the current
through it, telling us that E and I are in phase (for the resistor only). The voltage across the
capacitor has a phase angle of -10.675°, exactly 90° less than the phase angle of the circuit
current. This tells us that the capacitor’s voltage and current are still 90° out of phase with

each other.
Let’s check our calculations with SPICE: (Figure 4.12)

1 R
5Q
0oV .
soHz V) C = 100uF
0 0
Figure 4.12: Spice circuit: R-C.
ac r-c circuit
vl 1 0 ac 10 sin
ri 125
cl 2 0 100u
.ac lin 1 60 60
.print ac v(1,2) v(2,0) i(vl)
.print ac vp(1,2) vp(2,0) ip(vl)

.end
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freq v(1,2) v(2) i(vl)

6. 000E+01 1.852E+00 9.827E+00 3. 705E-01
freq vp(1,2) vp( 2) i p(vl)

6. 000E+01 7.933E+01 -1.067E+01 -1.007E+02

Interpreted SPICE results
Er=1.852V [ 79.33°

Ec=9.827V O -10.67°

| =370.5mA 0 -100.7°

Once again, SPICE confusingly prints the current phase angle at a value equal to the real
phase angle plus 180° (or minus 180°). However, its a simple matter to correct this figure and
check to see if our work is correct. In this case, the -100.7° output by SPICE for current phase
angle equates to a positive 79.3°, which does correspond to our previously calculated figure of
79.325°.

Again, it must be emphasized that the calculated figures corresponding to real-life voltage
and current measurements are those in polar form, not rectangular form! For example, if
we were to actually build this series resistor-capacitor circuit and measure voltage across the
resistor, our voltmeter would indicate 1.8523 volts, not 343.11 millivolts (real rectangular)
or 1.8203 volts (imaginary rectangular). Real instruments connected to real circuits provide
indications corresponding to the vector length (magnitude) of the calculated figures. While the
rectangular form of complex number notation is useful for performing addition and subtraction,
it is a more abstract form of notation than polar, which alone has direct correspondence to true
measurements.

Impedance (Z) of a series R-C circuit may be calculated, given the resistance (R) and the
capacitive reactance (X¢). Since E=IR, E=IX(, and E=IZ, resistance, reactance, and impedance
are proportional to voltage, respectively. Thus, the voltage phasor diagram can be replaced by
a similar impedance diagram. (Figure 4.13)

J\Ii\Rf | Eg |_R
I > |
Er R R |c W | W |
@ Be == ErJEc 2T X
I
< Voltage Impedance

Figure 4.13: Series: R-C circuit Impedance phasor diagram.

Example:
Given: A 40 Q) resistor in series with a 88.42 microfarad capacitor. Find the impedance at
60 hertz.
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Xo = 1/ 27t C)

Xo = 1/ (27-60-88. 42x10~6
Xo = 30 Q

Z=R- jXc

Z =40 - j30

| Z] = sqrt(40%2 + (-30)2) =50 Q
arct angent (- 30/ 40) = -36.87°
= 40 - j30 = 50/36.87°

Y
N N
[

REVIEW:

Impedance is the total measure of opposition to electric current and is the complex (vec-
tor) sum of (“real”) resistance and (“imaginary”) reactance.

Impedances (Z) are managed just like resistances (R) in series circuit analysis: series
impedances add to form the total impedance. Just be sure to perform all calculations in
complex (not scalar) form! Zy 101 =21 +Zo + . . . Z,,

Please note that impedances always add in series, regardless of what type of components
comprise the impedances. That is, resistive impedance, inductive impedance, and capac-
itive impedance are to be treated the same way mathematically.

A purely resistive impedance will always have a phase angle of exactly 0° (Zg =R Q /
0°).

A purely capacitive impedance will always have a phase angle of exactly -90° (Zo = X¢ Q2
£ -90°).

Ohm’s Law for AC circuits: E=1Z ;1 =E/Z ;Z = E/I

When resistors and capacitors are mixed together in circuits, the total impedance will
have a phase angle somewhere between 0° and -90°.

Series AC circuits exhibit the same fundamental properties as series DC circuits: cur-
rent is uniform throughout the circuit, voltage drops add to form the total voltage, and
impedances add to form the total impedance.

4.4 Parallel resistor-capacitor circuits

Using the same value components in our series example circuit, we will connect them in par-
allel and see what happens: (Figure 4.14)

Because the power source has the same frequency as the series example circuit, and the

resistor and capacitor both have the same values of resistance and capacitance, respectively,
they must also have the same values of impedance. So, we can begin our analysis table with
the same “given” values:
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. | | .
E || — C
C 100 | C
l l 10.7° \ 60 Hz
& E I R
[ =1+ 1
E=Ezx=E;
Figure 4.14: Parallel R-C circuit.
R C Total
10+j0
E
100 0° Volts
| Amps
. 5+j0 0-j26.5258 Ohmms
500° 26.5258 0 -90°

This being a parallel circuit now, we know that voltage is shared equally by all components,
so we can place the figure for total voltage (10 volts Z 0°) in all the columns:

R (o Total
E 10+j0 10+j0 10+]j0 Volt
100 0° 100 0° 100 0° ol
| Amps
7 5+j0 0-j26.5258 Ohms
500° 26.5258 (1 -90°
Rule of parallel
circuits:
Biota = Er = E¢

Now we can apply Ohm’s Law (I=E/Z) vertically to two columns in the table, calculating
current through the resistor and current through the capacitor:
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R (3 Total
E 10+j0 10+j0 10+j0 Vol
100 0° 100 0° 100 0° olts
2+j0 0 +(376.99m
| Amps
200° 376.99m O 90°
. 5+j0 0-j26.5258 Ohms
500° 26.5258 [0 -90°
Ohm’s Ohm’s
Law Law
| = E | = E
Z Z

Just as with DC circuits, branch currents in a parallel AC circuit add up to form the total
current (Kirchhoff’s Current Law again):

R C Total
c 10+]0 10+]0 10+]0 v
100 0° 100 0° 100 0° olts
2+]0 0+376.99m 2 +376.99m
| o o o Amps
200 376.99m [ 90 2.0352 (1 10,675
. 5+j0 0-j26.5258 ohme
50 0° 26,5258 ] -90°

Rule of parallel
circuits:

lota = IR * Ic

Finally, total impedance can be calculated by using Ohm’s Law (Z=E/I) vertically in the
“Total” column. As we saw in the AC inductance chapter, parallel impedance can also be cal-
culated by using a reciprocal formula identical to that used in calculating parallel resistances.
It is noteworthy to mention that this parallel impedance rule holds true regardless of the kind
of impedances placed in parallel. In other words, it doesn’t matter if we're calculating a cir-
cuit composed of parallel resistors, parallel inductors, parallel capacitors, or some combination
thereof: in the form of impedances (Z), all the terms are common and can be applied uniformly
to the same formula. Once again, the parallel impedance formula looks like this:

Zoalld =

The only drawback to using this equation is the significant amount of work required to
work it out, especially without the assistance of a calculator capable of manipulating complex
quantities. Regardless of how we calculate total impedance for our parallel circuit (either
Ohm’s Law or the reciprocal formula), we will arrive at the same figure:
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R C Total
E 10+j0 10+j0 10+j0 Vol
100 0° 100 0° 100 0° olts
2+j0 0+j376.99m 2+j376.99m
| Amps
200° 376.99m 00 90° 2.0352 0 10.675°
7 5+j0 0-j26.5258 4.8284 - j910.14m Ohms
500° 26.5258 [0 -90° 4.9135 [0 -10.675°
Ohm's o, Rule of parallel
Law circuits:
_E 1
Z= T Zioa = 1 1
z. " 7
e REVIEW:

e Impedances (Z) are managed just like resistances (R) in parallel circuit analysis: parallel
impedances diminish to form the total impedance, using the reciprocal formula. Just be

sure to perform all calculations in complex (not scalar) form! Zr,;. = 1V/(1/Z1 + 1/Z5 + . . .
1/Z.,,)

e Ohm’s Law for AC circuits: E=1Z ;1 =FE/Z ;Z = E/1

e When resistors and capacitors are mixed together in parallel circuits (just as in series
circuits), the total impedance will have a phase angle somewhere between 0° and -90°.
The circuit current will have a phase angle somewhere between 0° and +90°.

e Parallel AC circuits exhibit the same fundamental properties as parallel DC circuits:
voltage is uniform throughout the circuit, branch currents add to form the total current,
and impedances diminish (through the reciprocal formula) to form the total impedance.

4.5 Capacitor quirks

As with inductors, the ideal capacitor is a purely reactive device, containing absolutely zero
resistive (power dissipative) effects. In the real world, of course, nothing is so perfect. However,
capacitors have the virtue of generally being purer reactive components than inductors. It is
a lot easier to design and construct a capacitor with low internal series resistance than it is
to do the same with an inductor. The practical result of this is that real capacitors typically
have impedance phase angles more closely approaching 90° (actually, -90°) than inductors.
Consequently, they will tend to dissipate less power than an equivalent inductor.

Capacitors also tend to be smaller and lighter weight than their equivalent inductor coun-
terparts, and since their electric fields are almost totally contained between their plates (unlike
inductors, whose magnetic fields naturally tend to extend beyond the dimensions of the core),
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they are less prone to transmitting or receiving electromagnetic “noise” to/from other compo-
nents. For these reasons, circuit designers tend to favor capacitors over inductors wherever a
design permits either alternative.

Capacitors with significant resistive effects are said to be lossy, in reference to their ten-
dency to dissipate (“lose”) power like a resistor. The source of capacitor loss is usually the
dielectric material rather than any wire resistance, as wire length in a capacitor is very mini-
mal.

Dielectric materials tend to react to changing electric fields by producing heat. This heating
effect represents a loss in power, and is equivalent to resistance in the circuit. The effect is more
pronounced at higher frequencies and in fact can be so extreme that it is sometimes exploited
in manufacturing processes to heat insulating materials like plastic! The plastic object to be
heated is placed between two metal plates, connected to a source of high-frequency AC voltage.
Temperature is controlled by varying the voltage or frequency of the source, and the plates
never have to contact the object being heated.

This effect is undesirable for capacitors where we expect the component to behave as a
purely reactive circuit element. One of the ways to mitigate the effect of dielectric “loss” is
to choose a dielectric material less susceptible to the effect. Not all dielectric materials are
equally “lossy.” A relative scale of dielectric loss from least to greatest is given in Table 4.2.

Table 4.2: Dielectric loss
Material Loss

Vacuum Low
Air -

Polystyrene -
Mica -
Glass -
Low-K ceramic -
Plastic film (Mylar) | -
Paper -
High-K ceramic -
Aluminum oxide -
Tantalum pentoxide | high

Dielectric resistivity manifests itself both as a series and a parallel resistance with the pure
capacitance: (Figure 4.15)

Fortunately, these stray resistances are usually of modest impact (low series resistance and
high parallel resistance), much less significant than the stray resistances present in an average
inductor.

Electrolytic capacitors, known for their relatively high capacitance and low working volt-
age, are also known for their notorious lossiness, due to both the characteristics of the micro-
scopically thin dielectric film and the electrolyte paste. Unless specially made for AC service,
electrolytic capacitors should never be used with AC unless it is mixed (biased) with a constant
DC voltage preventing the capacitor from ever being subjected to reverse voltage. Even then,
their resistive characteristics may be too severe a shortcoming for the application anyway.
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Equivalent circuit for a real capacitor

% Rseries

Ideal L R
capacitor - | parallel

Figure 4.15: Real capacitor has both series and parallel resistance.

4.6 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most
recent to first. See Appendix 2 (Contributor List) for dates and contact information.

Jason Starck (June 2000): HTML document formatting, which led to a much better-
looking second edition.
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5.1 Review of R, X, and Z

Before we begin to explore the effects of resistors, inductors, and capacitors connected together
in the same AC circuits, let’s briefly review some basic terms and facts.

Resistance is essentially friction against the motion of electrons. It is present in all con-
ductors to some extent (except superconductors!), most notably in resistors. When alternating
current goes through a resistance, a voltage drop is produced that is in-phase with the current.
Resistance is mathematically symbolized by the letter “R” and is measured in the unit of ohms
().

Reactance is essentially inertia against the motion of electrons. It is present anywhere
electric or magnetic fields are developed in proportion to applied voltage or current, respec-
tively; but most notably in capacitors and inductors. When alternating current goes through a
pure reactance, a voltage drop is produced that is 90° out of phase with the current. Reactance
is mathematically symbolized by the letter “X” and is measured in the unit of ohms (2).

99
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Impedance is a comprehensive expression of any and all forms of opposition to electron
flow, including both resistance and reactance. It is present in all circuits, and in all compo-
nents. When alternating current goes through an impedance, a voltage drop is produced that
is somewhere between 0° and 90° out of phase with the current. Impedance is mathematically
symbolized by the letter “Z” and is measured in the unit of ohms (2), in complex form.

Perfect resistors (Figure 5.1) possess resistance, but not reactance. Perfect inductors and
perfect capacitors (Figure 5.1) possess reactance but no resistance. All components possess
impedance, and because of this universal quality, it makes sense to translate all component
values (resistance, inductance, capacitance) into common terms of impedance as the first step
in analyzing an AC circuit.

Resistor 1000 Inductor 100 mH Capacitor 10puF
159.15 Hz 159.15 Hz
R=1000Q R=00Q | r=00
X=00Q X =1000Q ] x=1000
Z=100Q00° Z=100Q 0 90° Z=100Q 0-90°

Figure 5.1: Perfect resistor, inductor, and capacitor.

The impedance phase angle for any component is the phase shift between voltage across
that component and current through that component. For a perfect resistor, the voltage drop
and current are always in phase with each other, and so the impedance angle of a resistor
is said to be 0°. For an perfect inductor, voltage drop always leads current by 90°, and so
an inductor’s impedance phase angle is said to be +90°. For a perfect capacitor, voltage drop
always lags current by 90°, and so a capacitor’s impedance phase angle is said to be -90°.

Impedances in AC behave analogously to resistances in DC circuits: they add in series, and
they diminish in parallel. A revised version of Ohm’s Law, based on impedance rather than
resistance, looks like this:

Ohm'’s Law for AC circuits:

E=I1Z |=— Z=

E E
Z I
All quantities expressed in
complex, not scalar, form

Kirchhoff’s Laws and all network analysis methods and theorems are true for AC circuits
as well, so long as quantities are represented in complex rather than scalar form. While this
qualified equivalence may be arithmetically challenging, it is conceptually simple and elegant.
The only real difference between DC and AC circuit calculations is in regard to power. Because
reactance doesn’t dissipate power as resistance does, the concept of power in AC circuits is
radically different from that of DC circuits. More on this subject in a later chapter!
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5.2 SeriesR,L, and C

Let’s take the following example circuit and analyze it: (Figure 5.2)

R
VIV
250 Q
120V L 3 650 mH
60 Hz @
C
||
[
1.5 uF

Figure 5.2: Example series R, L, and C circuit.

The first step is to determine the reactances (in ohms) for the inductor and the capacitor.

X, = 2rfL

X, = (2)(1)(60 Hz)(650 mH)

X, = 24504 Q
1
X~=
¢ onfC
~ 1

Xc=

(2)(1)(60 Hz)(L.5 pF)
X = 1.7684 kQ

The next step is to express all resistances and reactances in a mathematically common
form: impedance. (Figure 5.3) Remember that an inductive reactance translates into a positive
imaginary impedance (or an impedance at +90°), while a capacitive reactance translates into a
negative imaginary impedance (impedance at -90°). Resistance, of course, is still regarded as
a purely “real” impedance (polar angle of 0°):

Zg=250+j0Q or 250Q 0 0°

Z, =0+j24504Q or 245.04Q 0 90°

Z.=0-j1.7684k Q or 1.7684kQ [0 -90°
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ZR
VW—
250Q 00
120V z %3 245,04 Q [190°
60 Hz @ -
ZC
[|

Il
1.7684 kQ [0 -90°

Figure 5.3: Example series R, L, and C circuit with component values replaced by impedances.

Now, with all quantities of opposition to electric current expressed in a common, complex
number format (as impedances, and not as resistances or reactances), they can be handled in
the same way as plain resistances in a DC circuit. This is an ideal time to draw up an analysis
table for this circuit and insert all the “given” figures (total voltage, and the impedances of the
resistor, inductor, and capacitor).

R L C Total
120+j0
E
1200 0° Volts
[ Amps
5 250+0 0+j245.04 0-j1.7684k Ohms
2500 0° 245.04 0 90° 1.7684k O -90°

Unless otherwise specified, the source voltage will be our reference for phase shift, and so
will be written at an angle of 0°. Remember that there is no such thing as an “absolute” angle
of phase shift for a voltage or current, since its always a quantity relative to another wave-
form. Phase angles for impedance, however (like those of the resistor, inductor, and capacitor),
are known absolutely, because the phase relationships between voltage and current at each
component are absolutely defined.

Notice that I'm assuming a perfectly reactive inductor and capacitor, with impedance phase
angles of exactly +90 and -90°, respectively. Although real components won’t be perfect in this
regard, they should be fairly close. For simplicity, I'll assume perfectly reactive inductors and
capacitors from now on in my example calculations except where noted otherwise.

Since the above example circuit is a series circuit, we know that the total circuit impedance
is equal to the sum of the individuals, so:

LZiga =L+ 2 +Z¢
Zia = (250+j0 Q) + (0+)245.04 Q) + (0 - j1.7684k Q)

Ziwa =250-1.5233k Q or 1.5437 kQ [ -80.680°

Inserting this figure for total impedance into our table:
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R L C Total

120 +j0

E
1200 0° Volts

[ Amps

7 250 +j0 0+j245.04 0-j1.7684k 250 - j1.5233k Ohms

2500 0° 245.04 0 90° 1.7684k [0 -90° 1.5437k O -80.680°

Rule of series
circuits:

Zia =ZrtZ +Z¢

We can now apply Ohm’s Law (I=E/R) vertically in the “Total” column to find total current
for this series circuit:

Total
£ 120 +j0
12000°

| 12.589m + 76.708m
77.734m [ 80.680°

250 - j1.5233k
1.5437k O -80.680°

Volts

Amps

250 +j0
2500 0°

0+245.04
245.04 0 90°

0-j1.7684K

Ohms
1.7684k [0 -90°

Ohm’s
Law

|:E
z

Being a series circuit, current must be equal through all components. Thus, we can take
the figure obtained for total current and distribute it to each of the other columns:

R L C Total
120 +j0
E 1200 0° Volts
| |12589m +76.708m | 12.589m +76.708m | 12.589m + 76.708m |12.589m + 76.708m Amps
77.734m [0 80.680° | 77.734m [] 80.680° | 77.734m [] 80.680° | 77.734m [ 80.680°
2 250 +0 0+ j245.04 0-j1.7684k 250 - j1.5233k Ohms
2500 Q° 245.04 0 90° 1.7684k O -90° 1.5437k [ -80.680°

Rule of series
circuits:

hota = IR =1L =l

Now we’re prepared to apply Ohm’s Law (E=IZ) to each of the individual component columns

in the table, to determine voltage drops:
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R L c Total
31472 +j19.177 | -18.797+[30848 | 135.65-]22.262 120 +j0 vl
1943400 80.680° | 19.04801170.68° | 137.460 -9.3199° 1200 0° olts
12580m + 76.708m [12580m + 76.708m | 12580m + 76.708m |12.580m + 76.708m | )
77.734m 0 80.680° | 77.734m 0 80.680° |77.734m 00 80.680° | 77.734m O 80.680°
250 +0 0 +245.04 0-j1.7684k 250 - j1.5233K Ohms
2500 0° 245,040 90° 17684k 0-90°  |1.5437k O -80.680°
Ohm's Ohm’s Ohm's
Law Law Law
E=IZ E=IZ E=IZ

Notice something strange here: although our supply voltage is only 120 volts, the voltage
across the capacitor is 137.46 volts! How can this be? The answer lies in the interaction
between the inductive and capacitive reactances. Expressed as impedances, we can see that
the inductor opposes current in a manner precisely opposite that of the capacitor. Expressed
in rectangular form, the inductor’s impedance has a positive imaginary term and the capacitor
has a negative imaginary term. When these two contrary impedances are added (in series),
they tend to cancel each other out! Although they’re still added together to produce a sum, that
sum is actually less than either of the individual (capacitive or inductive) impedances alone.
It is analogous to adding together a positive and a negative (scalar) number: the sum is a
quantity less than either one’s individual absolute value.

If the total impedance in a series circuit with both inductive and capacitive elements is less
than the impedance of either element separately, then the total current in that circuit must be
greater than what it would be with only the inductive or only the capacitive elements there.
With this abnormally high current through each of the components, voltages greater than the
source voltage may be obtained across some of the individual components! Further conse-
quences of inductors’ and capacitors’ opposite reactances in the same circuit will be explored
in the next chapter.

Once you’ve mastered the technique of reducing all component values to impedances (Z),
analyzing any AC circuit is only about as difficult as analyzing any DC circuit, except that the
quantities dealt with are vector instead of scalar. With the exception of equations dealing with
power (P), equations in AC circuits are the same as those in DC circuits, using impedances (Z)
instead of resistances (R). Ohm’s Law (E=IZ) still holds true, and so do Kirchhoff’s Voltage and
Current Laws.

To demonstrate Kirchhoff’s Voltage Law in an AC circuit, we can look at the answers we
derived for component voltage drops in the last circuit. KVL tells us that the algebraic sum of
the voltage drops across the resistor, inductor, and capacitor should equal the applied voltage
from the source. Even though this may not look like it is true at first sight, a bit of complex
number addition proves otherwise:
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Er + E, + E; should equal Ey

3.1472+j19.177V Ex
-18.797 +j3.0848V  E,
+ 135.65-)22.262V Ec

120+j0 V Ea

Aside from a bit of rounding error, the sum of these voltage drops does equal 120 volts.

Performed on a calculator (preserving all digits), the answer you will receive should be exactly
120 + jO volts.

We can also use SPICE to verify our figures for this circuit: (Figure 5.4)

S,
250 Q

120V

60Hz/\) L§650mH
C
||

0 [ 3

1.5 pF

Figure 5.4: Example series R, L, and C SPICE circuit.

ac r-l-c circuit

vl 1 0 ac 120 sin

rl 1 2 250

1 2 3 650m

cl 30 1.5u

.ac lin 1 60 60

.print ac v(1,2) v(2,3) v(3,0) i(vl)
.print ac vp(1,2) vp(2,3) vp(3,0) ip(vl)

. end

freq v(1,2) v(2,3) v(3) i (v1)

6. 000E+01 1. 943E+01 1. 905E+01 1. 375E+02 7. 773E-02
freq vp(1, 2) vp(2, 3) vp(3) i p(vl)

6. 000E+01 8. 068E+01 1. 707E+02 -9. 320E+00 -9.932E+01
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Interpreted SPICE results

Er =19.43V O 80.68°
E, =19.05V O 170.7°
Ec=137.5V 00 -9.320°

| =77.73mA [0 -99.32° (actual phase angle = 80.68°)

The SPICE simulation shows our hand-calculated results to be accurate.

As you can see, there is little difference between AC circuit analysis and DC circuit analysis,
except that all quantities of voltage, current, and resistance (actually, impedance) must be
handled in complex rather than scalar form so as to account for phase angle. This is good,
since it means all you've learned about DC electric circuits applies to what you’re learning
here. The only exception to this consistency is the calculation of power, which is so unique that
it deserves a chapter devoted to that subject alone.

e REVIEW:

e Impedances of any kind add in series: Zroio; =21 +Zo + . . . Zy,

e Although impedances add in series, the total impedance for a circuit containing both
inductance and capacitance may be less than one or more of the individual impedances,
because series inductive and capacitive impedances tend to cancel each other out. This
may lead to voltage drops across components exceeding the supply voltage!

e All rules and laws of DC circuits apply to AC circuits, so long as values are expressed in
complex form rather than scalar. The only exception to this principle is the calculation of
power, which is very different for AC.

5.3 Parallel R, L, and C

We can take the same components from the series circuit and rearrange them into a parallel

configuration for an easy example circuit: (Figure 5.5)

120V
60 Hz /\D

R%zsog L

650 mH C:

L 15pF

Figure 5.5: Example R, L, and C parallel circuit.

The fact that these components are connected in parallel instead of series now has ab-
solutely no effect on their individual impedances. So long as the power supply is the same
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120V
60 Hz

O

ZR % ZL

ZC:

250Q 0 0°

1.7684 kQ [ -90°

245.04 Q 0 90°
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Figure 5.6: Example R, L, and C parallel circuit with impedances replacing component values.

frequency as before, the inductive and capacitive reactances will not have changed at all: (Fig-

ure 5.6)

With all component values expressed as impedances (Z), we can set up an analysis table
and proceed as in the last example problem, except this time following the rules of parallel
circuits instead of series:

R L C Total
120+j0
E
1200 0°
|
. 250 +j0 0 +j245.04 0-j1.7684k
2500 Q° 245.04 0 90° 1.7684k 0 -90°

Volts

Amps

Ohms

Knowing that voltage is shared equally by all components in a parallel circuit, we can
transfer the figure for total voltage to all component columns in the table:

R L C Total
£ 120+j0 120+j0 120+j0 120 +j0
1200 0° 1200 0° 1200 0° 1200 0°
[
. 250 + 0 0 +j245.04 0-j1.7684k
2500 0° 245.04 0 90° 1.7684k O -90°

Rule of parallel
circuits:

Eota =Er=EL = E¢

Volts

Amps

Ohms

Now, we can apply Ohm’s Law (I=E/Z) vertically in each column to determine current
through each component:
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R L c Total
£ 120+j0 120+j0 120+j0 120+j0 Vol
1200 0° 1200 ° 1200 0° 1200 ¢° olts
| 480m +j0 0-j489.71m 0+67.858m Amps
480 0 0° 489.71m O -90° 67.858m O 90°
7 250 + j0 0+j245.04 0-j1.7684k Ohms
250 0 0° 245.04 0 90° 1.7684k O -90°
Ohm's Ohm’s Ohm’s
Law Law Law
| = E | = E | = E
z z z

There are two strategies for calculating total current and total impedance. First, we could

calculate total impedance from all the individual impedances in parallel (Zr,;.; = 1/(1/Zg + 1/Z;,
+ 1/Z¢), and then calculate total current by dividing source voltage by total impedance (I=E/Z).
However, working through the parallel impedance equation with complex numbers is no easy
task, with all the reciprocations (1/Z). This is especially true if you're unfortunate enough
not to have a calculator that handles complex numbers and are forced to do it all by hand
(reciprocate the individual impedances in polar form, then convert them all to rectangular
form for addition, then convert back to polar form for the final inversion, then invert). The
second way to calculate total current and total impedance is to add up all the branch currents
to arrive at total current (total current in a parallel circuit — AC or DC - is equal to the sum
of the branch currents), then use Ohm’s Law to determine total impedance from total voltage
and total current (Z=E/I).

R L c Total
c 120+ 0 12040 12040 12040 Vo
1200 0° 1200 0° 1200 0° 12001 0° olts
| 480m + 0 0-j489.71m 0+67.858m 4gom - 421.85m |
48001 0P 489.71m [ -90° 67.858m 0 90° | 639.03m [ -41.311°
. 25040 0+ j245.04 0-j1.7684k 14105+/123% | o
25001 0° 245,04 01 90° 1.7684K (1 -90° 187.79 0 41.311°

Either method, performed properly, will provide the correct answers. Let’s try analyzing
this circuit with SPICE and see what happens: (Figure 5.7)
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2 2 2 2
Vii — Vi — Vie —
Vi — 4
1 3 %Rbogus 6
1 5
R L C
120V 250 Q 3 650mH ——=15pF
60 Hz /\D % H
0 0 0 0

Figure 5.7: Example parallel R, L, and C SPICE circuit. Battery symbols are “dummy” voltage
sources for SPICE to use as current measurement points. All are set to 0 volts.

ac r-l-c circuit

vl 1 0 ac 120 sin

vi 1 2ac O

vir 2 3 ac 0

vil 2 4 ac O

rbogus 4 5 le-12

vic 2 6 ac O

rl 3 0 250

15 0 650m

cl 6 0 1.5u

.ac lin 1 60 60

.print ac i(vi) i(vir) i(vil) i(vic)
.print ac ip(vi) ip(vir) ip(vil) ip(vic)

.end

freq i(vi) i(vir) i(vil) i (vic)

6. 000E+01 6. 390E-01  4.800E-01 4.897E-01 6.786E-02
freq ip(vi) ip(vir) ip(vil) i p(vic)

6. 000E+01 -4.131E+01 0. O0OOE+00 -9. 000E+01 9. 000E+01
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Interpreted SPICE results

ItOtd = 6390 mA |:| '41310
Il =480 mA O 0°
| =489.7 mA [ -90°

lc=67.86 mA O 90°

It took a little bit of trickery to get SPICE working as we would like on this circuit (installing
“dummy” voltage sources in each branch to obtain current figures and installing the “dummy”
resistor in the inductor branch to prevent a direct inductor-to-voltage source loop, which SPICE
cannot tolerate), but we did get the proper readings. Even more than that, by installing the
dummy voltage sources (current meters) in the proper directions, we were able to avoid that
idiosyncrasy of SPICE of printing current figures 180° out of phase. This way, our current
phase readings came out to exactly match our hand calculations.

5.4 Series-parallel R, L, and C

Now that we've seen how series and parallel AC circuit analysis is not fundamentally different
than DC circuit analysis, it should come as no surprise that series-parallel analysis would be
the same as well, just using complex numbers instead of scalar to represent voltage, current,
and impedance.

Take this series-parallel circuit for example: (Figure 5.8)

C,

[l
ATUE %650 mH

120V (A, R %470 Q
60 Hz ) C,——15uF

Figure 5.8: Example series-parallel R, L, and C circuit.

The first order of business, as usual, is to determine values of impedance (Z) for all compo-
nents based on the frequency of the AC power source. To do this, we need to first determine
values of reactance (X) for all inductors and capacitors, then convert reactance (X) and resis-
tance (R) figures into proper impedance (Z) form:
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Reactances and Resistances:

1 _
=1 X, = 2nfL
A~ c, )
Xy = 1 X, = (2)(1)(60 Hz)(650 mH)
(2)(M(60 HZ)(4.7 uF)
Xy =564.38Q XL =24504Q
_ 1
T ToN
1
X = R=470Q
(2)(M(60 HZ)(1.5 pF)
Xgp = 17684 kQ

Ze1=0-j564.38Q or 564.38Q [0 -90°

Z,=0+j24504Q or 24504 Q 0 90°
Ze,=0-j1.7684k Q or 1.7684kQ O -90°

Zg=470+j0Q or 470Q00°

Now we can set up the initial values in our table:

c L [ R Total
120 +j0O
E 120 DJO" Volts
Amps
0-564.38 0+]245.04 0-j1.7684k 470 +0
z Ohms
564.38 [ -90° 245.04 [ 90° 1.7684k [0 -90° 4700 0°

Being a series-parallel combination circuit, we must reduce it to a total impedance in more
than one step. The first step is to combine L and C, as a series combination of impedances,
by adding their impedances together. Then, that impedance will be combined in parallel with
the impedance of the resistor, to arrive at another combination of impedances. Finally, that
quantity will be added to the impedance of C; to arrive at the total impedance.

In order that our table may follow all these steps, it will be necessary to add additional
columns to it so that each step may be represented. Adding more columns horizontally to the
table shown above would be impractical for formatting reasons, so I will place a new row of
columns underneath, each column designated by its respective component combination:
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Total
L--C, R/ (L--Cy) C,-—-[R/I(L-C)
E Volts
| Amps
Z Ohms

Calculating these new (combination) impedances will require complex addition for series
combinations, and the “reciprocal” formula for complex impedances in parallel. This time,
there is no avoidance of the reciprocal formula: the required figures can be arrived at no other
way!

Total
L--C, R/ (L--C) C,--[R//(L--C)]
120 +j0
E
1200 0° Volts
| Amps
7 0-j1.5233k 429.15-(132.41 429.15 - 696.79 Ohms
1.5233k O -90° 449.11 0 -17.147° 818.34 0 -58.371°
Rule of series Rule of series
circuits: circuits:
2 =2, + 2 Ziga = Zcr + Zryc)
Rule of parallel
circuits:
1
Z N = - - @@
R//(L--C2) _l+ 1
ZR ZL--CZ

Seeing as how our second table contains a column for “Total,” we can safely discard that
column from the first table. This gives us one table with four columns and another table with
three columns.

Now that we know the total impedance (818.34 2 / -58.371°) and the total voltage (120
volts / 0°), we can apply Ohm’s Law (I=E/Z) vertically in the “Total” column to arrive at a
figure for total current:
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Total
L--C, R/ (L--C) C,--[R//(L--C)]
120 +jO
E
1200 0° Volts
76.899m +j124.86m
| Amps
146.64m [ 58.371°
7 0-j1.5233k 429.15-j132.41 429.15 - j696.79 ohms
1.5233k O -90° 449.11 0 -17.147° 818.34 0 -58.371°
Ohm's
Law
E
| = —
Z

At this point we ask ourselves the question: are there any components or component com-
binations which share either the total voltage or the total current? In this case, both C; and
the parallel combination R/(L——C,) share the same (total) current, since the total impedance
is composed of the two sets of impedances in series. Thus, we can transfer the figure for total
current into both columns:

C, L C, R
E Volts
76.899m + j124.86m
| Amps
» | 146.64m [ 58.371°
7 0-j564.38 0+j245.04 0-j1.7684k 470 +j0 Ohms
564.38 00 -90° 245,04 0 90° 1.7684k O -90° 4700 0°

Rule of series
L circuits:

lota = 1 = lri-c2)

Total
L--C, R/ (L--Cy C,--[R/I(L--C)]
120 +j0
E 120 DJ 0 Volts
| 76.899m +j124.86m | 76.899m +j124.86m Amps
146.64m O 58.371° 146.64m [J 58.371°
7 0-j1.5233k 429.15 - j132.41 429.15 - j696.79 Ohms
1.5233k O -90° 449.11 0 -17.147° 818.34 [] -58.371°

Rule of series
circuits:

lota = 1 = Iri-c2)

Now, we can calculate voltage drops across C; and the series-parallel combination of R/(L——C5)
using Ohm’s Law (E=IZ) vertically in those table columns:
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c, L c, R
£ | 70467-j43400 vl
82.760 [0 -31.629° olts
76.899m +j124.86m
I Amps
146.64m 00 58.371°
. 0-j564.38 0+]245.04 0-j1.7684k 470+0 ohms
564.38 [ -90° 245.04 0 90° 1.7684k [ -90° 4700 0°
Ohm's
Law
E=IZ
Total
LG, RI(L -Gy C,—[RI(L-C)]
£ 49,533 + }43.400 120+j0 Vot
65.857 [ 41.225° 1200 0° olts
| 76.899m +]124.86m | 76.800m + [124.86m |
146.64m [0 58.371° | 146.64m [ 58.371°
0- 15233k 429.15 - |132.41 429.15 - |696.79
z o o o | Ohms
15233k 00 -90 449.110-17.147° | 818340 -58.371

Ohm’s
Law

E=I1zZ

A quick double-check of our work at this point would be to see whether or not the voltage
drops across C; and the series-parallel combination of R/(L——C-) indeed add up to the total.
According to Kirchhoff’s Voltage Law, they should!

Eota Should be equal to E¢; + Egy ¢y

70.467 - j43.400 V

+ 49.533 +j43.400 V
120+j0V  <— Indeed, it is!

That last step was merely a precaution. In a problem with as many steps as this one has,
there is much opportunity for error. Occasional cross-checks like that one can save a person a
lot of work and unnecessary frustration by identifying problems prior to the final step of the
problem.

After having solved for voltage drops across C; and the combination R//(L——C,), we again
ask ourselves the question: what other components share the same voltage or current? In this
case, the resistor (R) and the combination of the inductor and the second capacitor (L——Cs)
share the same voltage, because those sets of impedances are in parallel with each other.
Therefore, we can transfer the voltage figure just solved for into the columns for R and L——C,:
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C, L C, R
70.467 - j43.400 49.533 +j43.400 Vol
82.760 O -31.629° 65.857 0 41.225° olts
76.899m +j124.86m
Amps
146.64m [ 58.371°
0-j564.38 0+245.04 0-j1.7684k 470 +j0 ohms
564.38 O -90° 245.04 0 90° 1.7684k O -90° 4700 0°
Rule of parallel
circuits:
Eri-c) =Er=EL.c2
Total
L--GC, R/ (L - C)) C,—[RII(L - C]
E 49.533 +j43.400 49.533 +j43.400 120 +j0 Vol
65.857 [0 41.225° 65.857 [0 41.225° 1200 0° olts
| 76.899m +j124.86m | 76.899m +j124.86m Amps
146.64m [ 58.371° 146.64m [0 58.371°
7 0-j1.5233k 429.15-j132.41 429.15 - j696.79 Ohms
1.5233k O -90° 449.11 0 -17.147° 818.34 0 -58.371°

Now we're all set for calculating current through the resistor and through the series com-
bination L——C,. All we need to do is apply Ohm’s Law (I=E/Z) vertically in both of those

columns:

C, L C, R
70.467 - j43.400 49.533 +j43.400
82.760 O -31.629° 65.857 [0 41.225°
76.899m + j124.86m 105.39m +j92.341m
146.64m [ 58.371° 140.12m O 41.225°
0-j564.38 0+j245.04 0-j1.7684k 470 +jO
564.38 00 -90° 245.04 0 90° 1.7684k O -90° 4700 0°
Ohm’s
Law

Volts

Amps

Ohms
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Total
L--C, R/I(L--C) C,--[RII(L--C)]
£ 49.533 +j43.400 49.533 +j43.400 120 +j0
65.857 [ 41.225° 65.857 [ 41.225° 1200 0°
| -28.490m + j32.516m | 76.899m +j124.86m | 76.899m + j124.86m
43.232m [0 131.22° | 146.64m [0 58.371° | 146.64m [J 58.371°
7 0-j1.5233k 429.15-j132.41 429.15 - j696.79
1.5233k 0 -90° 449110 -17.147° 818.34 (1 -58.371°

Volts

Amps

Ohms

Another quick double-check of our work at this point would be to see if the current figures
for L——C, and R add up to the total current. According to Kirchhoff’s Current Law, they
should:

IriL--c2) Should be equal to I + 1 )
105.39m +j92.341m

+ -28.490m +j32.516m
76.899m +j124.86m —<— Indeed, it is!

Since the L and C, are connected in series, and since we know the current through their
series combination impedance, we can distribute that current figure to the L. and C, columns
following the rule of series circuits whereby series components share the same current:

c, L c, R
g | 70467-j43.400 49533 +j43400 |
82.760 [0 -31.629° 65.857 [0 41.225° olts
| | 76:800m +]124.86m |-28.490m +]32516m |-28.490m + 32516m | 105.30m +]02.341m | )
146.64m 0 58.371° | 43232m 0 131.22° | 43.232m 0 131.22° | 140.12m O 41.225°
. 0-j564.38 0 +245.04 0-j1.7684k 470+j0 Ohms
564.38 0 -90° 245.04 0 90° 1.7684k O -90° 4700 0°

Rule of series

circuits:

o=l =le

With one last step (actually, two calculations), we can complete our analysis table for this
circuit. With impedance and current figures in place for L and C,, all we have to do is apply
Ohm’s Law (E=IZ) vertically in those two columns to calculate voltage drops.



5.4. SERIES-PARALLEL R, L, AND C

C, L C, R
70.467 - j43.400 -7.968 - j6.981 57.501 +j50.382 49.533 +j43.400 Vol
82.760 [ -31.629° 10.594 0 221.22° 76.451 [0 41.225 65.857 [ 41.225° olts
76.899m +j124.86m |-28.490m + j32.516m |-28.490m + j32.516m | 105.39m +j92.341m Amps
146.64m [ 58.371° 43.232m [0 131.22° | 43.232m [0 131.22° | 140.12m [ 41.225°
0-j564.38 0 +j245.04 0-j1.7684k 470 +jO ohms
564.38 [0 -90° 245,04 00 90° 1.7684k O -90° 4700 0°
Ohm’s Ohm’s
Law Law
E=1Z E=1Z

Now, let’s turn to SPICE for a computer verification of our work:

more "dummy" voltage sources to
act as current measurement points

in the SPICE analysis (all setto 0

C, volts).
4.7 uF
B
Vit % Vilc : V|r :
4
1 6
L 3 650 mH
120V
60 Hz @ S R %470 Q
C,=—= 15pF
0 0 0

Figure 5.9: Example series-parallel R, L, C SPICE circuit.

with our hand-calculated figures in the circuit analysis table.

117

Each line of the SPICE output listing gives the voltage, voltage phase angle, current, and
current phase angle for C, L, C,, and R, in that order. As you can see, these figures do concur

As daunting a task as series-parallel AC circuit analysis may appear, it must be emphasized
that there is nothing really new going on here besides the use of complex numbers. Ohm’s Law
(in its new form of E=IZ) still holds true, as do the voltage and current Laws of Kirchhoff.
While there is more potential for human error in carrying out the necessary complex number
calculations, the basic principles and techniques of series-parallel circuit reduction are exactly

the same.
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ac series-parallel r-l-c circuit
vl 1 0 ac 120 sin

vit 1 2 ac O

vilc 3 4 ac O

vir 3 6 ac O

cl 23 4.7u
I 4 5 650m
c2 50 1.5u
r 6 0 470
.ac lin 1 60 60
.print ac v(2,3) vp(2,3) i(vit) ip(vit)
.print ac v(4,5) vp(4,5) i(vilc) ip(vilc)
.print ac v(5,0) vp(5,0) i(vilc) ip(vilc)
.print ac v(6,0) vp(6,0) i(vir) ip(vir)
.end
freq v(2,3) vp(2, 3) i(vit) ip(vit) Cl
6. 000E+01 8. 276E+01 -3. 163E+01 1.466E-01  5.837E+01
freq v(4,5) vp(4,5) i (vilc) i p(vilc) L
6. 000E+01 1. 059E+01 -1.388E+02  4.323E-02 1. 312E+02
freq v(5) vp(5) i(vilc) i p(vilc) c2
6. 000E+01 7.645E+01  4.122E+01 4. 323E-02 1. 312E+02
freq v(6) vp( 6) i(vir) i p(vir) R
6. 000E+01 6. 586E+01 4. 122E+01 1.401E-01  4.122E+01
e REVIEW:

e Analysis of series-parallel AC circuits is much the same as series-parallel DC circuits.
The only substantive difference is that all figures and calculations are in complex (not
scalar) form.

e It is important to remember that before series-parallel reduction (simplification) can be-
gin, you must determine the impedance (Z) of every resistor, inductor, and capacitor. That
way, all component values will be expressed in common terms (Z) instead of an incompat-
ible mix of resistance (R), inductance (L), and capacitance (C).
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5.5 Susceptance and Admittance

In the study of DC circuits, the student of electricity comes across a term meaning the oppo-
site of resistance: conductance. It is a useful term when exploring the mathematical formula
for parallel resistances: Ryqrauer =1/ (/R1 + /Ry +. . . 1/R,). Unlike resistance, which
diminishes as more parallel components are included in the circuit, conductance simply adds.
Mathematically, conductance is the reciprocal of resistance, and each 1/R term in the “parallel
resistance formula” is actually a conductance.

Whereas the term “resistance” denotes the amount of opposition to flowing electrons in
a circuit, “conductance” represents the ease of which electrons may flow. Resistance is the
measure of how much a circuit resists current, while conductance is the measure of how much
a circuit conducts current. Conductance used to be measured in the unit of mhos, or “ohms”
spelled backward. Now, the proper unit of measurement is Siemens. When symbolized in a
mathematical formula, the proper letter to use for conductance is “G”.

Reactive components such as inductors and capacitors oppose the flow of electrons with
respect to time, rather than with a constant, unchanging friction as resistors do. We call this
time-based opposition, reactance, and like resistance we also measure it in the unit of ohAms.

As conductance is the complement of resistance, there is also a complementary expression
of reactance, called susceptance. Mathematically, it is equal to 1/X, the reciprocal of reactance.
Like conductance, it used to be measured in the unit of mhos, but now is measured in Siemens.
Its mathematical symbol is “B”, unfortunately the same symbol used to represent magnetic
flux density.

The terms “reactance” and “susceptance” have a certain linguistic logic to them, just like
resistance and conductance. While reactance is the measure of how much a circuit reacts
against change in current over time, susceptance is the measure of how much a circuit is
susceptible to conducting a changing current.

If one were tasked with determining the total effect of several parallel-connected, pure
reactances, one could convert each reactance (X) to a susceptance (B), then add susceptances
rather than diminish reactances: X,qrq1¢1 = 1/(1/X; + 1/X5 + . . . 1/X,,). Like conductances (G),
susceptances (B) add in parallel and diminish in series. Also like conductance, susceptance is
a scalar quantity.

When resistive and reactive components are interconnected, their combined effects can no
longer be analyzed with scalar quantities of resistance (R) and reactance (X). Likewise, figures
of conductance (G) and susceptance (B) are most useful in circuits where the two types of
opposition are not mixed, i.e. either a purely resistive (conductive) circuit, or a purely reactive
(susceptive) circuit. In order to express and quantify the effects of mixed resistive and reactive
components, we had to have a new term: impedance, measured in ohms and symbolized by the
letter “Z”.

To be consistent, we need a complementary measure representing the reciprocal of impedance.
The name for this measure is admittance. Admittance is measured in (guess what?) the unit
of Siemens, and its symbol is “Y”. Like impedance, admittance is a complex quantity rather
than scalar. Again, we see a certain logic to the naming of this new term: while impedance is
a measure of how much alternating current is impeded in a circuit, admittance is a measure of
how much current is admitted.

Given a scientific calculator capable of handling complex number arithmetic in both polar
and rectangular forms, you may never have to work with figures of susceptance (B) or admit-
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tance (Y). Be aware, though, of their existence and their meanings.

5.6 Summary

With the notable exception of calculations for power (P), all AC circuit calculations are based
on the same general principles as calculations for DC circuits. The only significant difference
is that fact that AC calculations use complex quantities while DC calculations use scalar quan-
tities. Ohm’s Law, Kirchhoff’s Laws, and even the network theorems learned in DC still hold
true for AC when voltage, current, and impedance are all expressed with complex numbers.
The same troubleshooting strategies applied toward DC circuits also hold for AC, although AC
can certainly be more difficult to work with due to phase angles which aren’t registered by a
handheld multimeter.

Power is another subject altogether, and will be covered in its own chapter in this book.
Because power in a reactive circuit is both absorbed and released — not just dissipated as it is
with resistors — its mathematical handling requires a more direct application of trigonometry
to solve.

When faced with analyzing an AC circuit, the first step in analysis is to convert all resistor,
inductor, and capacitor component values into impedances (Z), based on the frequency of the
power source. After that, proceed with the same steps and strategies learned for analyzing DC
circuits, using the “new” form of Ohm’s Law: E=IZ ; I=E/Z ; and Z=E/I

Remember that only the calculated figures expressed in polar form apply directly to empir-
ical measurements of voltage and current. Rectangular notation is merely a useful tool for us
to add and subtract complex quantities together. Polar notation, where the magnitude (length
of vector) directly relates to the magnitude of the voltage or current measured, and the an-
gle directly relates to the phase shift in degrees, is the most practical way to express complex
quantities for circuit analysis.

5.7 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most
recent to first. See Appendix 2 (Contributor List) for dates and contact information.

Jason Starck (June 2000): HTML document formatting, which led to a much better-
looking second edition.
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6.1 An electric pendulum

Capacitors store energy in the form of an electric field, and electrically manifest that stored
energy as a potential: static voltage. Inductors store energy in the form of a magnetic field, and
electrically manifest that stored energy as a kinetic motion of electrons: current. Capacitors
and inductors are flip-sides of the same reactive coin, storing and releasing energy in comple-
mentary modes. When these two types of reactive components are directly connected together,
their complementary tendencies to store energy will produce an unusual result.

If either the capacitor or inductor starts out in a charged state, the two components will
exchange energy between them, back and forth, creating their own AC voltage and current
cycles. If we assume that both components are subjected to a sudden application of voltage
(say, from a momentarily connected battery), the capacitor will very quickly charge and the
inductor will oppose change in current, leaving the capacitor in the charged state and the
inductor in the discharged state: (Figure 6.1)

The capacitor will begin to discharge, its voltage decreasing. Meanwhile, the inductor will
begin to build up a “charge” in the form of a magnetic field as current increases in the circuit:
(Figure 6.2)

121
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Battelg momentarily
connected to start the Cycle e=— e°

L +
— + ie Time —
capacitor charged: voltage at (+) peak
inductor discharged: zero current

Figure 6.1: Capacitor charged: voltage at (+) peak, inductor discharged: zero current.

/ Time —>

capacitor discharging: voltage decreasing
inductor charging: current increasing

Figure 6.2: Capacitor discharging: voltage decreasing, Inductor charging: current increasing.

The inductor, still charging, will keep electrons flowing in the circuit until the capacitor has
been completely discharged, leaving zero voltage across it: (Figure 6.3)

/ Time —=

capacitor fully discharged: zero voltage
inductor fully charged: maximum current

Figure 6.3: Capacitor fully discharged: zero voltage, inductor fully charged: maximum current.

The inductor will maintain current flow even with no voltage applied. In fact, it will gen-
erate a voltage (like a battery) in order to keep current in the same direction. The capacitor,
being the recipient of this current, will begin to accumulate a charge in the opposite polarity
as before: (Figure 6.4)

When the inductor is finally depleted of its energy reserve and the electrons come to a halt,
the capacitor will have reached full (voltage) charge in the opposite polarity as when it started:
(Figure 6.5)

Now we'’re at a condition very similar to where we started: the capacitor at full charge
and zero current in the circuit. The capacitor, as before, will begin to discharge through the
inductor, causing an increase in current (in the opposite direction as before) and a decrease in
voltage as it depletes its own energy reserve: (Figure 6.6)

Eventually the capacitor will discharge to zero volts, leaving the inductor fully charged with
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Time —

capacitor charging: voltage increasing (in opposite polarity)
inductor discharging: current decreasing

Figure 6.4: Capacitor charging: voltage increasing (in opposite polarity), inductor discharging:
current decreasing.

Time —

capacitor fully charged: voltage at (-) peak
inductor fully discharged: zero current

Figure 6.5: Capacitor fully charged: voltage at (-) peak, inductor fully discharged: zero current.

Time —

capacitor discharging: voltage decreasing
inductor charging: current increasing

Figure 6.6: Capacitor discharging: voltage decreasing, inductor charging: current increasing.
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full current through it: (Figure 6.7)

Time —>

capacitor fully discharged: zero voltage
inductor fully charged: current at (-) peak

Figure 6.7: Capacitor fully discharged: zero voltage, inductor fully charged: current at (-) peak.

The inductor, desiring to maintain current in the same direction, will act like a source again,
generating a voltage like a battery to continue the flow. In doing so, the capacitor will begin to
charge up and the current will decrease in magnitude: (Figure 6.8)

Time —

capacitor charging: voltage increasing
inductor discharging: current decreasing

Figure 6.8: Capacitor charging: voltage increasing, inductor discharging: current decreasing.

Eventually the capacitor will become fully charged again as the inductor expends all of its
energy reserves trying to maintain current. The voltage will once again be at its positive peak
and the current at zero. This completes one full cycle of the energy exchange between the

capacitor and inductor: (Figure 6.9)

capacitor fully charged: voltage at (+) peak
inductor fully discharged: zero current

Figure 6.9: Capacitor fully charged: voltage at (+) peak, inductor fully discharged: zero current.

This oscillation will continue with steadily decreasing amplitude due to power losses from
stray resistances in the circuit, until the process stops altogether. Overall, this behavior is akin
to that of a pendulum: as the pendulum mass swings back and forth, there is a transformation
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of energy taking place from kinetic (motion) to potential (height), in a similar fashion to the
way energy is transferred in the capacitor/inductor circuit back and forth in the alternating
forms of current (kinetic motion of electrons) and voltage (potential electric energy).

At the peak height of each swing of a pendulum, the mass briefly stops and switches di-
rections. It is at this point that potential energy (height) is at a maximum and kinetic energy
(motion) is at zero. As the mass swings back the other way, it passes quickly through a point
where the string is pointed straight down. At this point, potential energy (height) is at zero and
kinetic energy (motion) is at maximum. Like the circuit, a pendulum’s back-and-forth oscilla-
tion will continue with a steadily dampened amplitude, the result of air friction (resistance)
dissipating energy. Also like the circuit, the pendulum’s position and velocity measurements
trace two sine waves (90 degrees out of phase) over time: (Figure 6.10)

maximum_potential energy,
zero kinetic energy

Fom s o s m =

\
7

mass

-

zero potential energy,
maximum kinetic enérgy

potential energy = ——
kinetic energy = ----

Figure 6.10: Pendelum transfers energy between kinetic and potential energy as it swings low
to high.

In physics, this kind of natural sine-wave oscillation for a mechanical system is called Sim-
ple Harmonic Motion (often abbreviated as “SHM”). The same underlying principles govern
both the oscillation of a capacitor/inductor circuit and the action of a pendulum, hence the
similarity in effect. It is an interesting property of any pendulum that its periodic time is gov-
erned by the length of the string holding the mass, and not the weight of the mass itself. That
is why a pendulum will keep swinging at the same frequency as the oscillations decrease in
amplitude. The oscillation rate is independent of the amount of energy stored in it.

The same is true for the capacitor/inductor circuit. The rate of oscillation is strictly depen-
dent on the sizes of the capacitor and inductor, not on the amount of voltage (or current) at
each respective peak in the waves. The ability for such a circuit to store energy in the form of
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oscillating voltage and current has earned it the name tank circuit. Its property of maintaining
a single, natural frequency regardless of how much or little energy is actually being stored in
it gives it special significance in electric circuit design.

However, this tendency to oscillate, or resonate, at a particular frequency is not limited to
circuits exclusively designed for that purpose. In fact, nearly any AC circuit with a combination
of capacitance and inductance (commonly called an “LC circuit”) will tend to manifest unusual
effects when the AC power source frequency approaches that natural frequency. This is true
regardless of the circuit’s intended purpose.

If the power supply frequency for a circuit exactly matches the natural frequency of the
circuit’s LC combination, the circuit is said to be in a state of resonance. The unusual effects
will reach maximum in this condition of resonance. For this reason, we need to be able to
predict what the resonant frequency will be for various combinations of L and C, and be aware
of what the effects of resonance are.

e REVIEW:

e A capacitor and inductor directly connected together form something called a tank circuit,
which oscillates (or resonates) at one particular frequency. At that frequency, energy is
alternately shuffled between the capacitor and the inductor in the form of alternating
voltage and current 90 degrees out of phase with each other.

e When the power supply frequency for an AC circuit exactly matches that circuit’s natural
oscillation frequency as set by the L and C components, a condition of resonance will have
been reached.

6.2 Simple parallel (tank circuit) resonance

A condition of resonance will be experienced in a tank circuit (Figure 6.11) when the reactances
of the capacitor and inductor are equal to each other. Because inductive reactance increases
with increasing frequency and capacitive reactance decreases with increasing frequency, there
will only be one frequency where these two reactances will be equal.

(\) 10pF == 100 mH

Figure 6.11: Simple parallel resonant circuit (tank circuit).

In the above circuit, we have a 10 uF capacitor and a 100 mH inductor. Since we know the
equations for determining the reactance of each at a given frequency, and we’re looking for that
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point where the two reactances are equal to each other, we can set the two reactance formulae
equal to each other and solve for frequency algebraically:

1

X, = 27fL X, =
- ¢ 2rfiC

.. . setting the two equal to each other,
representing a condition of equal reactance
(resonance) . . .

1
2nfC

21l =

Multiplying both sides by f eliminates the f
term in the denominator of the fraction
oL = — 1
2ncC

Dividing both sides by 271 leaves f° by itself
on the left-hand side of the equation . . .

2oL
2ren.C

Taking the square root of both sides of the
equation leaves f by itself on the left side . . .

fomo vy = ‘1
raic

... simplifying . . .

1

2n "y LC

f=

So there we have it: a formula to tell us the resonant frequency of a tank circuit, given the
values of inductance (L) in Henrys and capacitance (C) in Farads. Plugging in the values of L
and C in our example circuit, we arrive at a resonant frequency of 159.155 Hz.

What happens at resonance is quite interesting. With capacitive and inductive reactances
equal to each other, the total impedance increases to infinity, meaning that the tank circuit
draws no current from the AC power source! We can calculate the individual impedances of
the 10 pF capacitor and the 100 mH inductor and work through the parallel impedance formula
to demonstrate this mathematically:
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X, = 2mfL
X, = (2)(1)(159.155 Hz)(100 mH)

X, =100 Q
1

X~=

¢ oniC

~ 1
Xc=
(2)(1)(159.155 Hz)(10 pF)

Xc=100Q

As you might have guessed, I chose these component values to give resonance impedances
that were easy to work with (100 € even). Now, we use the parallel impedance formula to see
what happens to total Z:

1
Z =
parallel 1 1
— + —
ZL ZC
1
Z =
paralel 1 . 1
100 Q O 90° 100 Q O -90°
1
Zoalld =

0.010-90° + 0.01 0 90°

Zpaallel = Oi Undefined!

We can’t divide any number by zero and arrive at a meaningful result, but we can say
that the result approaches a value of infinity as the two parallel impedances get closer to each
other. What this means in practical terms is that, the total impedance of a tank circuit is
infinite (behaving as an open circuit) at resonance. We can plot the consequences of this over a
wide power supply frequency range with a short SPICE simulation: (Figure 6.12)

The 1 pico-ohm (1 pf?) resistor is placed in this SPICE analysis to overcome a limitation
of SPICE: namely, that it cannot analyze a circuit containing a direct inductor-voltage source
loop. (Figure 6.12) A very low resistance value was chosen so as to have minimal effect on
circuit behavior.

This SPICE simulation plots circuit current over a frequency range of 100 to 200 Hz in
twenty even steps (100 and 200 Hz inclusive). Current magnitude on the graph increases from
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freq

1. 000E+02
1. 053E+02
1. 105E+02
1. 158E+02
1. 211E+02
1. 263E+02
1. 316E+02
1. 368E+02
1. 421E+02
1
1
1
1
1
1
1
1
1
1
2

474E+02

. 526E+02
. 579E+02
. 632E+02
. 684E+02
. 737E+02
. 7T89E+02
. 842E+02
. 895E+02
. 947E+02
. 000E+02

1 1
Rbogus 1pQ

) 2

C,=—10uF L, =3100 mH

0 0

Figure 6.12: Resonant circuit sutitable for SPICE simulation.

i(vl) 3. 162E- 04 1. O00E- 03 3.162E-03 1.0E-02

A DRROWONNRPPEPARPORPNWWAOIIONOOO

. 632E-03 . . . . *
. 506E-03 . . . . *
. 455E-03 . . . . *

. 470E-03 . . . . *

. 542E-03 . . . . *

. 663E-03 . . . .

. 828E-03 . . . L *

. 033E-03 . . . *,

.271E-03 . . . *

. 540E- 03 . . . *

. 373E-04 . . *

.590E-04 . =~ .

. 969E-04 . . * .

. 132E-03 . . Lox

. 7T49E-03 . . . *

. 350E-03 . . . * .

. 934E-03 . . . *,

. 505E-03 . . . L *

. 063E-03 . . . L%

. 609E-03 . . . . *

129



130 CHAPTER 6. RESONANCE

tank circuit frequency sweep

vl 10 ac 1 sin

cl 10 10u

* rbogus is necessary to elimnate a direct |oop
* pbetween vl and |1, which SPICE can’t handl e
rbogus 1 2 le-12

[1 2 0 100m

.ac lin 20 100 200

.plot ac i(vl)

.end

left to right, while frequency increases from top to bottom. The current in this circuit takes
a sharp dip around the analysis point of 157.9 Hz, which is the closest analysis point to our
predicted resonance frequency of 159.155 Hz. It is at this point that total current from the
power source falls to zero.

The plot above is produced from the above spice circuit file ( *.cir), the command (.plot) in the
last line producing the text plot on any printer or terminal. A better looking plot is produced
by the “nutmeg” graphical post-processor, part of the spice package. The above spice ( *.cir)
does not require the plot (.plot) command, though it does no harm. The following commands
produce the plot below: (Figure 6.13)

spice -b -r resonant.raw resonant.cir

( -b batch node, -r raw file, input is resonant.cir)
nut meg resonant.raw

From the nutmeg prompt:

>setpl ot acl (setplot {enter} for list of plots)
>di spl ay (for list of signals)

>pl ot nmag(vl1#branch)

(magni tude of conplex current vector vl#branch)

Incidentally, the graph output produced by this SPICE computer analysis is more generally
known as a Bode plot. Such graphs plot amplitude or phase shift on one axis and frequency on
the other. The steepness of a Bode plot curve characterizes a circuit’s “frequency response,” or
how sensitive it is to changes in frequency.

e REVIEW:

e Resonance occurs when capacitive and inductive reactances are equal to each other.

For a tank circuit with no resistance (R), resonant frequency can be calculated with the
following formula:

1

e e

The total impedance of a parallel LC circuit approaches infinity as the power supply
frequency approaches resonance.
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mA — mag{vl#branch)

10,0

O
e

e fe e ®

0.0
100,0 150.0 200.0

frequency H=z=

Figure 6.13: Nutmeg produces plot of current I(v1) for parallel resonant circuit.

e A Bode plot is a graph plotting waveform amplitude or phase on one axis and frequency
on the other.

6.3 Simple series resonance

A similar effect happens in series inductive/capacitive circuits. (Figure 6.14) When a state of
resonance is reached (capacitive and inductive reactances equal), the two impedances cancel
each other out and the total impedance drops to zero!

p— 10|JF

<

% 100 mH

Figure 6.14: Simple series resonant circuit.
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At 159.155 Hz:

Z, =0+j100Q Z.=0-j100Q
ZserieszzL +ZC
Zeries = (0+j100 Q) + (0 - j100 Q)

Zies=0Q

With the total series impedance equal to 0 2 at the resonant frequency of 159.155 Hz, the
result is a short circuit across the AC power source at resonance. In the circuit drawn above,
this would not be good. I'll add a small resistor (Figure 6.15) in series along with the capacitor
and the inductor to keep the maximum circuit current somewhat limited, and perform another
SPICE analysis over the same range of frequencies: (Figure 6.16)

Figure 6.15: Series resonant circuit suitable for SPICE.

series Ic circuit
vl 1 0 ac 1 sin
rn121

cl 2 3 10u

1 3 0 100m

.ac lin 20 100 200
.plot ac i(vl)
.end

As before, circuit current amplitude increases from bottom to top, while frequency increases
from left to right. (Figure 6.16) The peak is still seen to be at the plotted frequency point of
157.9 Hz, the closest analyzed point to our predicted resonance point of 159.155 Hz. This would
suggest that our resonant frequency formula holds as true for simple series LC circuits as it
does for simple parallel LC circuits, which is the case:
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mA — mag(vl#branch)

600’0 ....................................................................

400,0

200,0

I

PR

0.0 -
100.0 150.0 200,0

frequency Hz=

Figure 6.16: Series resonant circuit plot of current I(v1).

1
e e

A word of caution is in order with series LC resonant circuits: because of the high currents
which may be present in a series LC circuit at resonance, it is possible to produce dangerously
high voltage drops across the capacitor and the inductor, as each component possesses signifi-
cant impedance. We can edit the SPICE netlist in the above example to include a plot of voltage
across the capacitor and inductor to demonstrate what happens: (Figure 6.17)

series lc circuit

vl 1 0 ac 1 sin

ri121

cl 2 3 10u

1 3 0 100m

.ac lin 20 100 200

.plot ac i(vl) v(2,3) v(3)
.end

According to SPICE, voltage across the capacitor and inductor reach a peak somewhere
around 70 volts! This is quite impressive for a power supply that only generates 1 volt. Need-
less to say, caution is in order when experimenting with circuits such as this. This SPICE
voltage is lower than the expected value due to the small (20) number of steps in the AC anal-
ysis statement (.ac lin 20 100 200). What is the expected value?

Gven: f, = 159.155 Hz, L = 100nH, R = 1
X, = 2afL = 27(159. 155) ( 100nH) =j 1009
Xe = 1/ (27t C) = 1/ (2m(159. 155) (10u4F)) = -j 100Q
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Units — um{3) wmi( 2,3}
'-." — 100*mag({vil#branch) a
100 = . .1

10

D LG

Oan iy

150.0 200,0

frequency Hz=

Figure 6.17: Plot of Ve=V(2,3) 70 V peak, V;,=v(3) 70 V peak, I=1(V1#branch) 0.532 A peak

Z=1+100 -j100 = 1 Q

l =VIZ=(1VW/(1Q =1A

Vi, =1Z = (1 A)(j100) = j100 V
Ve =1Z = (1 A(-j100) = -j100 V
Vi = IR= (1 A(1)=1V

Vtotal = VL + VC + VR
Viotas = j 100 -j100 +1 = 1 V
The expected values for capacitor and inductor voltage are 100 V. This voltage will stress

these components to that level and they must be rated accordingly. However, these voltages
are out of phase and cancel yielding a total voltage across all three components of only 1V, the
applied voltage. The ratio of the capacitor (or inductor) voltage to the applied voltage is the “Q”
factor.

Q = VL/ VR = Vcl VR

e REVIEW:

e The total impedance of a series L.C circuit approaches zero as the power supply frequency
approaches resonance.

e The same formula for determining resonant frequency in a simple tank circuit applies to
simple series circuits as well.

e Extremely high voltages can be formed across the individual components of series LC
circuits at resonance, due to high current flows and substantial individual component
impedances.
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6.4 Applications of resonance

So far, the phenomenon of resonance appears to be a useless curiosity, or at most a nuisance
to be avoided (especially if series resonance makes for a short-circuit across our AC voltage
source!). However, this is not the case. Resonance is a very valuable property of reactive AC
circuits, employed in a variety of applications.

One use for resonance is to establish a condition of stable frequency in circuits designed
to produce AC signals. Usually, a parallel (tank) circuit is used for this purpose, with the
capacitor and inductor directly connected together, exchanging energy between each other.
Just as a pendulum can be used to stabilize the frequency of a clock mechanism’s oscillations,
so can a tank circuit be used to stabilize the electrical frequency of an AC oscillator circuit. As
was noted before, the frequency set by the tank circuit is solely dependent upon the values of L
and C, and not on the magnitudes of voltage or current present in the oscillations: (Figure 6.18)

the natural frequency
of the "tank circuit"
helps to stabilize
oscillations

... to the rest of
the "oscillator" —_
circuit

Figure 6.18: Resonant circuit serves as stable frequency source.

Another use for resonance is in applications where the effects of greatly increased or de-
creased impedance at a particular frequency is desired. A resonant circuit can be used to
“block” (present high impedance toward) a frequency or range of frequencies, thus acting as
a sort of frequency “filter” to strain certain frequencies out of a mix of others. In fact, these
particular circuits are called filters, and their design constitutes a discipline of study all by
itself: (Figure 6.19)

Tank circuit presents a

@ AC source of 1 high impedance to a narrow
mixed frequencies | range of frequencies, blocking

them from getting to the load

load

Figure 6.19: Resonant circuit serves as filter.

In essence, this is how analog radio receiver tuner circuits work to filter, or select, one
station frequency out of the mix of different radio station frequency signals intercepted by the
antenna.

e REVIEW:
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e Resonance can be employed to maintain AC circuit oscillations at a constant frequency,
just as a pendulum can be used to maintain constant oscillation speed in a timekeeping
mechanism.

e Resonance can be exploited for its impedance properties: either dramatically increas-
ing or decreasing impedance for certain frequencies. Circuits designed to screen certain
frequencies out of a mix of different frequencies are called filters.

6.5 Resonance in series-parallel circuits

In simple reactive circuits with little or no resistance, the effects of radically altered impedance
will manifest at the resonance frequency predicted by the equation given earlier. In a parallel
(tank) LC circuit, this means infinite impedance at resonance. In a series LC circuit, it means
zero impedance at resonance:

1
fresonant = —21_[ Ine

However, as soon as significant levels of resistance are introduced into most LC circuits,
this simple calculation for resonance becomes invalid. We’ll take a look at several LC circuits
with added resistance, using the same values for capacitance and inductance as before: 10 uF
and 100 mH, respectively. According to our simple equation, the resonant frequency should
be 159.155 Hz. Watch, though, where current reaches maximum or minimum in the following
SPICE analyses:

Parallel LC with resistance in series with L

1
1 1
R, =100Q
Vl@ 1V 2
C,=—10pF L, 33100 mH
0 0
0 0

Figure 6.20: Parallel LC circuit with resistance in series with L.

Here, an extra resistor (Ry,q.s) (Figure 6.22)is necessary to prevent SPICE from encounter-
ing trouble in analysis. SPICE can’t handle an inductor connected directly in parallel with any
voltage source or any other inductor, so the addition of a series resistor is necessary to “break
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resonant circuit
vl 1 0 ac 1 sin

cl 10 10u

ri 1 2 100

[1 2 0 100m

.ac lin 20 100 200
.plot ac i(vl)
.end

mA — mag({vl#branch)

-

L T T

frequency H=z=

Figure 6.21: Resistance in series with L produces minimum current at 136.8 Hz instead of
calculated 159.2 Hz

M ni mum current at 136.8 Hz instead of 159.2 Hz!
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Parallel LC with resistance in series with C

1
1 1
v. @ Ny Rlzé 100 Q 3 Roogus
Ci==10pF  |,= 100 mH
0 0
0 0

Figure 6.22: Parallel LC with resistance in serieis with C.

up” the voltage source/inductor loop that would otherwise be formed. This resistor is chosen to
be a very low value for minimum impact on the circuit’s behavior.

resonant circuit
vl 10 ac 1 sin

rl1 1 2 100

cl 2 0 10u

rbogus 1 3 le-12
1 3 0 100m

.ac lin 20 100 400
.plot ac i(vl)
.end

M ni mum current at roughly 180 Hz i nstead of 159.2 Hz!

Switching our attention to series LC circuits, (Figure 6.24) we experiment with placing
significant resistances in parallel with either L or C. In the following series circuit examples,
a 1 Q resistor (R;) is placed in series with the inductor and capacitor to limit total current at
resonance. The “extra” resistance inserted to influence resonant frequency effects is the 100
resistor, Ro. The results are shown in (Figure 6.25).

And finally, a series LC circuit with the significant resistance in parallel with the capacitor.
(Figure 6.26) The shifted resonance is shown in (Figure 6.27)

The tendency for added resistance to skew the point at which impedance reaches a maxi-
mum or minimum in an LC circuit is called antiresonance. The astute observer will notice a
pattern between the four SPICE examples given above, in terms of how resistance affects the
resonant peak of a circuit:
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— magf{vl#branch)

frequency

Figure 6.23: Resistance in series with C shifts minimum current from calculated 159.2 Hz to

roughly 180 Hz.

Series LC with resistance in parallel with L

Rl
1 Y 2
1Q
C,=—= 10 pF
Vi(y1v 3 3
ngloomH R, < 100 Q
0
0 0

Figure 6.24: Series LC resonant circuit with resistance in parallel with L.
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resonant circuit
vl 10 ac 1 sin
ri121

cl 2 3 10u

1 3 0 100m

r2 3 0 100

.ac lin 20 100 400
.plot ac i(vl)
.end

Maxi mum current at roughly 178.9 Hz instead of 159.2 Hz!

mA — magivl#branch)
18.0; ----------------------- ; ----------------------- ; ----------------------- =
14’02 ..................... g .................... g ....................... g
12‘0% ..................... g ....................... g .................. g
10,0 e
8.0:.......................-.......................g.......................g
100,00 300,0 400,0
frequency Hz=

Figure 6.25: Series resonant circuit with resistance in parallel with L shifts maximum current
from 159.2 Hz to roughly 180 Hz.

resonant circuit
vl 1 0 ac 1 sin
rn121

cl 2 3 10u

r2 2 3 100

[1 3 0 100m

.ac lin 20 100 200
.plot ac i(vl)
.end

Maxi mum current at 136.8 Hz instead of 159.2 Hz!
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Series LC with resistance in parallel with C

1 " 2
VWA
10 2
C,== 10uF R, <100Q
v 1V
! 6’ 3 3
ng 100 mH
0 0

Figure 6.26: Series LC resonant circuit with rsistance in parallel with C.

mA — magi{vl#branch)

frequency Hz=

Figure 6.27: Resistance in parallel with C in series resonant circuit shifts curreent maximum
from calculated 159.2 Hz to about 136.8 Hz.
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e Parallel (“tank”) LC circuit:
e R in series with L: resonant frequency shifted down

e R in series with C: resonant frequency shifted up

Series LC circuit:

R in parallel with L: resonant frequency shifted up
e R in parallel with C: resonant frequency shifted down

Again, this illustrates the complementary nature of capacitors and inductors: how resis-
tance in series with one creates an antiresonance effect equivalent to resistance in parallel
with the other. If you look even closer to the four SPICE examples given, you'll see that the
frequencies are shifted by the same amount, and that the shape of the complementary graphs
are mirror-images of each other!

Antiresonance is an effect that resonant circuit designers must be aware of. The equations
for determining antiresonance “shift” are complex, and will not be covered in this brief lesson.
It should suffice the beginning student of electronics to understand that the effect exists, and
what its general tendencies are.

Added resistance in an LC circuit is no academic matter. While it is possible to manufacture
capacitors with negligible unwanted resistances, inductors are typically plagued with substan-
tial amounts of resistance due to the long lengths of wire used in their construction. What
is more, the resistance of wire tends to increase as frequency goes up, due to a strange phe-
nomenon known as the skin effect where AC current tends to be excluded from travel through
the very center of a wire, thereby reducing the wire’s effective cross-sectional area. Thus,
inductors not only have resistance, but changing, frequency-dependent resistance at that.

As if the resistance of an inductor’s wire weren’t enough to cause problems, we also have to
contend with the “core losses” of iron-core inductors, which manifest themselves as added re-
sistance in the circuit. Since iron is a conductor of electricity as well as a conductor of magnetic
flux, changing flux produced by alternating current through the coil will tend to induce electric
currents in the core itself (eddy currents). This effect can be thought of as though the iron
core of the transformer were a sort of secondary transformer coil powering a resistive load: the
less-than-perfect conductivity of the iron metal. This effects can be minimized with laminated
cores, good core design and high-grade materials, but never completely eliminated.

One notable exception to the rule of circuit resistance causing a resonant frequency shift
is the case of series resistor-inductor-capacitor (“RLC”) circuits. So long as all components are
connected in series with each other, the resonant frequency of the circuit will be unaffected by
the resistance. (Figure 6.28) The resulting plot is shown in (Figure 6.29).

Maximum current at 159.2 Hz once again!

Note that the peak of the current graph (Figure 6.29) has not changed from the earlier series
LC circuit (the one with the 1 € token resistance in it), even though the resistance is now 100
times greater. The only thing that has changed is the “sharpness” of the curve. Obviously, this
circuit does not resonate as strongly as one with less series resistance (it is said to be “less
selective”), but at least it has the same natural frequency!



6.5. RESONANCE IN SERIES-PARALLEL CIRCUITS

Series LC with resistance in series

Rl
1 M 2
100 Q
C1:: 10 pF
vl@ 1V .
L1§100 mH
0 0

Figure 6.28: Series LC with resistance in series.

series rlc circuit
vl 1 0 ac 1 sin

ri 1 2 100

cl 2 3 10u

1 3 0 100m

.ac lin 20 100 200
.plot ac i(vl)
.end

frequency

mA — mag(vl#branch)

143

Figure 6.29: Resistance in series resonant circuit leaves current maximum at calculated 159.2

Hz, broadening the curve.
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It is noteworthy that antiresonance has the effect of dampening the oscillations of free-
running LC circuits such as tank circuits. In the beginning of this chapter we saw how a
capacitor and inductor connected directly together would act something like a pendulum, ex-
changing voltage and current peaks just like a pendulum exchanges kinetic and potential en-
ergy. In a perfect tank circuit (no resistance), this oscillation would continue forever, just as a
frictionless pendulum would continue to swing at its resonant frequency forever. But friction-
less machines are difficult to find in the real world, and so are lossless tank circuits. Energy
lost through resistance (or inductor core losses or radiated electromagnetic waves or . . .) in a
tank circuit will cause the oscillations to decay in amplitude until they are no more. If enough
energy losses are present in a tank circuit, it will fail to resonate at all.

Antiresonance’s dampening effect is more than just a curiosity: it can be used quite ef-
fectively to eliminate unwanted oscillations in circuits containing stray inductances and/or
capacitances, as almost all circuits do. Take note of the following L/R time delay circuit: (Fig-
ure 6.30)

switch

Figure 6.30: L/R time delay circuit

The idea of this circuit is simple: to “charge” the inductor when the switch is closed. The
rate of inductor charging will be set by the ratio L/R, which is the time constant of the circuit
in seconds. However, if you were to build such a circuit, you might find unexpected oscillations
(AC) of voltage across the inductor when the switch is closed. (Figure 6.31) Why is this? There’s
no capacitor in the circuit, so how can we have resonant oscillation with just an inductor,
resistor, and battery?

All inductors contain a certain amount of stray capacitance due to turn-to-turn and turn-
to-core insulation gaps. Also, the placement of circuit conductors may create stray capacitance.
While clean circuit layout is important in eliminating much of this stray capacitance, there
will always be some that you cannot eliminate. If this causes resonant problems (unwanted
AC oscillations), added resistance may be a way to combat it. If resistor R is large enough, it
will cause a condition of antiresonance, dissipating enough energy to prohibit the inductance
and stray capacitance from sustaining oscillations for very long.

Interestingly enough, the principle of employing resistance to eliminate unwanted reso-
nance is one frequently used in the design of mechanical systems, where any moving object
with mass is a potential resonator. A very common application of this is the use of shock ab-
sorbers in automobiles. Without shock absorbers, cars would bounce wildly at their resonant
frequency after hitting any bump in the road. The shock absorber’s job is to introduce a strong
antiresonant effect by dissipating energy hydraulically (in the same way that a resistor dissi-
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ideal L/R voltage curve = ------
actual L/R voltage curve = ———

Figure 6.31: Inductor ringing due to resonance with stray capacitance.

pates energy electrically).

e REVIEW:

e Added resistance to an LC circuit can cause a condition known as antiresonance, where
the peak impedance effects happen at frequencies other than that which gives equal ca-
pacitive and inductive reactances.

e Resistance inherent in real-world inductors can contribute greatly to conditions of an-
tiresonance. One source of such resistance is the skin effect, caused by the exclusion of
AC current from the center of conductors. Another source is that of core losses in iron-core
inductors.

e In a simple series LC circuit containing resistance (an “RLC” circuit), resistance does not
produce antiresonance. Resonance still occurs when capacitive and inductive reactances
are equal.

6.6 Q and bandwidth of a resonant circuit

The @, quality factor, of a resonant circuit is a measure of the “goodness” or quality of a reso-
nant circuit. A higher value for this figure of merit correspondes to a more narrow bandwith,
which is desirable in many applications. More formally, Q is the ration of power stored to power
dissipated in the circuit reactance and resistance, respectively:

Q = Pstorcd/ Pdissipated = | 2X/ | 2R

Q=XR

wher e: X
R

Capacitive or Inductive reactance at resonance
Series resistance.

This formula is applicable to series resonant circuits, and also parallel resonant ciruits if
the resistance is in series with the inductor. This is the case in practical applications, as we
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are mostly concerned with the resistance of the inductor limiting the Q. Note: Some text may
show X and R interchanged in the “Q” formula for a parallel resonant circuit. This is correct
for a large value of R in parallel with C and L. Our formula is correct for a small R in series
with L.

A practical application of “Q” is that voltage across L or C in a series resonant circuit is Q
times total applied voltage. In a parallel resonant circuit, current through L or C is Q times
the total applied current.

6.6.1 Series resonant circuits

A series resonant circuit looks like a resistance at the resonant frequency. (Figure 6.32) Since
the definition of resonance is X; =X, the reactive components cancel, leaving only the resis-
tance to contribute to the impedance. The impedance is also at a minimum at resonance.
(Figure 6.33) Below the resonant frequency, the series resonant circuit looks capacitive since
the impedance of the capacitor increases to a value greater than the decreasing inducitve re-
actance, leaving a net capacitive value. Above resonance, the inductive rectance increases,
capacitive reactance decreases, leaving a net inductive component.

mA — magi{v3#branch)

20,0

15,0

100 frequency Hz 1073

Figure 6.32: At resonance the series resonant circuit appears purely resistive. Below resonance
it looks capacitive. Above resonance it appears inductive.

Current is maximum at resonance, impedance at a minumum. Current is set by the value
of the resistance. Above or below resonance, impedance increases.

The resonant current peak may be changed by varying the series resistor, which changes
the Q. (Figure 6.34) This also affects the broadness of the curve. A low resistance, high Q
circuit has a narrow bandwidth, as compared to a high resistance, low Q circuit. Bandwidth in
terms of Q and resonant frequency:
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Z Ohms — mag(v(l))/mag(v3#branch)

300.0 .....................................................

200.0 .....................................................

&)
=]
+

o

100 1073

frequency Hz=

Figure 6.33: Impedance is at a minumum at resonance in a series resonant circuit.

BW= f.Q
Where f. = resonant frquency
Q = quality factor

mA

100’0 ....................

e
P e

50.0 .............................................. Seeees

1150 1000

frequency Hz=

Figure 6.34: A high Q resonant circuit has a narrow bandwidth as compared to a low Q
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Bandwidth is measured between the 0.707 current amplitude points. The 0.707 current
points correspond to the half power points since P = I°R, (0.707)? = (0.5). (Figure 6.35)

mA
80.0 .................................. ‘FC ...............................
50,0 | 1002

-h
vl
Il
[
N
oY}
I
N

40‘0 P T N L IR I

M
Qun

20‘0 ....................

WA

fl
£1=291 H=

LR RN
s @

S
gl

5 Hz=

B i

fh=3
0,073 —

100 ~ F=64 000

df=355-291=64 frequency Hz

Figure 6.35: Bandwidth, Afis measured between the 70.7% amplitude points of series resonant
circuit.

BW= Af = f,-f; = f.JQ
VWere f, = high band edge, f; = |ow band edge

f,="f.- Af/2
fr,b="F%.+ Af/2
VWere f. = center frequency (resonant frequency)

In Figure 6.35, the 100% current point is 50 mA. The 70.7% level is 0707(50 mA)=35.4 mA.
The upper and lower band edges read from the curve are 291 Hz for f; and 355 Hz for f;,. The
bandwidth is 64 Hz, and the half power points are + 32 Hz of the center resonant frequency:

BW= Af = f,-f; = 355-291 = 64
f; =f. - Af/2 = 323-32 = 291
fr, =f. + Af/2 = 323+32 = 355

Since BW = £,./Q:
Q=fJBW= (323 Hz)/(64 Hz) = 5

6.6.2 Parallel resonant circuits

A parallel resonant circuit is resistive at the resonant frequency. (Figure 6.36) At resonance
X =X¢, the reactive components cancel. The impedance is maximum at resonance. (Fig-
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ure 6.37) Below the resonant frequency, the series resonant circuit looks inductive since the
impedance of the inductor is lower, drawing the larger proportion of current. Above resonance,

the capacitive rectance decreases, drawing the larger current, thus, taking on a capacitive
characteristic.

mA — magi{v3#branch)

30’0 .......................................................................

20,0

10,0

e

100 1000
frequency Hz=

Figure 6.36: A parallel resonant circuit is resistive at resonance, inductive below resonance,
capacitive above resonance.

Impedance is maximum at resonance in a parallel resonant circuit, but decreases above or
below resonance. Voltage is at a peak at resonance since voltage is proportional to impedance
(E=IZ). (Figure 6.37)

A low Q due to a high resistance in series with the inductor prodces a low peak on a broad
response curve for a parallel resonant circuit. (Figure 6.38) conversely, a high Q is due to a low
resistance in series with the inductor. This produces a higher peak in the narrower response
curve. The high Q is achieved by winding the inductor with larger diameter (smaller gague),
lower resistance wire.

The bandwidth of the parallel resonant response curve is measured between the half power
points. This corresponds to the 70.7% voltage points since power is proportional to E2. ((0.707)2=0.50)
Since voltage is proportional to impedance, we may use the impedance curve. (Figure 6.39)

In Figure 6.39, the 100% impedance point is 500 2. The 70.7% level is 0707(500)=354 ).
The upper and lower band edges read from the curve are 281 Hz for f; and 343 Hz for f;,. The
bandwidth is 62 Hz, and the half power points are + 31 Hz of the center resonant frequency:

BW= Af = f,-f; = 343-281 = 62
f; =f. - Af/2 = 312-31 = 281
frp="F.+ Af/2 = 312+31 = 343

Q= fJBW= (312 Hz)/(62 Hz) = 5
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— mag(v{(31) ) mag{v3#branch)
Z Ohms

800.0 ..................................................................

400.0 ..................................................

200‘0 ...................
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Figure 6.37: Parallel resonant circuit: Impedance peaks at resonance.

k Ohms
6.0

ummmﬁ
=

N
+
(=]

100 1000

frequency H=z

Figure 6.38: Parallel resonant response varies with Q.
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Units =— 500 . FO7*500
Z Ohms — magl(v{(31) )/ mag{v3#branch)
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Figure 6.39: Bandwidth, Af is measured between the 70.7% impedance points of a parallel
resonant circuit.

6.7 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most
recent to first. See Appendix 2 (Contributor List) for dates and contact information.

Jason Starck (June 2000): HTML document formatting, which led to a much better-
looking second edition.
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7.1 Introduction

In our study of AC circuits thus far, we’ve explored circuits powered by a single-frequency
sine voltage waveform. In many applications of electronics, though, single-frequency signals
are the exception rather than the rule. Quite often we may encounter circuits where multiple
frequencies of voltage coexist simultaneously. Also, circuit waveforms may be something other
than sine-wave shaped, in which case we call them non-sinusoidal waveforms.

Additionally, we may encounter situations where DC is mixed with AC: where a waveform is
superimposed on a steady (DC) signal. The result of such a mix is a signal varying in intensity,
but never changing polarity, or changing polarity asymmetrically (spending more time positive
than negative, for example). Since DC does not alternate as AC does, its “frequency” is said
to be zero, and any signal containing DC along with a signal of varying intensity (AC) may
be rightly called a mixed-frequency signal as well. In any of these cases where there is a mix
of frequencies in the same circuit, analysis is more complex than what we’ve seen up to this
point.

Sometimes mixed-frequency voltage and current signals are created accidentally. This may
be the result of unintended connections between circuits — called coupling — made possible by

153
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stray capacitance and/or inductance between the conductors of those circuits. A classic example
of coupling phenomenon is seen frequently in industry where DC signal wiring is placed in
close proximity to AC power wiring. The nearby presence of high AC voltages and currents may
cause “foreign” voltages to be impressed upon the length of the signal wiring. Stray capacitance
formed by the electrical insulation separating power conductors from signal conductors may
cause voltage (with respect to earth ground) from the power conductors to be impressed upon
the signal conductors, while stray inductance formed by parallel runs of wire in conduit may
cause current from the power conductors to electromagnetically induce voltage along the signal
conductors. The result is a mix of DC and AC at the signal load. The following schematic shows
how an AC “noise” source may “couple” to a DC circuit through mutual inductance (Mj;,,,) and
capacitance (Cgy,q,) along the length of the conductors. (Figure 7.1)

a11%

"Noise" =

source
— Cstray

Zwire Zwire
AVAVAVAVAV/
- v A -
OA C
"Clean" DC voltage DC voltage + AC "noise"

Figure 7.1: Stray inductance and capacitance couple stray AC into desired DC signal.

When stray AC voltages from a “noise” source mix with DC signals conducted along signal
wiring, the results are usually undesirable. For this reason, power wiring and low-level signal
wiring should always be routed through separated, dedicated metal conduit, and signals should
be conducted via 2-conductor “twisted pair” cable rather than through a single wire and ground
connection: (Figure 7.2)

The grounded cable shield — a wire braid or metal foil wrapped around the two insulated
conductors — isolates both conductors from electrostatic (capacitive) coupling by blocking any
external electric fields, while the parallal proximity of the two conductors effectively cancels
any electromagnetic (mutually inductive) coupling because any induced noise voltage will be
approximately equal in magnitude and opposite in phase along both conductors, canceling each
other at the receiving end for a net (differential) noise voltage of almost zero. Polarity marks
placed near each inductive portion of signal conductor length shows how the induced voltages
are phased in such a way as to cancel one another.

Coupling may also occur between two sets of conductors carrying AC signals, in which case
both signals may become “mixed” with each other: (Figure 7.3)
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"Noise"
source

—

V@A

Figure 7.2: Shielded twisted pair minimized noise.

ZWi re Zwi re ZWi re

Signal B

Figure 7.3: Coupling of AC signals between parallel conductors.
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Coupling is but one example of how signals of different frequencies may become mixed.
Whether it be AC mixed with DC, or two AC signals mixing with each other, signal coupling via
stray inductance and capacitance is usually accidental and undesired. In other cases, mixed-
frequency signals are the result of intentional design or they may be an intrinsic quality of a
signal. It is generally quite easy to create mixed-frequency signal sources. Perhaps the easiest
way is to simply connect voltage sources in series: (Figure 7.4)

\ 60 Hz \
AC + DC mixed-frequency
T

voltage AC voltage

/ 90 Hz /

Figure 7.4: Series connection of voltage sources mixes signals.

Some computer communications networks operate on the principle of superimposing high-
frequency voltage signals along 60 Hz power-line conductors, so as to convey computer data
along existing lengths of power cabling. This technique has been used for years in electric
power distribution networks to communicate load data along high-voltage power lines. Cer-
tainly these are examples of mixed-frequency AC voltages, under conditions that are deliber-
ately established.

In some cases, mixed-frequency signals may be produced by a single voltage source. Such is
the case with microphones, which convert audio-frequency air pressure waves into correspond-
ing voltage waveforms. The particular mix of frequencies in the voltage signal output by the
microphone is dependent on the sound being reproduced. If the sound waves consist of a single,
pure note or tone, the voltage waveform will likewise be a sine wave at a single frequency. If
the sound wave is a chord or other harmony of several notes, the resulting voltage waveform
produced by the microphone will consist of those frequencies mixed together. Very few natural
sounds consist of single, pure sine wave vibrations but rather are a mix of different frequency
vibrations at different amplitudes.

Musical chords are produced by blending one frequency with other frequencies of particular
fractional multiples of the first. However, investigating a little further, we find that even a
single piano note (produced by a plucked string) consists of one predominant frequency mixed
with several other frequencies, each frequency a whole-number multiple of the first (called
harmonics, while the first frequency is called the fundamental). An illustration of these terms
is shown in Table 7.1 with a fundamental frequency of 1000 Hz (an arbitrary figure chosen for
this example).

Sometimes the term “overtone” is used to describe the a harmonic frequency produced by
a musical instrument. The “first” overtone is the first harmonic frequency greater than the
fundamental. If we had an instrument producing the entire range of harmonic frequencies
shown in the table above, the first overtone would be 2000 Hz (the 2nd harmonic), while the
second overtone would be 3000 Hz (the 3rd harmonic), etc. However, this application of the
term “overtone” is specific to particular instruments.
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Table 7.1: For a “base” frequency of 1000 Hz:

Frequency (Hz) | Term

1000 1st harmonic, or fundamental
2000 2nd harmonic

3000 3rd harmonic

4000 4th harmonic

5000 5th harmonic

6000 6th harmonic

7000 7th harmonic

It so happens that certain instruments are incapable of producing certain types of harmonic
frequencies. For example, an instrument made from a tube that is open on one end and closed
on the other (such as a bottle, which produces sound when air is blown across the opening)
is incapable of producing even-numbered harmonics. Such an instrument set up to produce a
fundamental frequency of 1000 Hz would also produce frequencies of 3000 Hz, 5000 Hz, 7000
Hz, etc, but would not produce 2000 Hz, 4000 Hz, 6000 Hz, or any other even-multiple fre-
quencies of the fundamental. As such, we would say that the first overtone (the first frequency
greater than the fundamental) in such an instrument would be 3000 Hz (the 3rd harmonic),
while the second overtone would be 5000 Hz (the 5th harmonic), and so on.

A pure sine wave (single frequency), being entirely devoid of any harmonics, sounds very
“flat” and “featureless” to the human ear. Most musical instruments are incapable of producing
sounds this simple. What gives each instrument its distinctive tone is the same phenomenon
that gives each person a distinctive voice: the unique blending of harmonic waveforms with
each fundamental note, described by the physics of motion for each unique object producing
the sound.

Brass instruments do not possess the same “harmonic content” as woodwind instruments,
and neither produce the same harmonic content as stringed instruments. A distinctive blend
of frequencies is what gives a musical instrument its characteristic tone. As anyone who has
played guitar can tell you, steel strings have a different sound than nylon strings. Also, the
tone produced by a guitar string changes depending on where along its length it is plucked.
These differences in tone, as well, are a result of different harmonic content produced by dif-
ferences in the mechanical vibrations of an instrument’s parts. All these instruments produce
harmonic frequencies (whole-number multiples of the fundamental frequency) when a single
note is played, but the relative amplitudes of those harmonic frequencies are different for dif-
ferent instruments. In musical terms, the measure of a tone’s harmonic content is called timbre
or color.

Musical tones become even more complex when the resonating element of an instrument
is a two-dimensional surface rather than a one-dimensional string. Instruments based on the
vibration of a string (guitar, piano, banjo, lute, dulcimer, etc.) or of a column of air in a tube
(trumpet, flute, clarinet, tuba, pipe organ, etc.) tend to produce sounds composed of a single
frequency (the “fundamental”) and a mix of harmonics. Instruments based on the vibration
of a flat plate (steel drums, and some types of bells), however, produce a much broader range
of frequencies, not limited to whole-number multiples of the fundamental. The result is a
distinctive tone that some people find acoustically offensive.
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As you can see, music provides a rich field of study for mixed frequencies and their effects.
Later sections of this chapter will refer to musical instruments as sources of waveforms for
analysis in more detail.

e REVIEW:
e A sinusoidal waveform is one shaped exactly like a sine wave.

e A non-sinusoidal waveform can be anything from a distorted sine-wave shape to some-
thing completely different like a square wave.

e Mixed-frequency waveforms can be accidently created, purposely created, or simply exist
out of necessity. Most musical tones, for instance, are not composed of a single frequency
sine-wave, but are rich blends of different frequencies.

e When multiple sine waveforms are mixed together (as is often the case in music), the
lowest frequency sine-wave is called the fundamental, and the other sine-waves whose
frequencies are whole-number multiples of the fundamental wave are called harmonics.

e An overtone is a harmonic produced by a particular device. The “first” overtone is the first
frequency greater than the fundamental, while the “second” overtone is the next greater
frequency produced. Successive overtones may or may not correspond to incremental
harmonics, depending on the device producing the mixed frequencies. Some devices and
systems do not permit the establishment of certain harmonics, and so their overtones
would only include some (not all) harmonic frequencies.

7.2 Square wave signals

It has been found that any repeating, non-sinusoidal waveform can be equated to a combination
of DC voltage, sine waves, and/or cosine waves (sine waves with a 90 degree phase shift) at
various amplitudes and frequencies. This is true no matter how strange or convoluted the
waveform in question may be. So long as it repeats itself regularly over time, it is reducible
to this series of sinusoidal waves. In particular, it has been found that square waves are
mathematically equivalent to the sum of a sine wave at that same frequency, plus an infinite
series of odd-multiple frequency sine waves at diminishing amplitude:
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1V (peak) repeating square wave at 50 Hz is equivalent to:

<%> (1V peak sine wave at 50 Hz)

+ <%> (/3 V peak sine wave at 150 Hz)
+ <%> (1/5V peak sine wave at 250 Hz)
'
'

+ ...adinfinitum. ..

N

> (/7 V peak sine wave at 350 Hz)

=

N

=

> (/9 V peak sine wave at 450 Hz)

This truth about waveforms at first may seem too strange to believe. However, if a square
wave is actually an infinite series of sine wave harmonics added together, it stands to reason
that we should be able to prove this by adding together several sine wave harmonics to pro-
duce a close approximation of a square wave. This reasoning is not only sound, but easily
demonstrated with SPICE.

The circuit we’ll be simulating is nothing more than several sine wave AC voltage sources
of the proper amplitudes and frequencies connected together in series. We'll use SPICE to plot
the voltage waveforms across successive additions of voltage sources, like this: (Figure 7.5)

V,=1.27V

i [ plot voltage waveform |

V?’fggﬁTv [ plot voltage waveform |

V5=255mV @ [ plot voltage waveform |

250Hz

Vgégﬁgw [ plot voltage waveform |

Vg=141mv

A50HzZ | plot voltage waveform |

Figure 7.5: A square wave is approximated by the sum of harmonics.

In this particular SPICE simulation, I've summed the 1st, 3rd, 5th, 7th, and 9th harmonic
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voltage sources in series for a total of five AC voltage sources. The fundamental frequency is
50 Hz and each harmonic is, of course, an integer multiple of that frequency. The amplitude
(voltage) figures are not random numbers; rather, they have been arrived at through the equa-
tions shown in the frequency series (the fraction 4/r multiplied by 1, 1/3, 1/5, 1/7, etc. for each
of the increasing odd harmonics).

bui I di ng a squar ewave

vl 1 0 sin (0 1.27324 50 0 0) 1st harrmonic (50 Hz)
v3 2 1 sin (0 424.413m 150 0 0) 3rd harnonic

v5 3 2 sin (0 254.648m 250 0 0) 5t h harnonic

v7 4 3 sin (0 181.891m 350 0 0) 7th harnmonic

v9 5 4 sin (0 141.471m 450 0 0) 9t h harnonic

rl 5 0 10k

.tran 1m 20m

.plot tran v(1,0) Pl ot 1st harnonic

.plot tran v(2,0) Pl ot 1st + 3rd harnonics

.plot tran v(3,0) Plot 1st + 3rd + 5th harnonics
.plot tran v(4,0) Plot 1st + 3rd + 5th + 7th harnonics
.plot tran v(5,0) Pl ot 1st + + 9t h harnonics
.end

I'll narrate the analysis step by step from here, explaining what it is we’re looking at. In
this first plot, we see the fundamental-frequency sine-wave of 50 Hz by itself. It is nothing but
a pure sine shape, with no additional harmonic content. This is the kind of waveform produced
by an ideal AC power source: (Figure 7.6)

Figure 7.6: Pure 50 Hz sinewave.

Next, we see what happens when this clean and simple waveform is combined with the
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third harmonic (three times 50 Hz, or 150 Hz). Suddenly, it doesn’t look like a clean sine wave

any more: (Figure 7.7)

Figure 7.7: Sum of 1st (50 Hz) and 3rd (150 Hz) harmonics approximates a 50 Hz square wave.

The rise and fall times between positive and negative cycles are much steeper now, and the
crests of the wave are closer to becoming flat like a squarewave. Watch what happens as we

add the next odd harmonic frequency: (Figure 7.8)

Figure 7.8: Sum of 1st, 3rd and 5th harmonics approximates square wave.
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The most noticeable change here is how the crests of the wave have flattened even more.
There are more several dips and crests at each end of the wave, but those dips and crests are
smaller in amplitude than they were before. Watch again as we add the next odd harmonic
waveform to the mix: (Figure 7.9)

W w(2,1> wCd>
— w{4,3> w(3Z,2>
=+ TP, Tk S R

Figure 7.9: Sum of 1st, 3rd, 5th, and 7th harmonics approximates square wave.

Here we can see the wave becoming flatter at each peak. Finally, adding the 9th harmonic,
the fifth sine wave voltage source in our circuit, we obtain this result: (Figure 7.10)

The end result of adding the first five odd harmonic waveforms together (all at the proper
amplitudes, of course) is a close approximation of a square wave. The point in doing this is to
illustrate how we can build a square wave up from multiple sine waves at different frequencies,
to prove that a pure square wave is actually equivalent to a series of sine waves. When a square
wave AC voltage is applied to a circuit with reactive components (capacitors and inductors),
those components react as if they were being exposed to several sine wave voltages of different
frequencies, which in fact they are.

The fact that repeating, non-sinusoidal waves are equivalent to a definite series of additive
DC voltage, sine waves, and/or cosine waves is a consequence of how waves work: a fundamen-
tal property of all wave-related phenomena, electrical or otherwise. The mathematical process
of reducing a non-sinusoidal wave into these constituent frequencies is called Fourier analysis,
the details of which are well beyond the scope of this text. However, computer algorithms have
been created to perform this analysis at high speeds on real waveforms, and its application in
AC power quality and signal analysis is widespread.

SPICE has the ability to sample a waveform and reduce it into its constituent sine wave
harmonics by way of a Fourier Transform algorithm, outputting the frequency analysis as a
table of numbers. Let’s try this on a square wave, which we already know is composed of
odd-harmonic sine waves:

The pulse option in the netlist line describing voltage source v1 instructs SPICE to simulate



7.2. SQUARE WAVE SIGNALS 163

W wC2,1> — WD
wid, 3> — (32>
2.0 TL.MSB2 T .= P

Figure 7.10: Sum of 1st, 3rd, 5th, 7th and 9th harmonics approximates square wave.

squar ewave anal ysis netli st

vli 10 pulse (-110.1m.1m 10m 20m
rl 1 0 10k

.tran 1m 40m

.plot tran v(1,0)

.four 50 v(1,0)

.end
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a square-shaped “pulse” waveform, in this case one that is symmetrical (equal time for each
half-cycle) and has a peak amplitude of 1 volt. First we’ll plot the square wave to be analyzed:
(Figure 7.11)

QL0 10,0 20,0 30,0 40,0
time mS

Figure 7.11: Squarewave for SPICE Fourier analysis

Next, we'll print the Fourier analysis generated by SPICE for this square wave:

fourier conponents of transient response v(1)

dc conponent = -2.439E-02

har moni ¢ frequency fourier normal i zed phase normal i zed

no (hz) component component (deg) phase (deg)
1 5. 000E+01 1. 274E+00 1. 000000 -2.195 0. 000
2 1. 000E+02  4.892E-02 0. 038415 -94.390 -92.195
3 1. 500E+02 4. 253E-01 0. 333987 -6.585 -4.390
4 2. 000E+02 4. 936E-02 0. 038757 -98.780 -96. 585
5 2. 500E+02 2.562E-01 0.201179 -10.976 -8.780
6 3. 000E+02 5. 010E- 02 0. 039337 -103.171 -100. 976
7 3. 500E+02 1.841E-01 0.144549  -15. 366 -13.171
8 4. 000E+02 5.116E-02 0. 040175 -107.561 -105. 366
9 4. 500E+02 1.443E-01 0.113316  -19.756 -17.561
total harnonic distortion = 43. 805747 percent

Here, (Figure 7.12) SPICE has broken the waveform down into a spectrum of sinusoidal
frequencies up to the ninth harmonic, plus a small DC voltage labelled DC conponent. I
had to inform SPICE of the fundamental frequency (for a square wave with a 20 millisecond
period, this frequency is 50 Hz), so it knew how to classify the harmonics. Note how small the
figures are for all the even harmonics (2nd, 4th, 6th, 8th), and how the amplitudes of the odd
harmonics diminish (1st is largest, 9th is smallest).
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Figure 7.12: Plot of Fourier analysis esults.

This same technique of “Fourier Transformation” is often used in computerized power in-
strumentation, sampling the AC waveform(s) and determining the harmonic content thereof.
A common computer algorithm (sequence of program steps to perform a task) for this is the
Fast Fourier Transform or FFT function. You need not be concerned with exactly how these
computer routines work, but be aware of their existence and application.

This same mathematical technique used in SPICE to analyze the harmonic content of waves
can be applied to the technical analysis of music: breaking up any particular sound into its con-
stituent sine-wave frequencies. In fact, you may have already seen a device designed to do just
that without realizing what it was! A graphic equalizer is a piece of high-fidelity stereo equip-
ment that controls (and sometimes displays) the nature of music’s harmonic content. Equipped
with several knobs or slide levers, the equalizer is able to selectively attenuate (reduce) the
amplitude of certain frequencies present in music, to “customize” the sound for the listener’s
benefit. Typically, there will be a “bar graph” display next to each control lever, displaying the
amplitude of each particular frequency. (Figure 7.13)

Graphic Equalizer
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Figure 7.13: Hi-Fi audio graphic equalizer.
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A device built strictly to display — not control — the amplitudes of each frequency range for
a mixed-frequency signal is typically called a spectrum analyzer. The design of spectrum ana-
lyzers may be as simple as a set of “filter” circuits (see the next chapter for details) designed to
separate the different frequencies from each other, or as complex as a special-purpose digital
computer running an FFT algorithm to mathematically split the signal into its harmonic com-
ponents. Spectrum analyzers are often designed to analyze extremely high-frequency signals,
such as those produced by radio transmitters and computer network hardware. In that form,
they often have an appearance like that of an oscilloscope: (Figure 7.14)

Spectrum Analyzer

T

amplitude /\/\/\

frequency —

©

Figure 7.14: Spectrum analyzer shows amplitude as a function of frequency.

Like an oscilloscope, the spectrum analyzer uses a CRT (or a computer display mimicking a
CRT) to display a plot of the signal. Unlike an oscilloscope, this plot is amplitude over frequency
rather than amplitude over time. In essence, a frequency analyzer gives the operator a Bode
plot of the signal: something an engineer might call a frequency-domain rather than a time-
domain analysis.

The term “domain” is mathematical: a sophisticated word to describe the horizontal axis of
a graph. Thus, an oscilloscope’s plot of amplitude (vertical) over time (horizontal) is a “time-
domain” analysis, whereas a spectrum analyzer’s plot of amplitude (vertical) over frequency
(horizontal) is a “frequency-domain” analysis. When we use SPICE to plot signal amplitude
(either voltage or current amplitude) over a range of frequencies, we are performing frequency-
domain analysis.

Please take note of how the Fourier analysis from the last SPICE simulation isn’t “perfect.”
Ideally, the amplitudes of all the even harmonics should be absolutely zero, and so should the
DC component. Again, this is not so much a quirk of SPICE as it is a property of waveforms
in general. A waveform of infinite duration (infinite number of cycles) can be analyzed with
absolute precision, but the less cycles available to the computer for analysis, the less precise
the analysis. It is only when we have an equation describing a waveform in its entirety that
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Fourier analysis can reduce it to a definite series of sinusoidal waveforms. The fewer times
that a wave cycles, the less certain its frequency is. Taking this concept to its logical extreme,
a short pulse — a waveform that doesn’t even complete a cycle — actually has no frequency, but
rather acts as an infinite range of frequencies. This principle is common to all wave-based
phenomena, not just AC voltages and currents.

Suffice it to say that the number of cycles and the certainty of a waveform’s frequency com-
ponent(s) are directly related. We could improve the precision of our analysis here by letting
the wave oscillate on and on for many cycles, and the result would be a spectrum analysis more
consistent with the ideal. In the following analysis, I've omitted the waveform plot for brevity’s
sake — its just a really long square wave:

squar ewave
vli 10 pulse (-110 .1m.1m 10m 20m
rl 1 0 10k

.option |inpts=1001

.tran Im1

.plot tran v(1,0)

.four 50 v(1,0)

.end

fourier conponents of transient response v(1)

dc conmponent = 9. 999E- 03

harmoni ¢ frequency fourier normal i zed phase normal i zed

no (hz) conponent conponent (deg) phase (deg)
1 5. 000E+01 1. 273E+00 1. 000000 -1.800 0. 000
2 1. 000E+02 1. 999E- 02 0. 015704 86. 382 88. 182
3 1. 500E+02 4. 238E-01 0. 332897 -5.400 - 3. 600
4 2. 000E+02 1. 997E- 02 0. 015688 82.764 84.564
5 2. 500E+02 2. 536E-01 0. 199215 -9. 000 -7.200
6 3. 000E+02 1. 994E- 02 0. 015663 79. 146 80. 946
7 3. 500E+02 1. 804E-01 0. 141737 -12. 600 -10. 800
8 4. 000E+02 1. 989E- 02 0. 015627 75. 529 77.329
9 4. 500E+02 1. 396E- 01 0. 109662 -16.199 -14.399

Notice how this analysis (Figure 7.15) shows less of a DC component voltage and lower
amplitudes for each of the even harmonic frequency sine waves, all because we let the computer
sample more cycles of the wave. Again, the imprecision of the first analysis is not so much a
flaw in SPICE as it is a fundamental property of waves and of signal analysis.

e REVIEW:

e Square waves are equivalent to a sine wave at the same (fundamental) frequency added
to an infinite series of odd-multiple sine-wave harmonics at decreasing amplitudes.

e Computer algorithms exist which are able to sample waveshapes and determine their
constituent sinusoidal components. The Fourier Transform algorithm (particularly the
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Figure 7.15: Improved fourier analysis.

Fast Fourier Transform, or FFT) is commonly used in computer circuit simulation pro-
grams such as SPICE and in electronic metering equipment for determining power qual-
ity.

7.3 Other waveshapes

As strange as it may seem, any repeating, non-sinusoidal waveform is actually equivalent to a
series of sinusoidal waveforms of different amplitudes and frequencies added together. Square
waves are a very common and well-understood case, but not the only one.

Electronic power control devices such as transistors and silicon-controlled rectifiers (SCRs)
often produce voltage and current waveforms that are essentially chopped-up versions of the
otherwise “clean” (pure) sine-wave AC from the power supply. These devices have the ability
to suddenly change their resistance with the application of a control signal voltage or cur-
rent, thus “turning on” or “turning off” almost instantaneously, producing current waveforms
bearing little resemblance to the source voltage waveform powering the circuit. These current
waveforms then produce changes in the voltage waveform to other circuit components, due to
voltage drops created by the non-sinusoidal current through circuit impedances.

Circuit components that distort the normal sine-wave shape of AC voltage or current are
called nonlinear. Nonlinear components such as SCRs find popular use in power electronics
due to their ability to regulate large amounts of electrical power without dissipating much
heat. While this is an advantage from the perspective of energy efficiency, the waveshape
distortions they introduce can cause problems.

These non-sinusoidal waveforms, regardless of their actual shape, are equivalent to a series
of sinusoidal waveforms of higher (harmonic) frequencies. If not taken into consideration by
the circuit designer, these harmonic waveforms created by electronic switching components
may cause erratic circuit behavior. It is becoming increasingly common in the electric power
industry to observe overheating of transformers and motors due to distortions in the sine-
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wave shape of the AC power line voltage stemming from “switching” loads such as computers
and high-efficiency lights. This is no theoretical exercise: it is very real and potentially very
troublesome.

In this section, I will investigate a few of the more common waveshapes and show their
harmonic components by way of Fourier analysis using SPICE.

One very common way harmonics are generated in an AC power system is when AC is
converted, or “rectified” into DC. This is generally done with components called diodes, which
only allow the passage of current in one direction. The simplest type of AC/DC rectification is
half-wave, where a single diode blocks half of the AC current (over time) from passing through
the load. (Figure 7.16) Oddly enough, the conventional diode schematic symbol is drawn such
that electrons flow against the direction of the symbol’s arrowhead:

diode
1 | 2
- <— <t e S +
@ % load
0 — — > —» —» 0

The diode only allows electron
flpw ina counter-clockwise
direction.

Figure 7.16: Half-wave rectifier.

hal fwave rectifier

vl 1 0 sin(0 15 60 0 0)
rload 2 0 10k

dl 1 2 nodl

. nodel nodl d

.tran .5m 17m

.plot tran v(1,0) v(2,0)
.four 60 v(1,0) v(2,0)
.end

hal fwave rectifier

First, we’ll see how SPICE analyzes the source waveform, a pure sine wave voltage: (Fig-
ure 7.18)

Notice the extremely small harmonic and DC components of this sinusoidal waveform in
the table above, though, too small to show on the harmonic plot above. Ideally, there would be
nothing but the fundamental frequency showing (being a perfect sine wave), but our Fourier
analysis figures aren’t perfect because SPICE doesn’t have the luxury of sampling a wave-
form of infinite duration. Next, we’ll compare this with the Fourier analysis of the half-wave
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v = wi(1)+0,4— (2]

Figure 7.17: Half-wave rectifier waveforms. V(1)+0.4 shifts the sinewave input V(1) up for
clarity. This is not part of the simulation.

fourier conmponents of transient response v(1)

dc conponent = 8. 016E- 04

har noni ¢ frequency fourier normal i zed phase normal i zed

no (hz) conponent conponent (deg) phase (deg)
1 6. 000E+01 1. 482E+01 1. 000000 -0. 005 0. 000
2 1. 200E+02 2. 492E-03 0. 000168 -104. 347 -104. 342
3 1. 800E+02 6. 465E-04 0. 000044  -86.663 - 86. 658
4 2. 400E+02 1. 132E- 03 0. 000076 -61.324 -61. 319
5 3. 000E+02 1. 185E- 03 0. 000080 -70.091 -70. 086
6 3. 600E+02 1. 092E- 03 0. 000074  -63.607 -63. 602
7 4, 200E+02 1. 220E- 03 0. 000082 -56.288 -56. 283
8 4, 800E+02 1. 354E- 03 0. 000091 -54.669 -54. 664
9 5. 400E+02 1. 467E- 03 0. 000099 -52.660 -52. 655
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Figure 7.18: Fourier analysis of the sine wave input.

“rectified” voltage across the load resistor: (Figure 7.19)

fourier conponents of transient response v(2)

dc conponent = 4. 456E+00

harmoni ¢ frequency  fourier normel i zed phase normel i zed
no (hz) conponent conponent (deg) phase (deg)
1 6. 000E+01 7. 000E+00 1. 000000 -0.195 0. 000
2 1. 200E+02 3. 016E+00 0.430849 -89.765 -89. 570
3 1. 800E+02 1. 206E-01 0.017223 -168.005 -167. 810
4 2. 400E+02  5.149E-01 0.073556  -87.295 -87.100
5 3. 000E+02 6. 382E-02 0. 009117 -152.790 -152.595
6 3. 600E+02 1. 727E-01 0. 024676  -79.362 -79.167
7 4.200E+02 4. 492E-02 0. 006417 -132.420 -132. 224
8 4. 800E+02 7. 493E-02 0. 010703 -61.479 -61. 284
9 5. 400E+02 4. 051E-02 0. 005787 -115.085 -114. 889

Notice the relatively large even-multiple harmonics in this analysis. By cutting out half of
our AC wave, we’ve introduced the equivalent of several higher-frequency sinusoidal (actually,
cosine) waveforms into our circuit from the original, pure sine-wave. Also take note of the
large DC component: 4.456 volts. Because our AC voltage waveform has been “rectified” (only
allowed to push in one direction across the load rather than back-and-forth), it behaves a lot
more like DC.

Another method of AC/DC conversion is called full-wave (Figure 7.20), which as you may
have guessed utilizes the full cycle of AC power from the source, reversing the polarity of
half the AC cycle to get electrons to flow through the load the same direction all the time.
I won’t bore you with details of exactly how this is done, but we can examine the waveform
(Figure 7.21) and its harmonic analysis through SPICE: (Figure 7.22)

What a difference! According to SPICE’s Fourier transform, we have a 2nd harmonic com-
ponent to this waveform that’s over 85 times the amplitude of the original AC source frequency!
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Figure 7.19: Fourier analysis half-wave output.

Figure 7.20: Full-wave rectifier circuit.

ful lwave bridge rectifier
vl 1 0 sin(0 15 60 0 0)
rioad 2 3 10k

dl 1 2 nodl

d2 0 2 nodl

d3 3 1 nodl

d4 3 0 nodl

. model nodl d

.tran .5m 17m

.plot tran v(1,0) v(2,3)
.four 60 v(2,3)

.end
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Figure 7.21: Waveforms for full-wave rectifier
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Figure 7.22: Fourier analysis of full-wave rectifier output.

The DC component of this wave shows up as being 8.273 volts (almost twice what is was for the
half-wave rectifier circuit) while the second harmonic is almost 6 volts in amplitude. Notice
all the other harmonics further on down the table. The odd harmonics are actually stronger at
some of the higher frequencies than they are at the lower frequencies, which is interesting.
As you can see, what may begin as a neat, simple AC sine-wave may end up as a complex
mess of harmonics after passing through just a few electronic components. While the complex
mathematics behind all this Fourier transformation is not necessary for the beginning student
of electric circuits to understand, it is of the utmost importance to realize the principles at work
and to grasp the practical effects that harmonic signals may have on circuits. The practical
effects of harmonic frequencies in circuits will be explored in the last section of this chapter,
but before we do that we’ll take a closer look at waveforms and their respective harmonics.

e REVIEW:

e Any waveform at all, so long as it is repetitive, can be reduced to a series of sinusoidal
waveforms added together. Different waveshapes consist of different blends of sine-wave
harmonics.

e Rectification of AC to DC is a very common source of harmonics within industrial power
systems.

7.4 More on spectrum analysis

Computerized Fourier analysis, particularly in the form of the FFT algorithm, is a powerful
tool for furthering our understanding of waveforms and their related spectral components. This
same mathematical routine programmed into the SPICE simulator as the . f ouri er option is
also programmed into a variety of electronic test instruments to perform real-time Fourier
analysis on measured signals. This section is devoted to the use of such tools and the analysis
of several different waveforms.
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First we have a simple sine wave at a frequency of 523.25 Hz. This particular frequency
value is a “C” pitch on a piano keyboard, one octave above “middle C”. Actually, the signal
measured for this demonstration was created by an electronic keyboard set to produce the tone
of a panflute, the closest instrument “voice” I could find resembling a perfect sine wave. The
plot below was taken from an oscilloscope display, showing signal amplitude (voltage) over
time: (Figure 7.23)

Figure 7.23: Oscilloscope display: voltage vs time.

Viewed with an oscilloscope, a sine wave looks like a wavy curve traced horizontally on the
screen. The horizontal axis of this oscilloscope display is marked with the word “Time” and an
arrow pointing in the direction of time’s progression. The curve itself, of course, represents the
cyclic increase and decrease of voltage over time.

Close observation reveals imperfections in the sine-wave shape. This, unfortunately, is a
result of the specific equipment used to analyze the waveform. Characteristics like these due
to quirks of the test equipment are technically known as artifacts: phenomena existing solely
because of a peculiarity in the equipment used to perform the experiment.

If we view this same AC voltage on a spectrum analyzer, the result is quite different: (Fig-
ure 7.24)

As you can see, the horizontal axis of the display is marked with the word “Frequency,”
denoting the domain of this measurement. The single peak on the curve represents the pre-
dominance of a single frequency within the range of frequencies covered by the width of the
display. If the scale of this analyzer instrument were marked with numbers, you would see
that this peak occurs at 523.25 Hz. The height of the peak represents the signal amplitude
(voltage).

If we mix three different sine-wave tones together on the electronic keyboard (C-E-G, a C-
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Figure 7.24: Spectrum analyzer display: voltage vs frequency.

major chord) and measure the result, both the oscilloscope display and the spectrum analyzer
display reflect this increased complexity: (Figure 7.25)

The oscilloscope display (time-domain) shows a waveform with many more peaks and val-
leys than before, a direct result of the mixing of these three frequencies. As you will notice,
some of these peaks are higher than the peaks of the original single-pitch waveform, while
others are lower. This is a result of the three different waveforms alternately reinforcing and
canceling each other as their respective phase shifts change in time.

The spectrum display (frequency-domain) is much easier to interpret: each pitch is rep-
resented by its own peak on the curve. (Figure 7.26) The difference in height between these
three peaks is another artifact of the test equipment: a consequence of limitations within the
equipment used to generate and analyze these waveforms, and not a necessary characteristic
of the musical chord itself.

As was stated before, the device used to generate these waveforms is an electronic keyboard:
a musical instrument designed to mimic the tones of many different instruments. The panflute
“voice” was chosen for the first demonstrations because it most closely resembled a pure sine
wave (a single frequency on the spectrum analyzer display). Other musical instrument “voices”
are not as simple as this one, though. In fact, the unique tone produced by any instrument is a
function of its waveshape (or spectrum of frequencies). For example, let’s view the signal for a
trumpet tone: (Figure 7.27)

The fundamental frequency of this tone is the same as in the first panflute example: 523.25
Hz, one octave above “middle C.” The waveform itself is far from a pure and simple sine-
wave form. Knowing that any repeating, non-sinusoidal waveform is equivalent to a series of
sinusoidal waveforms at different amplitudes and frequencies, we should expect to see multiple
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Frequency —»

Figure 7.26: Spectrum analyzer display: three tones.
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Figure 7.27: Oscilloscope display: waveshape of a trumpet tone.

peaks on the spectrum analyzer display: (Figure 7.28)

indl
-

Fundamental |

Frequency —-

Figure 7.28: Spectrum of a trumpet tone.
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Indeed we do! The fundamental frequency component of 523.25 Hz is represented by the
left-most peak, with each successive harmonic represented as its own peak along the width of
the analyzer screen. The second harmonic is twice the frequency of the fundamental (1046.5
Hz), the third harmonic three times the fundamental (1569.75 Hz), and so on. This display
only shows the first six harmonics, but there are many more comprising this complex tone.

Trying a different instrument voice (the accordion) on the keyboard, we obtain a simi-
larly complex oscilloscope (time-domain) plot (Figure 7.29) and spectrum analyzer (frequency-
domain) display: (Figure 7.30)

Figure 7.29: Oscilloscope display: waveshape of accordion tone.

Note the differences in relative harmonic amplitudes (peak heights) on the spectrum dis-
plays for trumpet and accordion. Both instrument tones contain harmonics all the way from
1st (fundamental) to 6th (and beyond!), but the proportions aren’t the same. Each instrument
has a unique harmonic “signature” to its tone. Bear in mind that all this complexity is in ref-
erence to a single note played with these two instrument “voices.” Multiple notes played on an
accordion, for example, would create a much more complex mixture of frequencies than what
is seen here.

The analytical power of the oscilloscope and spectrum analyzer permit us to derive gen-
eral rules about waveforms and their harmonic spectra from real waveform examples. We
already know that any deviation from a pure sine-wave results in the equivalent of a mixture
of multiple sine-wave waveforms at different amplitudes and frequencies. However, close ob-
servation allows us to be more specific than this. Note, for example, the time- (Figure 7.31) and
frequency-domain (Figure 7.32) plots for a waveform approximating a square wave:

According to the spectrum analysis, this waveform contains no even harmonics, only odd.
Although this display doesn’t show frequencies past the sixth harmonic, the pattern of odd-only
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Fundamental — 2™

Frequancy —

Figure 7.30: Spectrum of accordion tone.

Figure 7.31: Oscilloscope time-domain display of a square wave
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Frequency —»

Figure 7.32: Spectrum (frequency-domain) of a square wave.

harmonics in descending amplitude continues indefinitely. This should come as no surprise, as
we've already seen with SPICE that a square wave is comprised of an infinitude of odd har-
monics. The trumpet and accordion tones, however, contained both even and odd harmonics.
This difference in harmonic content is noteworthy. Let’s continue our investigation with an
analysis of a triangle wave: (Figure 7.33)

In this waveform there are practically no even harmonics: (Figure 7.34) the only significant
frequency peaks on the spectrum analyzer display belong to odd-numbered multiples of the
fundamental frequency. Tiny peaks can be seen for the second, fourth, and sixth harmonics,
but this is due to imperfections in this particular triangle waveshape (once again, artifacts
of the test equipment used in this analysis). A perfect triangle waveshape produces no even
harmonics, just like a perfect square wave. It should be obvious from inspection that the
harmonic spectrum of the triangle wave is not identical to the spectrum of the square wave:
the respective harmonic peaks are of different heights. However, the two different waveforms
are common in their lack of even harmonics.

Let’s examine another waveform, this one very similar to the triangle wave, except that
its rise-time is not the same as its fall-time. Known as a sawtooth wave, its oscilloscope plot
reveals it to be aptly named: (Figure 7.35)

When the spectrum analysis of this waveform is plotted, we see a result that is quite dif-
ferent from that of the regular triangle wave, for this analysis shows the strong presence of
even-numbered harmonics (second and fourth): (Figure 7.36)

The distinction between a waveform having even harmonics versus no even harmonics re-
sides in the difference between a triangle waveshape and a sawtooth waveshape. That differ-
ence is symmetry above and below the horizontal centerline of the wave. A waveform that is
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Figure 7.33: Oscilloscope time-domain display of a triangle wave.

Fundamental

Freguency —=

Figure 7.34: Spectrum of a triangle wave.
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Time —=

Figure 7.35: Time-domain display of a sawtooth wave.

| Fundamental

Frequency

Figure 7.36: Frequency-domain display of a sawtooth wave.
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symmetrical above and below its centerline (the shape on both sides mirror each other pre-
cisely) will contain no even-numbered harmonics. (Figure 7.37)

LN N\

Pure sine wave =
1% harmonic only

Figure 7.37: Waveforms symmetric about their x-axis center line contain only odd harmonics.
Square waves, triangle waves, and pure sine waves all exhibit this symmetry, and all are de-

void of even harmonics. Waveforms like the trumpet tone, the accordion tone, and the sawtooth
wave are unsymmetrical around their centerlines and therefore do contain even harmonics.

(Figure 7.38)
/TN O\
/\/ /NN

Figure 7.38: Asymmetric waveforms contain even harmonics.

This principle of centerline symmetry should not be confused with symmetry around the
zero line. In the examples shown, the horizontal centerline of the waveform happens to be zero
volts on the time-domain graph, but this has nothing to do with harmonic content. This rule
of harmonic content (even harmonics only with unsymmetrical waveforms) applies whether
or not the waveform is shifted above or below zero volts with a “DC component.” For further
clarification, I will show the same sets of waveforms, shifted with DC voltage, and note that
their harmonic contents are unchanged. (Figure 7.39)

B

Pure sine wave =
1" harmonic only

Figure 7.39: These waveforms are composed exclusively of odd harmonics.

Again, the amount of DC voltage present in a waveform has nothing to do with that wave-
form’s harmonic frequency content. (Figure 7.40)
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Figure 7.40: These waveforms contain even harmonics.

Why is this harmonic rule-of-thumb an important rule to know? It can help us comprehend
the relationship between harmonics in AC circuits and specific circuit components. Since most
sources of sine-wave distortion in AC power circuits tend to be symmetrical, even-numbered
harmonics are rarely seen in those applications. This is good to know if you’re a power system
designer and are planning ahead for harmonic reduction: you only have to concern yourself
with mitigating the odd harmonic frequencies, even harmonics being practically nonexistent.
Also, if you happen to measure even harmonics in an AC circuit with a spectrum analyzer or
frequency meter, you know that something in that circuit must be unsymmetrically distorting
the sine-wave voltage or current, and that clue may be helpful in locating the source of a prob-
lem (look for components or conditions more likely to distort one half-cycle of the AC waveform
more than the other).

Now that we have this rule to guide our interpretation of nonsinusoidal waveforms, it
makes more sense that a waveform like that produced by a rectifier circuit should contain
such strong even harmonics, there being no symmetry at all above and below center.

e REVIEW:

e Waveforms that are symmetrical above and below their horizontal centerlines contain no
even-numbered harmonics.

e The amount of DC “bias” voltage present (a waveform’s “DC component”) has no impact
on that wave’s harmonic frequency content.

7.5 Circuit effects

The principle of non-sinusoidal, repeating waveforms being equivalent to a series of sine waves
at different frequencies is a fundamental property of waves in general and it has great practical
import in the study of AC circuits. It means that any time we have a waveform that isn’t
perfectly sine-wave-shaped, the circuit in question will react as though its having an array of
different frequency voltages imposed on it at once.

When an AC circuit is subjected to a source voltage consisting of a mixture of frequencies,
the components in that circuit respond to each constituent frequency in a different way. Any
reactive component such as a capacitor or an inductor will simultaneously present a unique
amount of impedance to each and every frequency present in a circuit. Thankfully, the analysis
of such circuits is made relatively easy by applying the Superposition Theorem, regarding the
multiple-frequency source as a set of single-frequency voltage sources connected in series, and



186 CHAPTER 7. MIXED-FREQUENCY AC SIGNALS

analyzing the circuit for one source at a time, summing the results at the end to determine the
aggregate total:

R
VWA
5V 2.2kQ
60 Hz
C—1pF
5V
90 Hz

Figure 7.41: Circuit driven by a combination of frequencies: 60 Hz and 90 Hz.

Analyzing circuit for 60 Hz source alone:

R
VA
22kQ
5V ,\D C=—=1yF
60 Hz X = 2.653kQ

Figure 7.42: Circuit for solving 60 Hz.

R C Total
£ | 20877 +j24569 2.9623 - |2.4569 5+j0 Vet
3.1919 (1 50.328° | 3.8486 [ -39.6716° 50 0° olts
| | 928:22u-+j1.1168m | 9262201+ L1168m | 926220 +]1.1168m |\
1.4509m [ 50.328° | 1.4509m [1 50.328° | 1.4509m [ 50.328°
. 2.2k +j0 0-j2.653k 2.2k - j2.653k onms
2.2k 0 0° 2,653k [ -90° 3.446k [ -50.328°
Analyzing the circuit for 90 Hz source alone:
R
VA
2.2kQ
5V C—=—1uF
90 Hz Xc=1.768kQ

Figure 7.43: Circuit of solving 90 Hz.
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R C Total
c | 30s75+j24a15 | 19625-j2.4415 5+j0 Vo
3.80710138.793° | 3.1325 0] -51.207° 50 0° olts
, | 1:3807m +j1.1008m | 1.3807m + L1008m | 13807m +1.1008m | ,
1.7714m 0 38.793° | 1.7714m 0 38.792° | 1.7714m 0 38.793°
. 2.2k +0 0-j1.768k 2.2k - |1.768K Ohme
2.2k 0 0° 1.768k [ -90° 2,823k [ -38.793°

Superimposing the voltage drops across R and C, we get:
Er =[3.1919 V [0 50.328° (60 Hz)] + [3.8971V [ 38.793° (90 Hz)]

E. =[3.8486 V 0 -39.6716° (60 Hz)] + [3.1325 V [ -51.207° (90 Hz)]

Because the two voltages across each component are at different frequencies, we cannot con-
solidate them into a single voltage figure as we could if we were adding together two voltages
of different amplitude and/or phase angle at the same frequency. Complex number notation
give us the ability to represent waveform amplitude (polar magnitude) and phase angle (polar
angle), but not frequency.

What we can tell from this application of the superposition theorem is that there will be a
greater 60 Hz voltage dropped across the capacitor than a 90 Hz voltage. Just the opposite is
true for the resistor’s voltage drop. This is worthy to note, especially in light of the fact that the
two source voltages are equal. It is this kind of unequal circuit response to signals of differing
frequency that will be our specific focus in the next chapter.

We can also apply the superposition theorem to the analysis of a circuit powered by a non-
sinusoidal voltage, such as a square wave. If we know the Fourier series (multiple sine/cosine
wave equivalent) of that wave, we can regard it as originating from a series-connected string
of multiple sinusoidal voltage sources at the appropriate amplitudes, frequencies, and phase
shifts. Needless to say, this can be a laborious task for some waveforms (an accurate square-
wave Fourier Series is considered to be expressed out to the ninth harmonic, or five sine waves
in all!), but it is possible. I mention this not to scare you, but to inform you of the potential
complexity lurking behind seemingly simple waveforms. A real-life circuit will respond just the
same to being powered by a square wave as being powered by an infinite series of sine waves
of odd-multiple frequencies and diminishing amplitudes. This has been known to translate
into unexpected circuit resonances, transformer and inductor core overheating due to eddy
currents, electromagnetic noise over broad ranges of the frequency spectrum, and the like.
Technicians and engineers need to be made aware of the potential effects of non-sinusoidal
waveforms in reactive circuits.

Harmonics are known to manifest their effects in the form of electromagnetic radiation
as well. Studies have been performed on the potential hazards of using portable computers
aboard passenger aircraft, citing the fact that computers’ high frequency square-wave “clock”
voltage signals are capable of generating radio waves that could interfere with the operation
of the aircraft’s electronic navigation equipment. It’s bad enough that typical microprocessor
clock signal frequencies are within the range of aircraft radio frequency bands, but worse yet
is the fact that the harmonic multiples of those fundamental frequencies span an even larger
range, due to the fact that clock signal voltages are square-wave in shape and not sine-wave.
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Electromagnetic “emissions” of this nature can be a problem in industrial applications, too,
with harmonics abounding in very large quantities due to (nonlinear) electronic control of mo-
tor and electric furnace power. The fundamental power line frequency may only be 60 Hz, but
those harmonic frequency multiples theoretically extend into infinitely high frequency ranges.
Low frequency power line voltage and current doesn’t radiate into space very well as electro-
magnetic energy, but high frequencies do.

Also, capacitive and inductive “coupling” caused by close-proximity conductors is usually
more severe at high frequencies. Signal wiring nearby power wiring will tend to “pick up”
harmonic interference from the power wiring to a far greater extent than pure sine-wave in-
terference. This problem can manifest itself in industry when old motor controls are replaced
with new, solid-state electronic motor controls providing greater energy efficiency. Suddenly
there may be weird electrical noise being impressed upon signal wiring that never used to be
there, because the old controls never generated harmonics, and those high-frequency harmonic
voltages and currents tend to inductively and capacitively “couple” better to nearby conductors
than any 60 Hz signals from the old controls used to.

e REVIEW:

e Any regular (repeating), non-sinusoidal waveform is equivalent to a particular series
of sine/cosine waves of different frequencies, phases, and amplitudes, plus a DC offset
voltage if necessary. The mathematical process for determining the sinusoidal waveform
equivalent for any waveform is called Fourier analysis.

e Multiple-frequency voltage sources can be simulated for analysis by connecting several
single-frequency voltage sources in series. Analysis of voltages and currents is accom-
plished by using the superposition theorem. NOTE: superimposed voltages and currents
of different frequencies cannot be added together in complex number form, since complex
numbers only account for amplitude and phase shift, not frequency!

e Harmonics can cause problems by impressing unwanted (“noise”) voltage signals upon
nearby circuits. These unwanted signals may come by way of capacitive coupling, induc-
tive coupling, electromagnetic radiation, or a combination thereof.

7.6 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most
recent to first. See Appendix 2 (Contributor List) for dates and contact information.

Jason Starck (June 2000): HTML document formatting, which led to a much better-
looking second edition.
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8.1 What is a filter?

It is sometimes desirable to have circuits capable of selectively filtering one frequency or range
of frequencies out of a mix of different frequencies in a circuit. A circuit designed to perform
this frequency selection is called a filter circuit, or simply a filter. A common need for filter
circuits is in high-performance stereo systems, where certain ranges of audio frequencies need
to be amplified or suppressed for best sound quality and power efficiency. You may be familiar
with equalizers, which allow the amplitudes of several frequency ranges to be adjusted to suit
the listener’s taste and acoustic properties of the listening area. You may also be familiar
with crossover networks, which block certain ranges of frequencies from reaching speakers. A
tweeter (high-frequency speaker) is inefficient at reproducing low-frequency signals such as
drum beats, so a crossover circuit is connected between the tweeter and the stereo’s output
terminals to block low-frequency signals, only passing high-frequency signals to the speaker’s
connection terminals. This gives better audio system efficiency and thus better performance.
Both equalizers and crossover networks are examples of filters, designed to accomplish filtering
of certain frequencies.

189



190 CHAPTER 8. FILTERS

Another practical application of filter circuits is in the “conditioning” of non-sinusoidal volt-
age waveforms in power circuits. Some electronic devices are sensitive to the presence of har-
monics in the power supply voltage, and so require power conditioning for proper operation. If
a distorted sine-wave voltage behaves like a series of harmonic waveforms added to the fun-
damental frequency, then it should be possible to construct a filter circuit that only allows the
fundamental waveform frequency to pass through, blocking all (higher-frequency) harmonics.

We will be studying the design of several elementary filter circuits in this lesson. To re-
duce the load of math on the reader, I will make extensive use of SPICE as an analysis tool,
displaying Bode plots (amplitude versus frequency) for the various kinds of filters. Bear in
mind, though, that these circuits can be analyzed over several points of frequency by repeated
series-parallel analysis, much like the previous example with two sources (60 and 90 Hz), if
the student is willing to invest a lot of time working and re-working circuit calculations for
each frequency.

e REVIEW:

e A filteris an AC circuit that separates some frequencies from others within mixed-frequency
signals.

e Audio equalizers and crossover networks are two well-known applications of filter circuits.

e A Bode plot is a graph plotting waveform amplitude or phase on one axis and frequency
on the other.

8.2 Low-pass filters

By definition, a low-pass filter is a circuit offering easy passage to low-frequency signals and
difficult passage to high-frequency signals. There are two basic kinds of circuits capable of
accomplishing this objective, and many variations of each one: The inductive low-pass filter in
Figure 8.1 and the capacitive low-pass filter in Figure 8.3

Ly
1 e 2
3H
Vi(v)1v RowiS1kQ
0 0

Figure 8.1: Inductive low-pass filter

The inductor’s impedance increases with increasing frequency. This high impedance in
series tends to block high-frequency signals from getting to the load. This can be demonstrated
with a SPICE analysis: (Figure 8.2)
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i nductive | owpass filter
vl 10 ac 1 sin
11123

rload 2 0 1k

.ac lin 20 1 200

.plot ac v(2)

.end

frequency H=z=

Figure 8.2: The response of an inductive low-pass filter falls off with increasing frequency.

Ry
1 Y, 2
500 Q
e Rigwg = 1KQ
vi(W)iv o ¢ e |oad§
0 0

Figure 8.3: Capacitive low-pass filter.



192 CHAPTER 8. FILTERS

The capacitor’s impedance decreases with increasing frequency. This low impedance in
parallel with the load resistance tends to short out high-frequency signals, dropping most of
the voltage across series resistor R;. (Figure 8.4)

capacitive | owpass filter
vl 10 ac 1 sin

rl 1 2 500

cl 20 7u

rload 2 0 1k

.ac lin 20 30 150

.plot ac v(2)

.end

my — wm(2)

?00’0 .....................

800.0 ...............................................................

500.0 ...............................................................

400'0 ..................................... .é ......................

300‘0 .........................................................

200‘0 ..................................................................

frequency Hz=

Figure 8.4: The response of a capacitive low-pass filter falls off with increasing frequency.

The inductive low-pass filter is the pinnacle of simplicity, with only one component com-
prising the filter. The capacitive version of this filter is not that much more complex, with
only a resistor and capacitor needed for operation. However, despite their increased complex-
ity, capacitive filter designs are generally preferred over inductive because capacitors tend to
be “purer” reactive components than inductors and therefore are more predictable in their be-
havior. By “pure” I mean that capacitors exhibit little resistive effects than inductors, making
them almost 100% reactive. Inductors, on the other hand, typically exhibit significant dissi-
pative (resistor-like) effects, both in the long lengths of wire used to make them, and in the
magnetic losses of the core material. Capacitors also tend to participate less in “coupling” ef-
fects with other components (generate and/or receive interference from other components via
mutual electric or magnetic fields) than inductors, and are less expensive.

However, the inductive low-pass filter is often preferred in AC-DC power supplies to filter
out the AC “ripple” waveform created when AC is converted (rectified) into DC, passing only
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the pure DC component. The primary reason for this is the requirement of low filter resistance
for the output of such a power supply. A capacitive low-pass filter requires an extra resistance
in series with the source, whereas the inductive low-pass filter does not. In the design of a
high-current circuit like a DC power supply where additional series resistance is undesirable,
the inductive low-pass filter is the better design choice. On the other hand, if low weight and
compact size are higher priorities than low internal supply resistance in a power supply design,
the capacitive low-pass filter might make more sense.

All low-pass filters are rated at a certain cutoff frequency. That is, the frequency above
which the output voltage falls below 70.7% of the input voltage. This cutoff percentage of 70.7
is not really arbitrary, all though it may seem so at first glance. In a simple capacitive/resistive
low-pass filter, it is the frequency at which capacitive reactance in ohms equals resistance in
ohms. In a simple capacitive low-pass filter (one resistor, one capacitor), the cutoff frequency
is given as:

_
2TRC

Inserting the values of R and C from the last SPICE simulation into this formula, we arrive
at a cutoff frequency of 45.473 Hz. However, when we look at the plot generated by the SPICE
simulation, we see the load voltage well below 70.7% of the source voltage (1 volt) even at a
frequency as low as 30 Hz, below the calculated cutoff point. What’s wrong? The problem
here is that the load resistance of 1 k2 affects the frequency response of the filter, skewing it
down from what the formula told us it would be. Without that load resistance in place, SPICE
produces a Bode plot whose numbers make more sense: (Figure 8.5)

fcutoff =

capacitive | owpass filter
vl 10 ac 1 sin

ri 1 2 500

cl 20 7u

* note: no | oad resistor!
.ac lin 20 40 50

.plot ac v(2)

.end

foutors = 1/ (27RC) = 1/ (27(500 Q) (7 uF)) = 45.473 Hz

When dealing with filter circuits, it is always important to note that the response of the filter
depends on the filter’s component values and the impedance of the load. If a cutoff frequency
equation fails to give consideration to load impedance, it assumes no load and will fail to give
accurate results for a real-life filter conducting power to a load.

One frequent application of the capacitive low-pass filter principle is in the design of circuits
having components or sections sensitive to electrical “noise.” As mentioned at the beginning of
the last chapter, sometimes AC signals can “couple” from one circuit to another via capacitance
(Cstray) and/or mutual inductance (Mg;,q,) between the two sets of conductors. A prime exam-
ple of this is unwanted AC signals (“noise”) becoming impressed on DC power lines supplying
sensitive circuits: (Figure 8.6)
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mY — wm({2)

760.0 B grem ey :
20,0 b
7000 s
B0, e gy
S R R

40,0 45,0 50

frequency H=z=

Figure 8.5: For the capacitive low-pass filter with R = 500 Q2 and C = 7 uF, the Output should

be 70.7% at 45.473 Hz.

4115
"Noise" L
source I
M
e
Zwi re ZWi re Zwi re

"Clean" DC power

E9Jpp|y

"Dirty" or "noisy" DC power
Eload

Figure 8.6: Noise is coupled by stray capacitance and mutual inductance into “clean” DC power.
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The oscilloscope-meter on the left shows the “clean” power from the DC voltage source.
After coupling with the AC noise source via stray mutual inductance and stray capacitance,
though, the voltage as measured at the load terminals is now a mix of AC and DC, the AC
being unwanted. Normally, one would expect E,;,.q to be precisely identical to E,,....., because
the uninterrupted conductors connecting them should make the two sets of points electrically
common. However, power conductor impedance allows the two voltages to differ, which means
the noise magnitude can vary at different points in the DC system.

If we wish to prevent such “noise” from reaching the DC load, all we need to do is connect a
low-pass filter near the load to block any coupled signals. In its simplest form, this is nothing
more than a capacitor connected directly across the power terminals of the load, the capacitor
behaving as a very low impedance to any AC noise, and shorting it out. Such a capacitor is
called a decoupling capacitor: (Figure 8.7)

4115
"NOiSG" P
source
M
stray f— Cstray
Zwire Zwire

"Clean" DC power ]
"Cleaner" DC power with
Esupply

decoupling capacitor
Eload

Figure 8.7: Decoupling capacitor, applied to load, filters noise from DC power supply.

A cursory glance at a crowded printed-circuit board (PCB) will typically reveal decoupling
capacitors scattered throughout, usually located as close as possible to the sensitive DC loads.
Capacitor size is usually 0.1 ¢F or more, a minimum amount of capacitance needed to produce
a low enough impedance to short out any noise. Greater capacitance will do a better job at
filtering noise, but size and economics limit decoupling capacitors to meager values.

e REVIEW:

e A low-pass filter allows for easy passage of low-frequency signals from source to load, and
difficult passage of high-frequency signals.

e Inductive low-pass filters insert an inductor in series with the load; capacitive low-pass
filters insert a resistor in series and a capacitor in parallel with the load. The former
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filter design tries to “block” the unwanted frequency signal while the latter tries to short
it out.

e The cutoff frequency for a low-pass filter is that frequency at which the output (load)
voltage equals 70.7% of the input (source) voltage. Above the cutoff frequency, the output
voltage is lower than 70.7% of the input, and vice versa.

8.3 High-pass filters

A high-pass filter’s task is just the opposite of a low-pass filter: to offer easy passage of a
high-frequency signal and difficult passage to a low-frequency signal. As one might expect, the
inductive (Figure 8.10) and capacitive (Figure 8.8) versions of the high-pass filter are just the
opposite of their respective low-pass filter designs:

C
1 H 2
0.5 uF
Vi()1v Rmad%le
0 0

Figure 8.8: Capacitive high-pass filter.

The capacitor’s impedance (Figure 8.8) increases with decreasing frequency. (Figure 8.9)
This high impedance in series tends to block low-frequency signals from getting to load.

capaci tive highpass filter
vli 10 ac 1 sin

cl 12 0.5u

rload 2 0 1k

.ac lin 20 1 200

.plot ac v(2)

.end

The inductor’s impedance (Figure 8.10) decreases with decreasing frequency. (Figure 8.11)
This low impedance in parallel tends to short out low-frequency signals from getting to the
load resistor. As a consequence, most of the voltage gets dropped across series resistor R;.

This time, the capacitive design is the simplest, requiring only one component above and
beyond the load. And, again, the reactive purity of capacitors over inductors tends to favor
their use in filter design, especially with high-pass filters where high frequencies commonly
cause inductors to behave strangely due to the skin effect and electromagnetic core losses.

As with low-pass filters, high-pass filters have a rated cutoff frequency, above which the
output voltage increases above 70.7% of the input voltage. Just as in the case of the capacitive



8.3. HIGH-PASS FILTERS

mb — wm(2)
800‘0 ................................. . -.....-.....-.....-.....-.....-...E
400’0 ................................% ............................. g
200‘0 ............................. €> ................................ E
0.0 - -
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frequency Hz=

Figure 8.9: The response of the capacitive high-pass filter increases with frequency.

100 mH %1 kQ
load

1 1
200 Q
V1®1V
0

0

Figure 8.10: Inductive high-pass filter.

i nductive highpass filter
vli 10 ac 1 sin

rl 1 2 200

[1 2 0 100m

rload 2 0 1k

.ac lin 20 1 200

.plot ac v(2)

.end
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mY — wm(2)
600‘0 ................................. E ................................. .E
400’0 -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-..:_ ----------------------------- S
200'0 ............................. é ................................ é
0.0 - :
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frequency Hz=

Figure 8.11: The response of the inductive high-pass filter increases with frequency.

low-pass filter circuit, the capacitive high-pass filter’s cutoff frequency can be found with the
same formula:

_
2TRC

In the example circuit, there is no resistance other than the load resistor, so that is the
value for R in the formula.

Using a stereo system as a practical example, a capacitor connected in series with the
tweeter (treble) speaker will serve as a high-pass filter, imposing a high impedance to low-
frequency bass signals, thereby preventing that power from being wasted on a speaker inef-
ficient for reproducing such sounds. In like fashion, an inductor connected in series with the
woofer (bass) speaker will serve as a low-pass filter for the low frequencies that particular
speaker is designed to reproduce. In this simple example circuit, the midrange speaker is
subjected to the full spectrum of frequencies from the stereo’s output. More elaborate filter
networks are sometimes used, but this should give you the general idea. Also bear in mind
that I'm only showing you one channel (either left or right) on this stereo system. A real stereo
would have six speakers: 2 woofers, 2 midranges, and 2 tweeters.

For better performance yet, we might like to have some kind of filter circuit capable of
passing frequencies that are between low (bass) and high (treble) to the midrange speaker
so that none of the low- or high-frequency signal power is wasted on a speaker incapable of
efficiently reproducing those sounds. What we would be looking for is called a band-pass filter,
which is the topic of the next section.

fcutoff =

e REVIEW:

e A high-pass filter allows for easy passage of high-frequency signals from source to load,
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low-pass
dllh ij Woofer
T 1 L :
Stereo L7 ij Midrange
high-pass
LA\ [l
Il i Tweeter

Figure 8.12: High-pass filter routes high frequencies to tweeter, while low-pass filter routes
lows to woofer.

and difficult passage of low-frequency signals.

e Capacitive high-pass filters insert a capacitor in series with the load; inductive high-pass
filters insert a resistor in series and an inductor in parallel with the load. The former
filter design tries to “block” the unwanted frequency signal while the latter tries to short
it out.

e The cutoff frequency for a high-pass filter is that frequency at which the output (load)
voltage equals 70.7% of the input (source) voltage. Above the cutoff frequency, the output
voltage is greater than 70.7% of the input, and vice versa.

8.4 Band-pass filters

There are applications where a particular band, or spread, or frequencies need to be filtered
from a wider range of mixed signals. Filter circuits can be designed to accomplish this task
by combining the properties of low-pass and high-pass into a single filter. The result is called
a band-pass filter. Creating a bandpass filter from a low-pass and high-pass filter can be
illustrated using block diagrams: (Figure 8.14)

S&gp”&'—» Low-pass filter |—>| High-pass filter |— §{,%Bﬁ‘t'

blocks frequencies blocks frequencies
that are too high that are too low

Figure 8.13: System level block diagram of a band-pass filter.
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What emerges from the series combination of these two filter circuits is a circuit that will
only allow passage of those frequencies that are neither too high nor too low. Using real com-
ponents, here is what a typical schematic might look like Figure 8.14. The response of the
band-pass filter is shown in (Figure 8.15)

Source _Low-pass _High-pass
filter section filter section

C

R; 2 2
1 || 3

W5 |

1uF
vV, (\, 1V C, =— 25uF Rmad% 1kQ

0 0 0

Figure 8.14: Capacitive band-pass filter.

capaci tive bandpass filter
vl 10 ac 1 sin

ri 1 2 200

cl 2 0 2.5u

c2 2 3 1u

rload 3 0 1k

.ac lin 20 100 500

.plot ac v(3)

.end

Band-pass filters can also be constructed using inductors, but as mentioned before, the
reactive “purity” of capacitors gives them a design advantage. If we were to design a bandpass
filter using inductors, it might look something like Figure 8.16.

The fact that the high-pass section comes “first” in this design instead of the low-pass sec-
tion makes no difference in its overall operation. It will still filter out all frequencies too high
or too low.

While the general idea of combining low-pass and high-pass filters together to make a band-
pass filter is sound, it is not without certain limitations. Because this type of band-pass filter
works by relying on either section to block unwanted frequencies, it can be difficult to design
such a filter to allow unhindered passage within the desired frequency range. Both the low-
pass and high-pass sections will always be blocking signals to some extent, and their combined
effort makes for an attenuated (reduced amplitude) signal at best, even at the peak of the
“pass-band” frequency range. Notice the curve peak on the previous SPICE analysis: the load
voltage of this filter never rises above 0.59 volts, although the source voltage is a full volt.
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mY — wm(3)
800‘0 ......................E ...................... FARRRERRR AL
550‘0 ................... g............... -...% ......................
500.0 .................... E ..................... qi)
450‘0 .....................g.....................é ......................
0,0 200,0 400,0
frequency Hz=

Figure 8.15: The response of a capacitive bandpass filter peaks within a narrow frequency

range.

Source _High-pass Low-pass
filter section filter section
Ry L,
VWA 4115

©

SISy

Rload %

Figure 8.16: Inductive band-pass filter.
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This signal attenuation becomes more pronounced if the filter is designed to be more selective
(steeper curve, narrower band of passable frequencies).

There are other methods to achieve band-pass operation without sacrificing signal strength
within the pass-band. We will discuss those methods a little later in this chapter.

e REVIEW:

e A band-pass filter works to screen out frequencies that are too low or too high, giving
easy passage only to frequencies within a certain range.

e Band-pass filters can be made by stacking a low-pass filter on the end of a high-pass filter,
or vice versa.

e “Attenuate” means to reduce or diminish in amplitude. When you turn down the volume
control on your stereo, you are “attenuating” the signal being sent to the speakers.

8.5 Band-stop filters

Also called band-elimination, band-reject, or notch filters, this kind of filter passes all frequen-
cies above and below a particular range set by the component values. Not surprisingly, it can
be made out of a low-pass and a high-pass filter, just like the band-pass design, except that
this time we connect the two filter sections in parallel with each other instead of in series.
(Figure 8.17)

passes low frequencies

—>| Low-pass filter | —>

input put

Signal _.T . Si%nal
l ou

__, | High-pass filter _,T

passes high frequencies

Figure 8.17: System level block diagram of a band-stop filter.

Constructed using two capacitive filter sections, it looks something like (Figure 8.18).

The low-pass filter section is comprised of Ry, Ro, and C; in a “T” configuration. The high-
pass filter section is comprised of Cs, C3, and R3 in a “T” configuration as well. Together,
this arrangement is commonly known as a “Twin-T” filter, giving sharp response when the
component values are chosen in the following ratios:

Component value ratios for
the "Twin-T" band-stop filter

R; =R, =2(Ry)

C,=C,=(05)C,
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R1 RZ

VWA VWA

c, ST ¢
[| . [|

2
ANV

source @

Figure 8.18: “Twin-T” band-stop filter.

%Rmad

Given these component ratios, the frequency of maximum rejection (the “notch frequency”)
can be calculated as follows:
1
4TR,C,

The impressive band-stopping ability of this filter is illustrated by the following SPICE
analysis: (Figure 8.19)

notch —

twi n-t bandstop filter

vl 1 0 ac 1 sin
ri 1 2 200
cl 2 0 2u

r2 2 3 200

c2 14 1u

r3 4 0 100

c3 4 3 1u
rload 3 0 1k

.ac lin 20 200 1.5k
.plot ac v(3)
. end

REVIEW:

A band-stop filter works to screen out frequencies that are within a certain range, giving
easy passage only to frequencies outside of that range. Also known as band-elimination,
band-reject, or notch filters.

Band-stop filters can be made by placing a low-pass filter in parallel with a high-pass
filter. Commonly, both the low-pass and high-pass filter sections are of the “T” configura-
tion, giving the name “Twin-T” to the band-stop combination.

The frequency of maximum attenuation is called the notch frequency.
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mb — umi(3)
600‘0 .-.-.-.-.-.-.-.-.-....E ...................... E ...................... E
400’0 ------------------- g---------------------é --------------------- §
200'0 --------------------- ; -------------------- ci) ------------------ g
0.0 : : :
Q0,0 0.5 1.0 1.5

frequency kH=z

Figure 8.19: Response of “twin-T” band-stop filter.

8.6 Resonant filters

So far, the filter designs we’ve concentrated on have employed either capacitors or inductors,
but never both at the same time. We should know by now that combinations of L. and C will
tend to resonate, and this property can be exploited in designing band-pass and band-stop filter
circuits.

Series LC circuits give minimum impedance at resonance, while parallel LC (“tank”) cir-
cuits give maximum impedance at their resonant frequency. Knowing this, we have two basic
strategies for designing either band-pass or band-stop filters.

For band-pass filters, the two basic resonant strategies are this: series LC to pass a signal
(Figure 8.20), or parallel LC (Figure 8.22) to short a signal. The two schemes will be contrasted
and simulated here:

~— filter —

‘ c
Ly 2 1
Ity

H
v,(V)1v RS 1kQ
0 0

Figure 8.20: Series resonant LC band-pass filter.
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Series LC components pass signal at resonance, and block signals of any other frequencies
from getting to the load. (Figure 8.21)

series resonant bandpass filter
vli 10 ac 1 sin

11121

cl 2 3 1u

rload 3 0 1k

.ac lin 20 50 250

.plot ac v(3)
.end
Y — wm(3)
1‘00 ....................... ; .................. ; ....................... =
7Y [ ¥ —— . S—
O.B0 e ....................... .......................
DUTY (S J T T
P ) A - S - S
0.0 100,0 200,0 300,0
frequency Hz=

Figure 8.21: Series resonant band-pass filter: voltage peaks at resonant frequency of 159.15
Hz.

A couple of points to note: see how there is virtually no signal attenuation within the “pass
band” (the range of frequencies near the load voltage peak), unlike the band-pass filters made
from capacitors or inductors alone. Also, since this filter works on the principle of series LC
resonance, the resonant frequency of which is unaffected by circuit resistance, the value of the
load resistor will not skew the peak frequency. However, different values for the load resistor
will change the “steepness” of the Bode plot (the “selectivity” of the filter).

The other basic style of resonant band-pass filters employs a tank circuit (parallel LC com-
bination) to short out signals too high or too low in frequency from getting to the load: (Fig-
ure 8.22)

The tank circuit will have a lot of impedance at resonance, allowing the signal to get to the
load with minimal attenuation. Under or over resonant frequency, however, the tank circuit
will have a low impedance, shorting out the signal and dropping most of it across series resistor
R,. (Figure 8.23)
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~—— filter ——

R
L : ?
500 O
v, %; 1
Y L Ci— Rioad S 1KQ
v ( =100 [0
mH Wk
0 0
0 0

Figure 8.22: Parallel resonant band-pass filter.

paral |l el resonant bandpass filter
vl 10 ac 1 sin

rl 1 2 500

1 2 0 100m

cl 2 0 10u

rload 2 0 1k

.ac lin 20 50 250

.plot ac v(2)

.end

mb — um{2)
800,00
600, 0
400,00
200,0
0.0 s s s
0.0 100,00 200,0 300,0

frequency Hz=

Figure 8.23: Parallel resonant filter: voltage peaks a resonant frequency of 159.15 Hz.
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Just like the low-pass and high-pass filter designs relying on a series resistance and a
parallel “shorting” component to attenuate unwanted frequencies, this resonant circuit can
never provide full input (source) voltage to the load. That series resistance will always be
dropping some amount of voltage so long as there is a load resistance connected to the output
of the filter.

It should be noted that this form of band-pass filter circuit is very popular in analog radio
tuning circuitry, for selecting a particular radio frequency from the multitudes of frequencies
available from the antenna. In most analog radio tuner circuits, the rotating dial for station
selection moves a variable capacitor in a tank circuit.

SINGLE-TUEBE RADIO

Figure 8.24: Variable capacitor tunes radio receiver tank circuit to select one out of many
broadcast stations.

The variable capacitor and air-core inductor shown in Figure 8.24 photograph of a simple
radio comprise the main elements in the tank circuit filter used to discriminate one radio
station’s signal from another.

Just as we can use series and parallel LLC resonant circuits to pass only those frequencies
within a certain range, we can also use them to block frequencies within a certain range,
creating a band-stop filter. Again, we have two major strategies to follow in doing this, to use
either series or parallel resonance. First, we’ll look at the series variety: (Figure 8.25)

When the series LC combination reaches resonance, its very low impedance shorts out the
signal, dropping it across resistor R; and preventing its passage on to the load. (Figure 8.26)

Next, we will examine the parallel resonant band-stop filter: (Figure 8.27)

The parallel LC components present a high impedance at resonant frequency, thereby block-
ing the signal from the load at that frequency. Conversely, it passes signals to the load at any
other frequencies. (Figure 8.28)

Once again, notice how the absence of a series resistor makes for minimum attenuation for
all the desired (passed) signals. The amplitude at the notch frequency, on the other hand, is
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R
Y — ?
500 Q
L, 3100 mH
Vi()1v ; Rlowile
C,=—10pF
0 p 0

Figure 8.25: Series resonant band-stop filter.

series resonant bandstop filter
vl 10 ac 1 sin

ri 1 2 500

[1 2 3 100m

cl 3 0 10u

rload 2 0 1k

.ac lin 20 70 230

.plot ac v(2)

.end

mY — wm(2)
400’0 --------------------- ;------------.--------g --------------------- =
300‘0 sssssssssssssss ....g.....................é ..................... §

200.0 .................... :.....................é. ..................... g

100‘0 ..................... E ................... 0 AT g

.0 100,0 200,0 300.,0

frequency Hz=

Figure 8.26: Series resonant band-stop filter: Notch frequency = LC resonant frequency (159.15
Hz).
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Figure 8.27: Parallel resonant band-stop filter.

paral |l el resonant bandstop filter
vl 10 ac 1 sin

[1 1 2 100m

cl 12 10u

rload 2 0 1k

.ac lin 20 100 200

.plot ac v(2)

.end

0.00 = C :
100.0 150,0 200,0

frequency Hz=

Figure 8.28: Parallel resonant band-stop filter: Notch frequency = LC resonant frequency
(159.15 Hz).
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very low. In other words, this is a very “selective” filter.

In all these resonant filter designs, the selectivity depends greatly upon the “purity” of
the inductance and capacitance used. If there is any stray resistance (especially likely in the
inductor), this will diminish the filter’s ability to finely discriminate frequencies, as well as
introduce antiresonant effects that will skew the peak/notch frequency.

A word of caution to those designing low-pass and high-pass filters is in order at this point.
After assessing the standard RC and LR low-pass and high-pass filter designs, it might occur
to a student that a better, more effective design of low-pass or high-pass filter might be realized
by combining capacitive and inductive elements together like Figure 8.29.

~— filter ———
1 Ly 2 L,

4115 4115
100 mH 100 mH

Vi @1 v C,==1uF Rload% 1kQ

0

Figure 8.29: Capacitive Inductive low-pass filter.

The inductors should block any high frequencies, while the capacitor should short out any
high frequencies as well, both working together to allow only low frequency signals to reach
the load.

At first, this seems to be a good strategy, and eliminates the need for a series resistance.
However, the more insightful student will recognize that any combination of capacitors and in-
ductors together in a circuit is likely to cause resonant effects to happen at a certain frequency.
Resonance, as we have seen before, can cause strange things to happen. Let’s plot a SPICE
analysis and see what happens over a wide frequency range: (Figure 8.30)

I c lowpass filter
vl 10 ac 1 sin
[1 1 2 100m

cl 20 1lu

[2 2 3 100m
rload 3 0 1k

.ac lin 20 100 1k
.plot ac v(3)
.end

What was supposed to be a low-pass filter turns out to be a band-pass filter with a peak
somewhere around 526 Hz! The capacitance and inductance in this filter circuit are attaining
resonance at that point, creating a large voltage drop around C;, which is seen at the load,
regardless of Ly’s attenuating influence. The output voltage to the load at this point actually
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frequency kH=z

Figure 8.30: Unexpected response of L-C low-pass filter.

exceeds the input (source) voltage! A little more reflection reveals that if L; and C, are at
resonance, they will impose a very heavy (very low impedance) load on the AC source, which
might not be good either. We’ll run the same analysis again, only this time plotting C,’s voltage,
vm(2) in Figure 8.31, and the source current, I(v1), along with load voltage, vin(3):

Units— vm(2) wmi(3) Units
— 100*mag{vl#branch) ;
— I{v1) ma
4.0 ..................................... E ..................................... .E 4 0
wmi2) : §
3‘0 ----------------------------------- EA S -g 3
2‘0 --------------------------------- |'|:| --------------------------- é 2
10 | e S, iy
t
0.0 - -
0,00 Q0,50 1,00
ICwl) frequency kHz

Figure 8.31: Current inceases at the unwanted resonance of the L-C low-pass filter.



212 CHAPTER 8. FILTERS

Sure enough, we see the voltage across C; and the source current spiking to a high point
at the same frequency where the load voltage is maximum. If we were expecting this filter to
provide a simple low-pass function, we might be disappointed by the results.

The problem is that an L-C filter has a input impedance and an output impedance which
must be matched. The voltage source impedance must match the input impedance of the filter,
and the filter output impedance must be matched by “rload” for a flat response. The input and
output impedance is given by the square root of (L/C).

Z=(LQY?

Taking the component values from (Figure 8.29), we can find the impedance of the filter,
and the required , R, and R;,,4 to match it.

For L= 100 nH, C 1uF
Z = (L/OY2=((100 nH)/ (1 puF))/? = 316 Q

In Figure 8.32 we have added R, = 316 () to the generator, and changed the load R;,,4 from
1000 Q2 to 316 Q2. Note that if we needed to drive a 1000 2 load, the L/C ratio could have been
adjusted to match that resistance.

~— filter ——=

316Q , 100mH 100 mH
VWA 211% 211%
Ry Ly L,

Ny %316(2
1 et Ci==1.0uF Riox

©

Figure 8.32: Circuit of source and load matched L-C low-pass filter.

LC matched | owpass filter
Vi1 10 ac 1 SIN

Rg 1 4 316

L1 4 2 100m

Cl 20 1.0u

L2 2 3 100m

R oad 3 0 316

.ac lin 20 100 1k

.plot ac v(3)

.end
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Figure 8.33 shows the “flat” response of the L-C low pass filter when the source and load
impedance match the filter input and output impedances.

mY — vmi(3)

500.0 -----------------------------------------------------

400.0 ...............................................................

300’0 ................................................................

200.0 ..........................................................

s A e

100,0 Lo R
0,00 0,50 1,00

frequency kH=z

Figure 8.33: The response of impedance matched L-C low-pass filter is nearly flat up to the
cut-off frequency.

The point to make in comparing the response of the unmatched filter (Figure 8.30) to the
matched filter (Figure 8.33) is that variable load on the filter produces a considerable change
in voltage. This property is directly applicable to L-C filtered power supplies— the regulation is
poor. The power supply voltage changes with a change in load. This is undesirable.

This poor load regulation can be mitigated by a swinging choke. This is a choke, inductor,
designed to saturate when a large DC current passes through it. By saturate, we mean that
the DC current creates a “too” high level of flux in the magnetic core, so that the AC compo-
nent of current cannot vary the flux. Since induction is proportional to d®/dt, the inductance is
decreased by the heavy DC current. The decrease in inductance decreases reactance X;,. De-
creasing reactance, reduces the voltage drop across the inductor; thus, increasing the voltage
at the filter output. This improves the voltage regulation with respect to variable loads.

Despite the unintended resonance, low-pass filters made up of capacitors and inductors are
frequently used as final stages in AC/DC power supplies to filter the unwanted AC “ripple”
voltage out of the DC converted from AC. Why is this, if this particular filter design possesses
a potentially troublesome resonant point?

The answer lies in the selection of filter component sizes and the frequencies encountered
from an AC/DC converter (rectifier). What we’re trying to do in an AC/DC power supply filter
is separate DC voltage from a small amount of relatively high-frequency AC voltage. The
filter inductors and capacitors are generally quite large (several Henrys for the inductors and
thousands of uF for the capacitors is typical), making the filter’s resonant frequency very, very
low. DC of course, has a “frequency” of zero, so there’s no way it can make an LC circuit
resonate. The ripple voltage, on the other hand, is a non-sinusoidal AC voltage consisting
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of a fundamental frequency at least twice the frequency of the converted AC voltage, with
harmonics many times that in addition. For plug-in-the-wall power supplies running on 60 Hz
AC power (60 Hz United States; 50 Hz in Europe), the lowest frequency the filter will ever see
is 120 Hz (100 Hz in Europe), which is well above its resonant point. Therefore, the potentially
troublesome resonant point in a such a filter is completely avoided.

The following SPICE analysis calculates the voltage output (AC and DC) for such a filter,
with series DC and AC (120 Hz) voltage sources providing a rough approximation of the mixed-
frequency output of an AC/DC converter.

Ll 3 L2

2 2118 2118 4
| 3H 2H
V, —12V
1 Cl p— gi(l)zo RIoad% 1kQ
vV, () 1V
120 Hz
0 0 0

Figure 8.34: AC/DC power suppply filter provides “ripple free” DC power.

ac/dc power supply filter
vl 10 ac 1 sin

v2 2 1 dc

123
cl 30
12 3 4
rload 4 0 1k

.dc v2 12 12 1
.ac lin 1 120 120
.print dc v(4)
.print ac v(4)

500u

N © W

.end

v2 v(4)

1. 200E+01 1. 200E+01 DC voltage at load = 12 volts

freq v(4)

1. 200E+02 3.412E- 05 AC voltage at load = 34.12 microvolts

With a full 12 volts DC at the load and only 34.12 iV of AC left from the 1 volt AC source
imposed across the load, this circuit design proves itself to be a very effective power supply
filter.
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The lesson learned here about resonant effects also applies to the design of high-pass filters
using both capacitors and inductors. So long as the desired and undesired frequencies are well
to either side of the resonant point, the filter will work OK. But if any signal of significant
magnitude close to the resonant frequency is applied to the input of the filter, strange things
will happen!

e REVIEW:

e Resonant combinations of capacitance and inductance can be employed to create very
effective band-pass and band-stop filters without the need for added resistance in a circuit
that would diminish the passage of desired frequencies.

1

freﬁonant =
. 2n\/LC

8.7 Summary

As lengthy as this chapter has been up to this point, it only begins to scratch the surface of
filter design. A quick perusal of any advanced filter design textbook is sufficient to prove my
point. The mathematics involved with component selection and frequency response prediction
is daunting to say the least — well beyond the scope of the beginning electronics student. It has
been my intent here to present the basic principles of filter design with as little math as possi-
ble, leaning on the power of the SPICE circuit analysis program to explore filter performance.
The benefit of such computer simulation software cannot be understated, for the beginning
student or for the working engineer.

Circuit simulation software empowers the student to explore circuit designs far beyond
the reach of their math skills. With the ability to generate Bode plots and precise figures,
an intuitive understanding of circuit concepts can be attained, which is something often lost
when a student is burdened with the task of solving lengthy equations by hand. If you are not
familiar with the use of SPICE or other circuit simulation programs, take the time to become
so! It will be of great benefit to your study. To see SPICE analyses presented in this book is an
aid to understanding circuits, but to actually set up and analyze your own circuit simulations
is a much more engaging and worthwhile endeavor as a student.

8.8 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most
recent to first. See Appendix 2 (Contributor List) for dates and contact information.

Jason Starck (June 2000): HTML document formatting, which led to a much better-
looking second edition.
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9.1 Mutual inductance and basic operation

Suppose we were to wrap a coil of insulated wire around a loop of ferromagnetic material and
energize this coil with an AC voltage source: (Figure 9.1 (a))

iron core

wirei) 0 resistor
coil Q)

(@) (b)

Figure 9.1: Insulated winding on ferromagnetic loop has inductive reactance, limiting AC cur-
rent.

As an inductor, we would expect this iron-core coil to oppose the applied voltage with its
inductive reactance, limiting current through the coil as predicted by the equations X; = 27fLL
and I=E/X (or I=E/Z). For the purposes of this example, though, we need to take a more detailed
look at the interactions of voltage, current, and magnetic flux in the device.

Kirchhoff’s voltage law describes how the algebraic sum of all voltages in a loop must equal
zero. In this example, we could apply this fundamental law of electricity to describe the respec-
tive voltages of the source and of the inductor coil. Here, as in any one-source, one-load circuit,
the voltage dropped across the load must equal the voltage supplied by the source, assuming
zero voltage dropped along the resistance of any connecting wires. In other words, the load
(inductor coil) must produce an opposing voltage equal in magnitude to the source, in order
that it may balance against the source voltage and produce an algebraic loop voltage sum of
zero. From where does this opposing voltage arise? If the load were a resistor (Figure 9.1
(b)), the voltage drop originates from electrical energy loss, the “friction” of electrons flowing
through the resistance. With a perfect inductor (no resistance in the coil wire), the opposing
voltage comes from another mechanism: the reaction to a changing magnetic flux in the iron
core. When AC current changes, flux ® changes. Changing flux induces a counter EMF.

Michael Faraday discovered the mathematical relationship between magnetic flux (®) and
induced voltage with this equation:

e= Ndi
dt

Where,
e= (Instantaneous) induced voltage in volts
N = Number of turns in wire coil (straight wire = 1)
@ = Magnetic flux in Webers
t= Time in seconds
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The instantaneous voltage (voltage dropped at any instant in time) across a wire coil is
equal to the number of turns of that coil around the core (N) multiplied by the instantaneous
rate-of-change in magnetic flux (d®/dt) linking with the coil. Graphed, (Figure 9.2) this shows
itself as a set of sine waves (assuming a sinusoidal voltage source), the flux wave 90° lagging
behind the voltage wave:

e =voltage ® =magnetic flux
m m

Figure 9.2: Magnetic flux lags applied voltage by 90° because flux is proportional to a rate of
change, d®/dt.

Magnetic flux through a ferromagnetic material is analogous to current through a conduc-
tor: it must be motivated by some force in order to occur. In electric circuits, this motivating
force is voltage (a.k.a. electromotive force, or EMF). In magnetic “circuits,” this motivating
force is magnetomotive force, or mmf. Magnetomotive force (mmf) and magnetic flux () are
related to each other by a property of magnetic materials known as reluctance (the latter quan-
tity symbolized by a strange-looking letter “R”):

A comparison of "Ohm’s Law" for
electric and magnetic circuits:

E=IR mmf = d

Electrical Magnetic

In our example, the mmf required to produce this changing magnetic flux () must be sup-
plied by a changing current through the coil. Magnetomotive force generated by an electro-
magnet coil is equal to the amount of current through that coil (in amps) multiplied by the
number of turns of that coil around the core (the SI unit for mmf is the amp-turn). Because
the mathematical relationship between magnetic flux and mmf is directly proportional, and
because the mathematical relationship between mmf and current is also directly proportional
(no rates-of-change present in either equation), the current through the coil will be in-phase
with the flux wave as in (Figure 9.3)

This is why alternating current through an inductor lags the applied voltage waveform
by 90°: because that is what is required to produce a changing magnetic flux whose rate-of-
change produces an opposing voltage in-phase with the applied voltage. Due to its function in
providing magnetizing force (mmf) for the core, this current is sometimes referred to as the
magnetizing current.

It should be mentioned that the current through an iron-core inductor is not perfectly sinu-
soidal (sine-wave shaped), due to the nonlinear B/H magnetization curve of iron. In fact, if the
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e=voltage @ =magnetic flux i = coil current

e ®
i

L 2NN LN
SN N\ XK

Figure 9.3: Magnetic flux, like current, lags applied voltage by 90°.

inductor is cheaply built, using as little iron as possible, the magnetic flux density might reach
high levels (approaching saturation), resulting in a magnetizing current waveform that looks
something like Figure 9.4

e =voltage
® =magnetic flux
i = coil current

e o)
i

Figure 9.4: As flux density approaches saturation, the magnetizing current waveform becomes
distorted.

When a ferromagnetic material approaches magnetic flux saturation, disproportionately
greater levels of magnetic field force (mmf) are required to deliver equal increases in magnetic
field flux (®). Because mmf is proportional to current through the magnetizing coil (mmf = NI,
where “N” is the number of turns of wire in the coil and “I” is the current through it), the large
increases of mmf required to supply the needed increases in flux results in large increases
in coil current. Thus, coil current increases dramatically at the peaks in order to maintain
a flux waveform that isn’t distorted, accounting for the bell-shaped half-cycles of the current
waveform in the above plot.

The situation is further complicated by energy losses within the iron core. The effects of
hysteresis and eddy currents conspire to further distort and complicate the current waveform,
making it even less sinusoidal and altering its phase to be lagging slightly less than 90° behind
the applied voltage waveform. This coil current resulting from the sum total of all magnetic
effects in the core (d®/dt magnetization plus hysteresis losses, eddy current losses, etc.) is
called the exciting current. The distortion of an iron-core inductor’s exciting current may be
minimized if it is designed for and operated at very low flux densities. Generally speaking, this
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requires a core with large cross-sectional area, which tends to make the inductor bulky and
expensive. For the sake of simplicity, though, we’ll assume that our example core is far from
saturation and free from all losses, resulting in a perfectly sinusoidal exciting current.

As we've seen already in the inductors chapter, having a current waveform 90° out of phase
with the voltage waveform creates a condition where power is alternately absorbed and re-
turned to the circuit by the inductor. If the inductor is perfect (no wire resistance, no magnetic
core losses, etc.), it will dissipate zero power.

Let us now consider the same inductor device, except this time with a second coil (Fig-

ure 9.5) wrapped around the same iron core. The first coil will be labeled the primary coil,
while the second will be labeled the secondary:

iron core

Figure 9.5: Ferromagnetic core with primary coil (AC driven) and secondary coil.

If this secondary coil experiences the same magnetic flux change as the primary (which
it should, assuming perfect containment of the magnetic flux through the common core), and
has the same number of turns around the core, a voltage of equal magnitude and phase to
the applied voltage will be induced along its length. In the following graph, (Figure 9.6) the
induced voltage waveform is drawn slightly smaller than the source voltage waveform simply
to distinguish one from the other:

This effect is called mutual inductance: the induction of a voltage in one coil in response to
a change in current in the other coil. Like normal (self-) inductance, it is measured in the unit
of Henrys, but unlike normal inductance it is symbolized by the capital letter “M” rather than
the letter “L":
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€, = primary coil voltage i, = primary coil current
® =magnetic flux e, = secondary coil voltage
% ®

=Y i

p / j i \
Figure 9.6: Open circuited secondary sees the same flux ® as the primary. Therefore induced
secondary voltage e, is the same magnitude and phase as the primary voltage e,,

Inductance Mutual inductance
di di
e=L — =M =L
dt © dt
Where,

e, = voltage induced in
secondary coll

i, = current in primary
coil

No current will exist in the secondary coil, since it is open-circuited. However, if we connect
a load resistor to it, an alternating current will go through the coil, in-phase with the induced
voltage (because the voltage across a resistor and the current through it are always in-phase
with each other). (Figure 9.7)

At first, one might expect this secondary coil current to cause additional magnetic flux in the
core. In fact, it does not. If more flux were induced in the core, it would cause more voltage to
be induced voltage in the primary coil (remember that e = d®/dt). This cannot happen, because
the primary coil’s induced voltage must remain at the same magnitude and phase in order to
balance with the applied voltage, in accordance with Kirchhoff’s voltage law. Consequently,
the magnetic flux in the core cannot be affected by secondary coil current. However, what does
change is the amount of mmf in the magnetic circuit.

Magnetomotive force is produced any time electrons move through a wire. Usually, this
mmf is accompanied by magnetic flux, in accordance with the mmf=®R “magnetic Ohm’s Law”
equation. In this case, though, additional flux is not permitted, so the only way the secondary
coil’s mmf may exist is if a counteracting mmf is generated by the primary coil, of equal mag-
nitude and opposite phase. Indeed, this is what happens, an alternating current forming in
the primary coil — 180° out of phase with the secondary coil’s current — to generate this coun-
teracting mmf and prevent additional core flux. Polarity marks and current direction arrows
have been added to the illustration to clarify phase relations: (Figure 9.8)

If you find this process a bit confusing, do not worry. Transformer dynamics is a complex
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Figure 9.7: Resistive load on secondary has voltage and current in-phase.

primary

secondary

Figure 9.8: Flux remains constant with application of a load. However, a counteracting mmf is
produced by the loaded secondary.



224 CHAPTER 9. TRANSFORMERS

subject. What is important to understand is this: when an AC voltage is applied to the primary
coil, it creates a magnetic flux in the core, which induces AC voltage in the secondary coil in-
phase with the source voltage. Any current drawn through the secondary coil to power a load
induces a corresponding current in the primary coil, drawing current from the source.

Notice how the primary coil is behaving as a load with respect to the AC voltage source,
and how the secondary coil is behaving as a source with respect to the resistor. Rather than
energy merely being alternately absorbed and returned the primary coil circuit, energy is now
being coupled to the secondary coil where it is delivered to a dissipative (energy-consuming)
load. As far as the source “knows,” its directly powering the resistor. Of course, there is also an
additional primary coil current lagging the applied voltage by 90°, just enough to magnetize
the core to create the necessary voltage for balancing against the source (the exciting current).

We call this type of device a transformer, because it transforms electrical energy into mag-
netic energy, then back into electrical energy again. Because its operation depends on electro-
magnetic induction between two stationary coils and a magnetic flux of changing magnitude
and “polarity,” transformers are necessarily AC devices. Its schematic symbol looks like two
inductors (coils) sharing the same magnetic core: (Figure 9.9)

Transformer

35

Figure 9.9: Schematic symbol for transformer consists of two inductor symbols, separated by
lines indicating a ferromagnetic core.

The two inductor coils are easily distinguished in the above symbol. The pair of verti-
cal lines represent an iron core common to both inductors. While many transformers have
ferromagnetic core materials, there are some that do not, their constituent inductors being
magnetically linked together through the air.

The following photograph shows a power transformer of the type used in gas-discharge
lighting. Here, the two inductor coils can be clearly seen, wound around an iron core. While
most transformer designs enclose the coils and core in a metal frame for protection, this partic-
ular transformer is open for viewing and so serves its illustrative purpose well: (Figure 9.10)

Both coils of wire can be seen here with copper-colored varnish insulation. The top coil is
larger than the bottom coil, having a greater number of “turns” around the core. In trans-
formers, the inductor coils are often referred to as windings, in reference to the manufacturing
process where wire is wound around the core material. As modeled in our initial example, the
powered inductor of a transformer is called the primary winding, while the unpowered coil is
called the secondary winding.

In the next photograph, Figure 9.11, a transformer is shown cut in half, exposing the cross-
section of the iron core as well as both windings. Like the transformer shown previously, this
unit also utilizes primary and secondary windings of differing turn counts. The wire gauge can
also be seen to differ between primary and secondary windings. The reason for this disparity
in wire gauge will be made clear in the next section of this chapter. Additionally, the iron core
can be seen in this photograph to be made of many thin sheets (laminations) rather than a



9.1. MUTUAL INDUCTANCE AND BASIC OPERATION 225

Figure 9.10: Example of a gas-discharge lighting transformer.

solid piece. The reason for this will also be explained in a later section of this chapter.

Figure 9.11: Transformer cross-section cut shows core and windings.

It is easy to demonstrate simple transformer action using SPICE, setting up the primary
and secondary windings of the simulated transformer as a pair of “mutual” inductors. (Fig-
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ure 9.12) The coefficient of magnetic field coupling is given at the end of the “k” line in the
SPICE circuit description, this example being set very nearly at perfection (1.000). This co-
efficient describes how closely “linked” the two inductors are, magnetically. The better these
two inductors are magnetically coupled, the more efficient the energy transfer between them
should be.

(for SPICE to measure current)

R il

1 bogusl 2 3 4

AR 11
(very small) O V
Vl®1OV L1§H L, Rloadzlkg
100 H 100 H
0 0 (verylarge) | 5 5
RbogusZ

Figure 9.12: Spice circuit for coupled inductors.

t ransf or ner

vl 1 0 ac 10 sin

rbogusl 1 2 le-12
rbogus2 5 0 9el2

12 0 100

2 35100

** This line tells SPICE that the two inductors
** |1 and |2 are magnetically ‘‘linked ' together

k 1112 0.999

vil 3 4 ac O

rload 4 5 1k

.ac lin 1 60 60

.print ac v(2,0) i(vl)
.print ac v(3,5) i(vil)
.end

Note: the Ry,4us resistors are required to satisfy certain quirks of SPICE. The first breaks
the otherwise continuous loop between the voltage source and Li; which would not be permitted
by SPICE. The second provides a path to ground (node 0) from the secondary circuit, necessary
because SPICE cannot function with any ungrounded circuits.

Note that with equal inductances for both windings (100 Henrys each), the AC voltages and
currents are nearly equal for the two. The difference between primary and secondary currents
is the magnetizing current spoken of earlier: the 90° lagging current necessary to magnetize
the core. As is seen here, it is usually very small compared to primary current induced by the
load, and so the primary and secondary currents are almost equal. What you are seeing here
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freq v(2) i(vl)

6. 000E+01 1. 000E+01 9. 975E- 03 Primary wi ndi ng
freq v(3,5) i(vil)

6. 000E+01 9. 962E+00 9. 962E- 03 Secondary wi ndi ng

is quite typical of transformer efficiency. Anything less than 95% efficiency is considered poor
for modern power transformer designs, and this transfer of power occurs with no moving parts
or other components subject to wear.

If we decrease the load resistance so as to draw more current with the same amount of volt-
age, we see that the current through the primary winding increases in response. Even though
the AC power source is not directly connected to the load resistance (rather, it is electromag-
netically “coupled”), the amount of current drawn from the source will be almost the same as
the amount of current that would be drawn if the load were directly connected to the source.
Take a close look at the next two SPICE simulations, showing what happens with different
values of load resistors:

t ransf or ner

vl 1 0 ac 10 sin
rbogusl 1 2 le-12
rbogus2 5 0 9el2

1 2 0 100

2 3 5100

k 1112 0.999

vil 34 ac O

** Note | oad resistance val ue of 200 ohns
rload 4 5 200

.ac lin 1 60 60

.print ac v(2,0) i(vl)
.print ac v(3,5) i(vil)

.end

freq v(2) i(vl)

6. 000E+01 1. 000E+01 4. 679E-02
freq v(3,5) i(vil)

6. 000E+01 9. 348E+00 4. 674E-02

Notice how the primary current closely follows the secondary current. In our first simula-
tion, both currents were approximately 10 mA, but now they are both around 47 mA. In this
second simulation, the two currents are closer to equality, because the magnetizing current
remains the same as before while the load current has increased. Note also how the secondary
voltage has decreased some with the heavier (greater current) load. Let’s try another simula-
tion with an even lower value of load resistance (15 2):

Our load current is now 0.13 amps, or 130 mA, which is substantially higher than the
last time. The primary current is very close to being the same, but notice how the secondary



228 CHAPTER 9. TRANSFORMERS

t ransf or mer

vl 1 0 ac 10 sin
rbogusl 1 2 1le-12
rbogus2 5 0 9el2

12 0 100

2 35100

k 1112 0.999

vil 3 4 ac O

rload 4 5 15

.ac lin 1 60 60

.print ac v(2,0) i(vl)
.print ac v(3,5) i(vil)

.end

freq v(2) i (vl)

6. 000E+01 1. 000E+01 1.301E-01
freq v(3,5) i(vil)

6. 000E+01 1. 950E+00 1. 300E-01

voltage has fallen well below the primary voltage (1.95 volts versus 10 volts at the primary).
The reason for this is an imperfection in our transformer design: because the primary and
secondary inductances aren’t perfectly linked (a k factor of 0.999 instead of 1.000) there is
“stray” or “leakage” inductance. In other words, some of the magnetic field isn’t linking with
the secondary coil, and thus cannot couple energy to it: (Figure 9.13)

R

leakage
flux

Figure 9.13: Leakage inductance is due to magnetic flux not cutting both windings.

Consequently, this “leakage” flux merely stores and returns energy to the source circuit
via self-inductance, effectively acting as a series impedance in both primary and secondary
circuits. Voltage gets dropped across this series impedance, resulting in a reduced load voltage:
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voltage across the load “sags” as load current increases. (Figure 9.14)

ideal
-z====s transformer -zzzsss
‘leakage ‘leakage
inductance ; - inductance
) Il 2
Source Load

Figure 9.14: Equivalent circuit models leakage inductance as series inductors independent of
the “ideal transformer”.

If we change the transformer design to have better magnetic coupling between the primary
and secondary coils, the figures for voltage between primary and secondary windings will be
much closer to equality again:

t ransf or mer

vl 1 0 ac 10 sin
rbogusl 1 2 le-12
rbogus2 5 0 9el2

12 0 100

2 35 100

*x Coupling factor = 0.99999 instead of 0.999
k 1112 0.99999

vil 3 4 ac O

rload 4 5 15

.ac lin 1 60 60

.print ac v(2,0) i(vl)
.print ac v(3,5) i(vil)

.end

freq v(2) i(vl)

6. 000E+01 1. 000E+01 6. 658E- 01
freq v(3,5) i(vil)

6. 000E+01 9. 987E+00 6. 658E- 01

Here we see that our secondary voltage is back to being equal with the primary, and the
secondary current is equal to the primary current as well. Unfortunately, building a real
transformer with coupling this complete is very difficult. A compromise solution is to design
both primary and secondary coils with less inductance, the strategy being that less inductance
overall leads to less “leakage” inductance to cause trouble, for any given degree of magnetic
coupling inefficiency. This results in a load voltage that is closer to ideal with the same (high
current heavy) load and the same coupling factor:

Simply by using primary and secondary coils of less inductance, the load voltage for this
heavy load (high current) has been brought back up to nearly ideal levels (9.977 volts). At this
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t ransf or mer

vl 1 0 ac 10 sin

rbogusl 1 2 1le-12

rbogus2 5 0 9el2

*+* jnductance = 1 henry instead of 100 henrys
1201

12351

k 1112 0.999

vil 3 4 ac O

rload 4 5 15

.ac lin 1 60 60

.print ac v(2,0) i(vl)
.print ac v(3,5) i(vil)

.end

freq v(2) i(vl)

6. 000E+01 1. 000E+01 6. 664E-01
freq v(3,5) i(vil)

6. 000E+01 9. 977E+00 6. 652E- 01

point, one might ask, “If less inductance is all that’s needed to achieve near-ideal performance
under heavy load, then why worry about coupling efficiency at all? If its impossible to build a
transformer with perfect coupling, but easy to design coils with low inductance, then why not
just build all transformers with low-inductance coils and have excellent efficiency even with
poor magnetic coupling?”

The answer to this question is found in another simulation: the same low-inductance trans-
former, but this time with a lighter load (less current) of 1 k(2 instead of 15 Q:

t ransf or ner

vl 1 0 ac 10 sin

rbogusl 1 2 1le-12
rbogus2 5 0 9el2

1201

12351

k 1112 0.999

vil 34 ac O

rload 4 5 1k

.ac lin 1 60 60

.print ac v(2,0) i(vl)

.print ac v(3,5) i(vil)
.end

With lower winding inductances, the primary and secondary voltages are closer to being
equal, but the primary and secondary currents are not. In this particular case, the primary
current is 28.35 mA while the secondary current is only 9.990 mA: almost three times as much
current in the primary as the secondary. Why is this? With less inductance in the primary
winding, there is less inductive reactance, and consequently a much larger magnetizing cur-
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freq v(2) i(vl)

6. 000E+01 1. 000E+01 2. 835E- 02
freq v(3,5) i(vil)

6. 000E+01 9. 990E+00 9. 990E- 03

rent. A substantial amount of the current through the primary winding merely works to mag-
netize the core rather than transfer useful energy to the secondary winding and load.

An ideal transformer with identical primary and secondary windings would manifest equal
voltage and current in both sets of windings for any load condition. In a perfect world, trans-
formers would transfer electrical power from primary to secondary as smoothly as though the
load were directly connected to the primary power source, with no transformer there at all.
However, you can see this ideal goal can only be met if there is perfect coupling of magnetic
flux between primary and secondary windings. Being that this is impossible to achieve, trans-
formers must be designed to operate within certain expected ranges of voltages and loads in
order to perform as close to ideal as possible. For now, the most important thing to keep in
mind is a transformer’s basic operating principle: the transfer of power from the primary to
the secondary circuit via electromagnetic coupling.

e REVIEW:

e Mutual inductance is where the magnetic flux of two or more inductors are “linked” so
that voltage is induced in one coil proportional to the rate-of-change of current in another.

e A transformer is a device made of two or more inductors, one of which is powered by AC,
inducing an AC voltage across the second inductor. If the second inductor is connected to
a load, power will be electromagnetically coupled from the first inductor’s power source
to that load.

e The powered inductor in a transformer is called the primary winding. The unpowered
inductor in a transformer is called the secondary winding.

e Magnetic flux in the core (®) lags 90° behind the source voltage waveform. The current
drawn by the primary coil from the source to produce this flux is called the magnetizing
current, and it also lags the supply voltage by 90°.

e Total primary current in an unloaded transformer is called the exciting current, and is
comprised of magnetizing current plus any additional current necessary to overcome core
losses. It is never perfectly sinusoidal in a real transformer, but may be made more so
if the transformer is designed and operated so that magnetic flux density is kept to a
minimum.

e Core flux induces a voltage in any coil wrapped around the core. The induces voltage(s)
are ideally in- phase with the primary winding source voltage and share the same wave-
shape.

e Any current drawn through the secondary winding by a load will be “reflected” to the pri-
mary winding and drawn from the voltage source, as if the source were directly powering
a similar load.
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9.2 Step-up and step-down transformers

So far, we’ve observed simulations of transformers where the primary and secondary windings
were of identical inductance, giving approximately equal voltage and current levels in both
circuits. Equality of voltage and current between the primary and secondary sides of a trans-
former, however, is not the norm for all transformers. If the inductances of the two windings
are not equal, something interesting happens:

transf or ner

vl 1 0 ac 10 sin
rbogusl 1 2 le-12
rbogus2 5 0 9el2

1 2 0 10000

2 35 100

k 11212 0.999

vil 3 4 ac O

rload 4 5 1k

.ac lin 1 60 60

.print ac v(2,0) i(vl)
.print ac v(3,5) i(vil)

.end

freq v(2) i(vl)

6. 000E+01 1. 000E+01 9. 975E- 05 Primary w ndi ng
freq v(3,5) i(vil)

6. 000E+01 9. 962E- 01 9. 962E- 04 Secondary wi ndi ng

Notice how the secondary voltage is approximately ten times less than the primary voltage
(0.9962 volts compared to 10 volts), while the secondary current is approximately ten times
greater (0.9962 mA compared to 0.09975 mA). What we have here is a device that steps voltage
down by a factor of ten and current up by a factor of ten: (Figure 9.15)

Primary Secondary
winding winding

Figure 9.15: Turns ratio of 10:1 yields 10:1 primary:secondary voltage ratio and 1:10 pri-
mary:secondary current ratio.

This is a very useful device, indeed. With it, we can easily multiply or divide voltage and
current in AC circuits. Indeed, the transformer has made long-distance transmission of elec-
tric power a practical reality, as AC voltage can be “stepped up” and current “stepped down”
for reduced wire resistance power losses along power lines connecting generating stations with
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loads. At either end (both the generator and at the loads), voltage levels are reduced by trans-
formers for safer operation and less expensive equipment. A transformer that increases volt-
age from primary to secondary (more secondary winding turns than primary winding turns)
is called a step-up transformer. Conversely, a transformer designed to do just the opposite is
called a step-down transformer.

Let’s re-examine a photograph shown in the previous section: (Figure 9.16)

Figure 9.16: Transformer cross-section showing primary and secondary windings is a few
inches tall (approximately 10 cm).

This is a step-down transformer, as evidenced by the high turn count of the primary winding
and the low turn count of the secondary. As a step-down unit, this transformer converts high-
voltage, low-current power into low-voltage, high-current power. The larger-gauge wire used
in the secondary winding is necessary due to the increase in current. The primary winding,
which doesn’t have to conduct as much current, may be made of smaller-gauge wire.

In case you were wondering, it is possible to operate either of these transformer types back-
wards (powering the secondary winding with an AC source and letting the primary winding
power a load) to perform the opposite function: a step-up can function as a step-down and
visa-versa. However, as we saw in the first section of this chapter, efficient operation of a
transformer requires that the individual winding inductances be engineered for specific op-
erating ranges of voltage and current, so if a transformer is to be used “backwards” like this
it must be employed within the original design parameters of voltage and current for each
winding, lest it prove to be inefficient (or lest it be damaged by excessive voltage or current!).

Transformers are often constructed in such a way that it is not obvious which wires lead
to the primary winding and which lead to the secondary. One convention used in the electric
power industry to help alleviate confusion is the use of “H” designations for the higher-voltage
winding (the primary winding in a step-down unit; the secondary winding in a step-up) and “X”
designations for the lower-voltage winding. Therefore, a simple power transformer will have
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wires labeled “H,”, “Hy”, “X;”, and “X5”. There is usually significance to the numbering of the
wires (H; versus Hs, etc.), which we'll explore a little later in this chapter.

The fact that voltage and current get “stepped” in opposite directions (one up, the other
down) makes perfect sense when you recall that power is equal to voltage times current, and
realize that transformers cannot produce power, only convert it. Any device that could output
more power than it took in would violate the Law of Energy Conservation in physics, namely
that energy cannot be created or destroyed, only converted. As with the first transformer
example we looked at, power transfer efficiency is very good from the primary to the secondary
sides of the device.

The practical significance of this is made more apparent when an alternative is consid-
ered: before the advent of efficient transformers, voltage/current level conversion could only be
achieved through the use of motor/generator sets. A drawing of a motor/generator set reveals
the basic principle involved: (Figure 9.17)

A motor/generator set

Power Power
in out
z \ Shaft z \
coupling
Motor I Generator

Figure 9.17: Motor generator illustrates the basic principle of the transformer.

In such a machine, a motor is mechanically coupled to a generator, the generator designed to
produce the desired levels of voltage and current at the rotating speed of the motor. While both
motors and generators are fairly efficient devices, the use of both in this fashion compounds
their inefficiencies so that the overall efficiency is in the range of 90% or less. Furthermore,
because motor/generator sets obviously require moving parts, mechanical wear and balance
are factors influencing both service life and performance. Transformers, on the other hand, are
able to convert levels of AC voltage and current at very high efficiencies with no moving parts,
making possible the widespread distribution and use of electric power we take for granted.

In all fairness it should be noted that motor/generator sets have not necessarily been ob-
soleted by transformers for all applications. While transformers are clearly superior over
motor/generator sets for AC voltage and current level conversion, they cannot convert one
frequency of AC power to another, or (by themselves) convert DC to AC or visa-versa. Mo-
tor/generator sets can do all these things with relative simplicity, albeit with the limitations of
efficiency and mechanical factors already described. Motor/generator sets also have the unique
property of kinetic energy storage: that is, if the motor’s power supply is momentarily inter-
rupted for any reason, its angular momentum (the inertia of that rotating mass) will maintain
rotation of the generator for a short duration, thus isolating any loads powered by the genera-
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tor from “glitches” in the main power system.

Looking closely at the numbers in the SPICE analysis, we should see a correspondence
between the transformer’s ratio and the two inductances. Notice how the primary inductor (11)
has 100 times more inductance than the secondary inductor (10000 H versus 100 H), and that
the measured voltage step-down ratio was 10 to 1. The winding with more inductance will have
higher voltage and less current than the other. Since the two inductors are wound around the
same core material in the transformer (for the most efficient magnetic coupling between the
two), the parameters affecting inductance for the two coils are equal except for the number of
turns in each coil. If we take another look at our inductance formula, we see that inductance
is proportional to the square of the number of coil turns:

NZuA
|
Where,

L = Inductance of coil in Henrys

N = Number of turns in wire coil (straight wire = 1)

K = Permeability of core material (absolute, not relative)
A = Area of coil in square meters

| = Average length of coil in meters

L=

So, it should be apparent that our two inductors in the last SPICE transformer example cir-
cuit — with inductance ratios of 100:1 — should have coil turn ratios of 10:1, because 10 squared
equals 100. This works out to be the same ratio we found between primary and secondary volt-
ages and currents (10:1), so we can say as a rule that the voltage and current transformation
ratio is equal to the ratio of winding turns between primary and secondary.

Step-down transformer

@ high voltage low voltage % load

many turns few turns
low current high current

Figure 9.18: Step-down transformer: (many turns :few turns).

The step-up/step-down effect of coil turn ratios in a transformer (Figure 9.18) is analogous
to gear tooth ratios in mechanical gear systems, transforming values of speed and torque in
much the same way: (Figure 9.19)

Step-up and step-down transformers for power distribution purposes can be gigantic in pro-
portion to the power transformers previously shown, some units standing as tall as a home.
The following photograph shows a substation transformer standing about twelve feet tall: (Fig-
ure 9.20)
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LARGE GEAR
(many teeth)
SMALL GEAR
(few teeth)

low torque
high torque high speed
low speed

Figure 9.19: Torque reducing gear train steps torque down, while stepping speed up.

Figure 9.20: Substation transformer.
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e REVIEW:

e Transformers “step up” or “step down” voltage according to the ratios of primary to sec-
ondary wire turns.

) ) Neecond
Voltage transformation ratio = ——""2¥
primary
. . Nprimary
Current transformation ratio = —2"
secondary

Where,
N = number of turns in winding

e A transformer designed to increase voltage from primary to secondary is called a step-
up transformer. A transformer designed to reduce voltage from primary to secondary is
called a step-down transformer.

e The transformation ratio of a transformer will be equal to the square root of its primary
to secondary inductance (L) ratio.

L
Voltage transformation ratio =\ / LE;MHV

Y primary

9.3 Electrical isolation

Aside from the ability to easily convert between different levels of voltage and current in AC
and DC circuits, transformers also provide an extremely useful feature called isolation, which
is the ability to couple one circuit to another without the use of direct wire connections. We can
demonstrate an application of this effect with another SPICE simulation: this time showing
“ground” connections for the two circuits, imposing a high DC voltage between one circuit and
ground through the use of an additional voltage source:(Figure 9.21)

vl 1 0 ac 10 sin
rbogusl 1 2 1le-12

v2 5 0 dc 250

1 2 0 10000

2 35100

k 11212 0.999

vil 3 4 ac O

rload 4 5 1k

.ac lin 1 60 60

.print ac v(2,0) i(vl)
.print ac v(3,5) i(vil)
.end
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(for SPICE to measure current) V.

1 Roogs 2 3 o 4
wy I
oV

v, () 10V ngHé L, R.oa%lkg
10kH [ 115100 H
0 0 5 5
V, — 250V
o

Figure 9.21: Transformer isolates 10 V,. at V| from 250 V¢ at V5.

DC vol tages referenced to ground (node 0):
(1) 0. 0000 (2) 0. 0000 (3) 250.0000
(4) 250.0000 (5) 250.0000

AC vol t ages:

freq v(2) i(vl)

6. 000E+01 1. 000E+01 9. 975E-05 Primary w ndi ng
freq v(3,5) i(vil)

6. 000E+01 9. 962E- 01 9. 962E- 04 Secondary w ndi ng
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SPICE shows the 250 volts DC being impressed upon the secondary circuit elements with
respect to ground, (Figure 9.21) but as you can see there is no effect on the primary circuit (zero
DC voltage) at nodes 1 and 2, and the transformation of AC power from primary to secondary
circuits remains the same as before. The impressed voltage in this example is often called a
common-mode voltage because it is seen at more than one point in the circuit with reference
to the common point of ground. The transformer isolates the common-mode voltage so that it
is not impressed upon the primary circuit at all, but rather isolated to the secondary side. For
the record, it does not matter that the common-mode voltage is DC, either. It could be AC, even
at a different frequency, and the transformer would isolate it from the primary circuit all the
same.

There are applications where electrical isolation is needed between two AC circuit without
any transformation of voltage or current levels. In these instances, transformers called isola-
tion transformers having 1:1 transformation ratios are used. A benchtop isolation transformer
is shown in Figure 9.22.

Figure 9.22: Isolation transformer isolates power out from the power line.

e REVIEW:

e By being able to transfer power from one circuit to another without the use of intercon-
necting conductors between the two circuits, transformers provide the useful feature of
electrical isolation.

e Transformers designed to provide electrical isolation without stepping voltage and cur-
rent either up or down are called isolation transformers.

9.4 Phasing

Since transformers are essentially AC devices, we need to be aware of the phase relationships
between the primary and secondary circuits. Using our SPICE example from before, we can
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plot the waveshapes (Figure 9.23) for the primary and secondary circuits and see the phase
relations for ourselves:

spi ce transient analysis file for use wth nutneg:
transf or ner

vl 1 0 sin(0 15 60 0 0)
rbogusl 1 2 le-12

v2 5 0 dc 250

1 2 0 10000

2 35100

k 11212 0.999

vil 3 4 ac O

rload 4 5 1k

.tran 0.5m 17m

.end

nut meg commands:
setplot tranl

plot v(2) v(3,5)

e

-

OO 4

|
4]
+
<

Figure 9.23: Secondary voltage V(3,5) is in-phase with primary voltage V(2), and stepped down
by factor of ten.

In going from primary, V(2), to secondary, V(3,5), the voltage was stepped down by a factor
of ten, (Figure 9.23) , and the current was stepped up by a factor of 10. (Figure 9.24) Both
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current (Figure 9.24) and voltage (Figure 9.23) waveforms are in-phase in going from primary
to secondary.

nut meg commands:
setplot tranl
pl ot | (L1#branch) | (L2#branch)

mUnits" I{L1#branch I{L2#branch)

I{L2#branch)

I{L1#branchr

|
(=]
+
4]

Figure 9.24: Primary and secondary currents are in-phase. Secondary current is stepped up
by a factor of ten.

It would appear that both voltage and current for the two transformer windings are in-
phase with each other, at least for our resistive load. This is simple enough, but it would be
nice to know which way we should connect a transformer in order to ensure the proper phase
relationships be kept. After all, a transformer is nothing more than a set of magnetically-
linked inductors, and inductors don’t usually come with polarity markings of any kind. If we
were to look at an unmarked transformer, we would have no way of knowing which way to hook
it up to a circuit to get in-phase (or 180° out-of-phase) voltage and current: (Figure 9.25)

+ + -

Figure 9.25: As a practical matter, the polarity of a transformer can be ambiguous.
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Since this is a practical concern, transformer manufacturers have come up with a sort of
polarity marking standard to denote phase relationships. It is called the dot convention, and
is nothing more than a dot placed next to each corresponding leg of a transformer winding:
(Figure 9.26)

NN NN
@ . - v®A
® 3

Figure 9.26: A pair of dots indicates like polarity.

Typically, the transformer will come with some kind of schematic diagram labeling the wire
leads for primary and secondary windings. On the diagram will be a pair of dots similar to
what is seen above. Sometimes dots will be omitted, but when “H” and “X” labels are used
to label transformer winding wires, the subscript numbers are supposed to represent winding
polarity. The “1” wires (H; and X;) represent where the polarity-marking dots would normally
be placed.

The similar placement of these dots next to the top ends of the primary and secondary
windings tells us that whatever instantaneous voltage polarity seen across the primary wind-
ing will be the same as that across the secondary winding. In other words, the phase shift from
primary to secondary will be zero degrees.

On the other hand, if the dots on each winding of the transformer do not match up, the
phase shift will be 180° between primary and secondary, like this: (Figure 9.27)

N N
VC\A
(O] @

\7/ A
.
.

Figure 9.27: Out of phase: primary red to dot, secondary black to dot.

Of course, the dot convention only tells you which end of each winding is which, relative to
the other winding(s). If you want to reverse the phase relationship yourself, all you have to do
is swap the winding connections like this: (Figure 9.28)

e REVIEW:
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(Y (Y

INDA A
°

Figure 9.28: In phase: primary red to dot, secondary red to dot.

e The phase relationships for voltage and current between primary and secondary circuits
of a transformer are direct: ideally, zero phase shift.

e The dot convention is a type of polarity marking for transformer windings showing which
end of the winding is which, relative to the other windings.

9.5 Winding configurations

Transformers are very versatile devices. The basic concept of energy transfer between mutual
inductors is useful enough between a single primary and single secondary coil, but transform-
ers don’t have to be made with just two sets of windings. Consider this transformer circuit:
(Figure 9.29)

load #1

load #2

Figure 9.29: Transformer with multiple secondaries, provides multiple output voltages.

Here, three inductor coils share a common magnetic core, magnetically “coupling” or “link-
ing” them together. The relationship of winding turn ratios and voltage ratios seen with a
single pair of mutual inductors still holds true here for multiple pairs of coils. It is entirely
possible to assemble a transformer such as the one above (one primary winding, two secondary
windings) in which one secondary winding is a step-down and the other is a step-up. In fact,
this design of transformer was quite common in vacuum tube power supply circuits, which
were required to supply low voltage for the tubes’ filaments (typically 6 or 12 volts) and high
voltage for the tubes’ plates (several hundred volts) from a nominal primary voltage of 110
volts AC. Not only are voltages and currents of completely different magnitudes possible with
such a transformer, but all circuits are electrically isolated from one another.



244 CHAPTER 9. TRANSFORMERS

Figure 9.30: Photograph of multiple-winding transformer with six windings, a primary and
five secondaries.

The transformer in Figure 9.30 is intended to provide both high and low voltages necessary
in an electronic system using vacuum tubes. Low voltage is required to power the filaments
of vacuum tubes, while high voltage is required to create the potential difference between the
plate and cathode elements of each tube. One transformer with multiple windings suffices
elegantly to provide all the necessary voltage levels from a single 115 V source. The wires for
this transformer (15 of them!) are not shown in the photograph, being hidden from view.

If electrical isolation between secondary circuits is not of great importance, a similar effect
can be obtained by “tapping” a single secondary winding at multiple points along its length,

like Figure 9.31.
% load #1

% load #2

Figure 9.31: A single tapped secondary provides multiple voltages.

A tap is nothing more than a wire connection made at some point on a winding between
the very ends. Not surprisingly, the winding turn/voltage magnitude relationship of a normal
transformer holds true for all tapped segments of windings. This fact can be exploited to
produce a transformer capable of multiple ratios: (Figure 9.32)

Carrying the concept of winding taps further, we end up with a “variable transformer,”
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multi-pole
switch

% load

Figure 9.32: A tapped secondary using a switch to select one of many possible voltages.

where a sliding contact is moved along the length of an exposed secondary winding, able to
connect with it at any point along its length. The effect is equivalent to having a winding tap
at every turn of the winding, and a switch with poles at every tap position: (Figure 9.33)

Variable transformer

% load

Figure 9.33: A sliding contact on the secondary continuously varies the secondary voltage.

One consumer application of the variable transformer is in speed controls for model train
sets, especially the train sets of the 1950’s and 1960’s. These transformers were essentially
step-down units, the highest voltage obtainable from the secondary winding being substan-
tially less than the primary voltage of 110 to 120 volts AC. The variable-sweep contact provided
a simple means of voltage control with little wasted power, much more efficient than control
using a variable resistor!

Moving-slide contacts are too impractical to be used in large industrial power transformer
designs, but multi-pole switches and winding taps are common for voltage adjustment. Adjust-
ments need to be made periodically in power systems to accommodate changes in loads over
months or years in time, and these switching circuits provide a convenient means. Typically,
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such “tap switches” are not engineered to handle full-load current, but must be actuated only
when the transformer has been de-energized (no power).

Seeing as how we can tap any transformer winding to obtain the equivalent of several
windings (albeit with loss of electrical isolation between them), it makes sense that it should be
possible to forego electrical isolation altogether and build a transformer from a single winding.
Indeed this is possible, and the resulting device is called an autotransformer: (Figure 9.34)

Autotransformer

é

Figure 9.34: This autotransformer steps voltage up with a single tapped winding, saving cop-
per, sacrificing isolation.

The autotransformer depicted above performs a voltage step-up function. A step-down au-
totransformer would look something like Figure 9.35.

Autotransformer

load

Figure 9.35: This auto transformer steps voltage down with a single copper-saving tapped
winding.
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Autotransformers find popular use in applications requiring a slight boost or reduction in
voltage to a load. The alternative with a normal (isolated) transformer would be to either have
just the right primary/secondary winding ratio made for the job or use a step-down configu-
ration with the secondary winding connected in series-aiding (“boosting”) or series-opposing
(“bucking”) fashion. Primary, secondary, and load voltages are given to illustrate how this
would work.

First, the “boosting” configuration. In Figure 9.36 the secondary coil’s polarity is oriented
so that its voltage directly adds to the primary voltage.

"boosting"

120v (V) 150V

Figure 9.36: Ordinary transformer wired as an autotransformer to boost the line voltage.

Next, the “bucking” configuration. In Figure 9.37 the secondary coil’s polarity is oriented so
that its voltage directly subtracts from the primary voltage:

"bucking”

120V @ éaov 90V

Figure 9.37: Ordinary transformer wired as an autotransformer to buck the line voltage down.

The prime advantage of an autotransformer is that the same boosting or bucking function
is obtained with only a single winding, making it cheaper and lighter to manufacture than a
regular (isolating) transformer having both primary and secondary windings.

Like regular transformers, autotransformer windings can be tapped to provide variations
in ratio. Additionally, they can be made continuously variable with a sliding contact to tap
the winding at any point along its length. The latter configuration is popular enough to have
earned itself its own name: the Variac. (Figure 9.38)

Small variacs for benchtop use are popular pieces of equipment for the electronics experi-
menter, being able to step household AC voltage down (or sometimes up as well) with a wide,
fine range of control by a simple twist of a knob.
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The "Variac"
variable autotransformer

I

@

load

Figure 9.38: A variac is an autotransformer with a sliding tap.

¢ REVIEW:

e Transformers can be equipped with more than just a single primary and single secondary
winding pair. This allows for multiple step-up and/or step-down ratios in the same device.

e Transformer windings can also be “tapped:” that is, intersected at many points to seg-
ment a single winding into sections.

e Variable transformers can be made by providing a movable arm that sweeps across the
length of a winding, making contact with the winding at any point along its length. The
winding, of course, has to be bare (no insulation) in the area where the arm sweeps.

e An autotransformer is a single, tapped inductor coil used to step up or step down voltage
like a transformer, except without providing electrical isolation.

e A Variac is a variable autotransformer.

9.6 Voltage regulation

As we saw in a few SPICE analyses earlier in this chapter, the output voltage of a transformer
varies some with varying load resistances, even with a constant voltage input. The degree
of variance is affected by the primary and secondary winding inductances, among other fac-
tors, not the least of which includes winding resistance and the degree of mutual inductance
(magnetic coupling) between the primary and secondary windings. For power transformer ap-
plications, where the transformer is seen by the load (ideally) as a constant source of voltage,
it is good to have the secondary voltage vary as little as possible for wide variances in load
current.

The measure of how well a power transformer maintains constant secondary voltage over a
range of load currents is called the transformer’s voltage regulation. It can be calculated from
the following formula:

E - .
Regulation percentage = — Eruio (100%)

Efull—load
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“Full-load” means the point at which the transformer is operating at maximum permissible
secondary current. This operating point will be determined primarily by the winding wire
size (ampacity) and the method of transformer cooling. Taking our first SPICE transformer
simulation as an example, let’s compare the output voltage with a 1 kQ2 load versus a 200 (2
load (assuming that the 200 Q2 load will be our “full load” condition). Recall if you will that our
constant primary voltage was 10.00 volts AC:

freq v(3,5) i(vil)
6. 000E+01 9. 962E+00 9. 962E- 03 Qut put with 1k ohm | oad
freq v(3,5) i(vil)
6. 000E+01 9. 348E+00 4. 674E-02 Qut put with 200 ohm | oad

Notice how the output voltage decreases as the load gets heavier (more current). Now let’s
take that same transformer circuit and place a load resistance of extremely high magnitude
across the secondary winding to simulate a “no-load” condition: (See "transformer” spice list”)

t ransf or ner

vl 1 0 ac 10 sin
rbogusl 1 2 le-12
rbogus2 5 0 9el2

1 2 0 100

2 3 5 100

k 1112 0.999

vil 34 ac O

rload 4 5 9el2

.ac lin 1 60 60

.print ac v(2,0) i(vl)
.print ac v(3,5) i(vil)

.end

freq v(2) i(vl)

6. 000E+01 1. 000E+01 2. 653E-04

freq v(3,5) i(vil)

6. 000E+01 9. 990E+00 1.110E-12 Qut put with (alnost) no | oad

So, we see that our output (secondary) voltage spans a range of 9.990 volts at (virtually) no
load and 9.348 volts at the point we decided to call “full load.” Calculating voltage regulation
with these figures, we get:

. . V-9 \%
Regulation percentage = 9.990V - 9.348 (100%)
9.348V

Regulation percentage = 6.8678 %

Incidentally, this would be considered rather poor (or “loose”) regulation for a power trans-
former. Powering a simple resistive load like this, a good power transformer should exhibit
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a regulation percentage of less than 3%. Inductive loads tend to create a condition of worse
voltage regulation, so this analysis with purely resistive loads was a “best-case” condition.

There are some applications, however, where poor regulation is actually desired. One such
case is in discharge lighting, where a step-up transformer is required to initially generate a
high voltage (necessary to “ignite” the lamps), then the voltage is expected to drop off once the
lamp begins to draw current. This is because discharge lamps’ voltage requirements tend to be
much lower after a current has been established through the arc path. In this case, a step-up
transformer with poor voltage regulation suffices nicely for the task of conditioning power to
the lamp.

Another application is in current control for AC arc welders, which are nothing more than
step-down transformers supplying low-voltage, high-current power for the welding process. A
high voltage is desired to assist in “striking” the arc (getting it started), but like the discharge
lamp, an arc doesn’t require as much voltage to sustain itself once the air has been heated to
the point of ionization. Thus, a decrease of secondary voltage under high load current would
be a good thing. Some arc welder designs provide arc current adjustment by means of a mov-
able iron core in the transformer, cranked in or out of the winding assembly by the operator.
Moving the iron slug away from the windings reduces the strength of magnetic coupling be-
tween the windings, which diminishes no-load secondary voltage and makes for poorer voltage
regulation.

No exposition on transformer regulation could be called complete without mention of an un-
usual device called a ferroresonant transformer. “Ferroresonance” is a phenomenon associated
with the behavior of iron cores while operating near a point of magnetic saturation (where the
core is so strongly magnetized that further increases in winding current results in little or no
increase in magnetic flux).

While being somewhat difficult to describe without going deep into electromagnetic the-
ory, the ferroresonant transformer is a power transformer engineered to operate in a condition
of persistent core saturation. That is, its iron core is “stuffed full” of magnetic lines of flux
for a large portion of the AC cycle so that variations in supply voltage (primary winding cur-
rent) have little effect on the core’s magnetic flux density, which means the secondary winding
outputs a nearly constant voltage despite significant variations in supply (primary winding)
voltage. Normally, core saturation in a transformer results in distortion of the sinewave shape,
and the ferroresonant transformer is no exception. To combat this side effect, ferroresonant
transformers have an auxiliary secondary winding paralleled with one or more capacitors,
forming a resonant circuit tuned to the power supply frequency. This “tank circuit” serves as
a filter to reject harmonics created by the core saturation, and provides the added benefit of
storing energy in the form of AC oscillations, which is available for sustaining output winding
voltage for brief periods of input voltage loss (milliseconds’ worth of time, but certainly better
than nothing). (Figure 9.39)

In addition to blocking harmonics created by the saturated core, this resonant circuit also
“filters out” harmonic frequencies generated by nonlinear (switching) loads in the secondary
winding circuit and any harmonics present in the source voltage, providing “clean” power to
the load.

Ferroresonant transformers offer several features useful in AC power conditioning: con-
stant output voltage given substantial variations in input voltage, harmonic filtering between
the power source and the load, and the ability to “ride through” brief losses in power by keeping
a reserve of energy in its resonant tank circuit. These transformers are also highly tolerant
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AC power
output
AC power
input

Resonant LC circuit

Figure 9.39: Ferroresonant transformer provides voltage regulation of the output.

of excessive loading and transient (momentary) voltage surges. They are so tolerant, in fact,
that some may be briefly paralleled with unsynchronized AC power sources, allowing a load
to be switched from one source of power to another in a “make-before-break” fashion with no
interruption of power on the secondary side!

Unfortunately, these devices have equally noteworthy disadvantages: they waste a lot of
energy (due to hysteresis losses in the saturated core), generating significant heat in the pro-
cess, and are intolerant of frequency variations, which means they don’t work very well when
powered by small engine-driven generators having poor speed regulation. Voltages produced in
the resonant winding/capacitor circuit tend to be very high, necessitating expensive capacitors
and presenting the service technician with very dangerous working voltages. Some applica-
tions, though, may prioritize the ferroresonant transformer’s advantages over its disadvan-
tages. Semiconductor circuits exist to “condition” AC power as an alternative to ferroresonant
devices, but none can compete with this transformer in terms of sheer simplicity.

e REVIEW:

e Voltage regulation is the measure of how well a power transformer can maintain constant
secondary voltage given a constant primary voltage and wide variance in load current.
The lower the percentage (closer to zero), the more stable the secondary voltage and the
better the regulation it will provide.

e A ferroresonant transformer is a special transformer designed to regulate voltage at a
stable level despite wide variation in input voltage.

9.7 Special transformers and applications

9.7.1 Impedance matching

Because transformers can step voltage and current to different levels, and because power is
transferred equivalently between primary and secondary windings, they can be used to “con-
vert” the impedance of a load to a different level. That last phrase deserves some explanation,
so let’s investigate what it means.

The purpose of a load (usually) is to do something productive with the power it dissipates.
In the case of a resistive heating element, the practical purpose for the power dissipated is to
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heat something up. Loads are engineered to safely dissipate a certain maximum amount of
power, but two loads of equal power rating are not necessarily identical. Consider these two
1000 watt resistive heating elements: (Figure 9.40)

6250
125v (V) R 15.625 Q
Ploga = 1000 W
Ploag = 1000 W

Figure 9.40: Heating elements dissipate 1000 watts, at different voltage and current ratings.

Both heaters dissipate exactly 1000 watts of power, but they do so at different voltage and
current levels (either 250 volts and 4 amps, or 125 volts and 8 amps). Using Ohm’s Law to
determine the necessary resistance of these heating elements (R=E/I), we arrive at figures of
62.5 Q) and 15.625 Q, respectively. If these are AC loads, we might refer to their opposition
to current in terms of impedance rather than plain resistance, although in this case that’s all
they’re composed of (no reactance). The 250 volt heater would be said to be a higher impedance
load than the 125 volt heater.

If we desired to operate the 250 volt heater element directly on a 125 volt power system,
we would end up being disappointed. With 62.5 ) of impedance (resistance), the current would
only be 2 amps (I=E/R; 125/62.5), and the power dissipation would only be 250 watts (P=IE;
125 x 2), or one-quarter of its rated power. The impedance of the heater and the voltage of our
source would be mismatched, and we couldn’t obtain the full rated power dissipation from the
heater.

All hope is not lost, though. With a step-up transformer, we could operate the 250 volt
heater element on the 125 volt power system like Figure 9.41.

R e
62.5Q

1000 watts dissipation at the load resistor !

Figure 9.41: Step-up transformer operates 1000 watt 250 V heater from 125 V power source

The ratio of the transformer’s windings provides the voltage step-up and current step-down
we need for the otherwise mismatched load to operate properly on this system. Take a close
look at the primary circuit figures: 125 volts at 8 amps. As far as the power supply “knows,”
its powering a 15.625 Q) (R=E/I) load at 125 volts, not a 62.5 2 load! The voltage and current
figures for the primary winding are indicative of 15.625 (2 load impedance, not the actual 62.5
Q of the load itself. In other words, not only has our step-up transformer transformed voltage
and current, but it has transformed impedance as well.

The transformation ratio of impedance is the square of the voltage/current transformation
ratio, the same as the winding inductance ratio:
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. . Nscond
Voltage transformation ratio = Y
primary
. . Nprimary
Current transformation ratio =
Nsecondary

2

N
Impedance transformation ratio = <m>

primary
2
. Nsecondary
Inductanceratio= | ————
primary

Where,
N = number of turns in winding

This concurs with our example of the 2:1 step-up transformer and the impedance ratio of
62.5 Q to 15.625 Q (a 4:1 ratio, which is 2:1 squared). Impedance transformation is a highly
useful ability of transformers, for it allows a load to dissipate its full rated power even if the
power system is not at the proper voltage to directly do so.

Recall from our study of network analysis the Maximum Power Transfer Theorem, which
states that the maximum amount of power will be dissipated by a load resistance when that
load resistance is equal to the Thevenin/Norton resistance of the network supplying the power.
Substitute the word “impedance” for “resistance” in that definition and you have the AC version
of that Theorem. If we’re trying to obtain theoretical maximum power dissipation from a
load, we must be able to properly match the load impedance and source (Thevenin/Norton)
impedance together. This is generally more of a concern in specialized electric circuits such as
radio transmitter/antenna and audio amplifier/speaker systems. Let’s take an audio amplifier
system and see how it works: (Figure 9.42)

With an internal impedance of 500 (2, the amplifier can only deliver full power to a load
(speaker) also having 500 Q2 of impedance. Such a load would drop higher voltage and draw
less current than an 8 (2 speaker dissipating the same amount of power. If an 8 (2 speaker were
connected directly to the 500 Q2 amplifier as shown, the impedance mismatch would result in
very poor (low peak power) performance. Additionally, the amplifier would tend to dissipate
more than its fair share of power in the form of heat trying to drive the low impedance speaker.

To make this system work better, we can use a transformer to match these mismatched
impedances. Since we're going from a high impedance (high voltage, low current) supply to
a low impedance (low voltage, high current) load, we’ll need to use a step-down transformer:
(Figure 9.43)

To obtain an impedance transformation ratio of 500:8, we would need a winding ratio equal
to the square root of 500:8 (the square root of 62.5:1, or 7.906:1). With such a transformer in
place, the speaker will load the amplifier to just the right degree, drawing power at the correct
voltage and current levels to satisfy the Maximum Power Transfer Theorem and make for the
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Figure 9.42: Amplifier with impedance of 500 () drives 8 () at much less than maximum power.

impedance "matching"
transformer

Audio amplifier

| . Speaker
 Thevenin/Norton

Z=8Q

,,,,,,,,,,,,,,,,,

impedance ratio =500 : 8 winding ratio = 7.906 : 1

Figure 9.43: Impedance matching transformer matches 500 ) amplifier to 8 ) speaker for
maximum efficiency.
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most efficient power delivery to the load. The use of a transformer in this capacity is called
impedance matching.

Anyone who has ridden a multi-speed bicycle can intuitively understand the principle of
impedance matching. A human’s legs will produce maximum power when spinning the bicycle
crank at a particular speed (about 60 to 90 revolution per minute). Above or below that ro-
tational speed, human leg muscles are less efficient at generating power. The purpose of the
bicycle’s “gears” is to impedance-match the rider’s legs to the riding conditions so that they
always spin the crank at the optimum speed.

If the rider attempts to start moving while the bicycle is shifted into its “top” gear, he or she
will find it very difficult to get moving. Is it because the rider is weak? No, its because the high
step-up ratio of the bicycle’s chain and sprockets in that top gear presents a mismatch between
the conditions (lots of inertia to overcome) and their legs (needing to spin at 60-90 RPM for
maximum power output). On the other hand, selecting a gear that is too low will enable the
rider to get moving immediately, but limit the top speed they will be able to attain. Again, is
the lack of speed an indication of weakness in the bicyclist’s legs? No, its because the lower
speed ratio of the selected gear creates another type of mismatch between the conditions (low
load) and the rider’s legs (losing power if spinning faster than 90 RPM). It is much the same
with electric power sources and loads: there must be an impedance match for maximum system
efficiency. In AC circuits, transformers perform the same matching function as the sprockets
and chain (“gears”) on a bicycle to match otherwise mismatched sources and loads.

Impedance matching transformers are not fundamentally different from any other type of
transformer in construction or appearance. A small impedance-matching transformer (about
two centimeters in width) for audio-frequency applications is shown in the following photo-
graph: (Figure 9.44)

Figure 9.44: Audio frequency impedance matching transformer.

Another impedance-matching transformer can be seen on this printed circuit board, in the
upper right corner, to the immediate left of resistors R, and R;. It is labeled “T'1”: (Figure 9.45)
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Figure 9.45: Printed circuit board mounted audio impedance matching transformer, top right.

9.7.2 Potential transformers

Transformers can also be used in electrical instrumentation systems. Due to transformers’
ability to step up or step down voltage and current, and the electrical isolation they provide,
they can serve as a way of connecting electrical instrumentation to high-voltage, high current
power systems. Suppose we wanted to accurately measure the voltage of a 13.8 kV power
system (a very common power distribution voltage in American industry): (Figure 9.46)

Jisfoliage () 2 load

Figure 9.46: Direct measurement of high voltage by a voltmeter is a potential safety hazard.

Designing, installing, and maintaining a voltmeter capable of directly measuring 13,800
volts AC would be no easy task. The safety hazard alone of bringing 13.8 kV conductors into an
instrument panel would be severe, not to mention the design of the voltmeter itself. However,
by using a precision step-down transformer, we can reduce the 13.8 kV down to a safe level of
voltage at a constant ratio, and isolate it from the instrument connections, adding an additional
level of safety to the metering system: (Figure 9.47)
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Figure 9.47: Instrumentation application:“Potential transformer” precisely scales dangerous
high voltage to a safe value applicable to a conventional voltmeter.

Now the voltmeter reads a precise fraction, or ratio, of the actual system voltage, its scale
set to read as though it were measuring the voltage directly. The transformer keeps the in-
strument voltage at a safe level and electrically isolates it from the power system, so there is
no direct connection between the power lines and the instrument or instrument wiring. When
used in this capacity, the transformer is called a Potential Transformer, or simply PT.

Potential transformers are designed to provide as accurate a voltage step-down ratio as
possible. To aid in precise voltage regulation, loading is kept to a minimum: the voltmeter is
made to have high input impedance so as to draw as little current from the PT as possible. As
you can see, a fuse has been connected in series with the PTs primary winding, for safety and
ease of disconnecting the PT from the circuit.

A standard secondary voltage for a PT is 120 volts AC, for full-rated power line voltage.
The standard voltmeter range to accompany a PT is 150 volts, full-scale. PTs with custom
winding ratios can be manufactured to suit any application. This lends itself well to industry
standardization of the actual voltmeter instruments themselves, since the PT will be sized to
step the system voltage down to this standard instrument level.

9.7.3 Current transformers

Following the same line of thinking, we can use a transformer to step down current through
a power line so that we are able to safely and easily measure high system currents with inex-
pensive ammeters. Of course, such a transformer would be connected in series with the power
line, like (Figure 9.48).

Note that while the PT is a step-down device, the Current Transformer (or CT) is a step-up
device (with respect to voltage), which is what is needed to step down the power line current.
Quite often, CTs are built as donut-shaped devices through which the power line conductor is
run, the power line itself acting as a single-turn primary winding: (Figure 9.49)

Some CTs are made to hinge open, allowing insertion around a power conductor without



258 CHAPTER 9. TRANSFORMERS

grounded for 0-5 A ammeter range

safety o

Instrument application: the "Current Transformer"

®

;

fuse ( i fuse
precision

step-down

ratio
grounded for
safety

0-120 VAC voltmeter range

000000000
—_—— CT

Figure 9.48: Instrumentation application: “Currrent transformer” steps high current down to
a value applicable to a conventional ammeter.

Figure 9.49: Current conductor to be measured is threaded through the opening. Scaled down
current is available on wire leads.
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disturbing the conductor at all. The industry standard secondary current for a CT is a range of
0 to 5 amps AC. Like PTs, CTs can be made with custom winding ratios to fit almost any appli-
cation. Because their “full load” secondary current is 5 amps, CT ratios are usually described
in terms of full-load primary amps to 5 amps, like this:

600 : 5ratio (for measuring up to 600 A line current)
100: 5ratio (for measuring up to 100 A line current)

1k : 5ratio (for measuring up to 1000 A line current)

The “donut” CT shown in the photograph has a ratio of 50:5. That is, when the conductor
through the center of the torus is carrying 50 amps of current (AC), there will be 5 amps of
current induced in the CT’s winding.

Because CTs are designed to be powering ammeters, which are low-impedance loads, and
they are wound as voltage step-up transformers, they should never, ever be operated with an
open-circuited secondary winding. Failure to heed this warning will result in the CT producing
extremely high secondary voltages, dangerous to equipment and personnel alike. To facili-
tate maintenance of ammeter instrumentation, short-circuiting switches are often installed in
parallel with the CT’s secondary winding, to be closed whenever the ammeter is removed for
service: (Figure 9.50)

ower conductor —~—— current ---->
£ J
_—CT
_ vry
grOlfmd c?nnecfion I ch BEFORE
(for safety) ' >r close switc

' disconnecting ammeter!

2

[ ] p

0-5 A meter movement range

Figure 9.50: Short-circuit switch allows ammeter to be removed from an active current trans-
former circuit.

Though it may seem strange to intentionally short-circuit a power system component, it is
perfectly proper and quite necessary when working with current transformers.

9.7.4 Air core transformers

Another kind of special transformer, seen often in radio-frequency circuits, is the air core trans-
former. (Figure 9.51) True to its name, an air core transformer has its windings wrapped
around a nonmagnetic form, usually a hollow tube of some material. The degree of coupling
(mutual inductance) between windings in such a transformer is many times less than that
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of an equivalent iron-core transformer, but the undesirable characteristics of a ferromagnetic
core (eddy current losses, hysteresis, saturation, etc.) are completely eliminated. It is in high-
frequency applications that these effects of iron cores are most problematic.

(a) (b)

Figure 9.51: Air core transformers may be wound on cylindrical (a) or toroidal (b) forms. Center
tapped primary with secondary (a). Bifilar winding on toroidal form (b).

The inside tapped solenoid winding, (Figure (a) 9.51), without the over winding, could match
unequal impedances when DC isolation is not required. When isolation is required the over
winding is added over one end of the main winding. Air core transformers are used at radio
frequencies when iron core losses are too high. Frequently air core transformers are paralleled
with a capacitor to tune it to resonance. The over winding is connected between a radio antenna
and ground for one such application. The secondary is tuned to resonance with a variable
capacitor. The output may be taken from the tap point for amplification or detection. Small
millimeter size air core transformers are used in radio receivers. The largest radio transmitters
may use meter sized coils. Unshielded air core solenoid transformers are mounted at right
angles to each other to prevent stray coupling.

Stray coupling is minimized when the transformer is wound on a toroid form. (Figure
(b) 9.51) Toroidal air core transformers also show a higher degree of coupling, particularly
for bifilar windings. Bifilar windings are wound from a slightly twisted pair of wires. This
implies a 1:1 turns ratio. Three or four wires may be grouped for 1:2 and other integral ratios.
Windings do not have to be bifilar. This allows arbitrary turns ratios. However, the degree of
coupling suffers. Toroidal air core transformers are rare except for VHF (Very High Frequency)
work. Core materials other than air such as powdered iron or ferrite are preferred for lower
radio frequencies.

9.7.5 Tesla Coil

One notable example of an air-core transformer is the Tesla Coil, named after the Serbian
electrical genius Nikola Tesla, who was also the inventor of the rotating magnetic field AC
motor, polyphase AC power systems, and many elements of radio technology. The Tesla Coil
is a resonant, high-frequency step-up transformer used to produce extremely high voltages.
One of Tesla’s dreams was to employ his coil technology to distribute electric power without
the need for wires, simply broadcasting it in the form of radio waves which could be received
and conducted to loads by means of antennas. The basic schematic for a Tesla Coil is shown in
Figure 9.52.
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discharge terminal
"Tesla Coil"

Figure 9.52: Tesla Coil: A few heavy primary turns, many secondary turns.

The capacitor, in conjunction with the transformer’s primary winding, forms a tank circuit.
The secondary winding is wound in close proximity to the primary, usually around the same
nonmagnetic form. Several options exist for “exciting” the primary circuit, the simplest being
a high-voltage, low-frequency AC source and spark gap: (Figure 9.53)

HIGH voltage!
HIGH frequency!
||
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high voltage spark gap
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RFC
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Figure 9.53: System level diagram of Tesla coil with spark gap drive.

The purpose of the high-voltage, low-frequency AC power source is to “charge” the pri-
mary tank circuit. When the spark gap fires, its low impedance acts to complete the capac-
itor/primary coil tank circuit, allowing it to oscillate at its resonant frequency. The “RFC”
inductors are “Radio Frequency Chokes,” which act as high impedances to prevent the AC
source from interfering with the oscillating tank circuit.

The secondary side of the Tesla coil transformer is also a tank circuit, relying on the para-
sitic (stray) capacitance existing between the discharge terminal and earth ground to comple-
ment the secondary winding’s inductance. For optimum operation, this secondary tank circuit
is tuned to the same resonant frequency as the primary circuit, with energy exchanged not only
between capacitors and inductors during resonant oscillation, but also back-and-forth between
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primary and secondary windings. The visual results are spectacular: (Figure 9.54)

Figure 9.54: High voltage high frequency discharge from Tesla coil.

Tesla Coils find application primarily as novelty devices, showing up in high school science
fairs, basement workshops, and the occasional low budget science-fiction movie.

It should be noted that Tesla coils can be extremely dangerous devices. Burns caused by
radio-frequency (“RF”) current, like all electrical burns, can be very deep, unlike skin burns
caused by contact with hot objects or flames. Although the high-frequency discharge of a Tesla
coil has the curious property of being beyond the “shock perception” frequency of the human
nervous system, this does not mean Tesla coils cannot hurt or even kill you! I strongly ad-
vise seeking the assistance of an experienced Tesla coil experimenter if you would embark on
building one yourself.

9.7.6 Saturable reactors

So far, we've explored the transformer as a device for converting different levels of voltage,
current, and even impedance from one circuit to another. Now we’ll take a look at it as a
completely different kind of device: one that allows a small electrical signal to exert control over
a much larger quantity of electrical power. In this mode, a transformer acts as an amplifier.
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The device I'm referring to is called a saturable-core reactor, or simply saturable reactor.
Actually, it is not really a transformer at all, but rather a special kind of inductor whose in-
ductance can be varied by the application of a DC current through a second winding wound
around the same iron core. Like the ferroresonant transformer, the saturable reactor relies on
the principle of magnetic saturation. When a material such as iron is completely saturated
(that is, all its magnetic domains are lined up with the applied magnetizing force), additional
increases in current through the magnetizing winding will not result in further increases of
magnetic flux.

Now, inductance is the measure of how well an inductor opposes changes in current by
developing a voltage in an opposing direction. The ability of an inductor to generate this
opposing voltage is directly connected with the change in magnetic flux inside the inductor
resulting from the change in current, and the number of winding turns in the inductor. If an
inductor has a saturated core, no further magnetic flux will result from further increases in
current, and so there will be no voltage induced in opposition to the change in current. In
other words, an inductor loses its inductance (ability to oppose changes in current) when its
core becomes magnetically saturated.

If an inductor’s inductance changes, then its reactance (and impedance) to AC current
changes as well. In a circuit with a constant voltage source, this will result in a change in
current: (Figure 9.55)

@ % load

Figure 9.55: If L changes in inductance, Z; will correspondingly change, thus changing the
circuit current.

A saturable reactor capitalizes on this effect by forcing the core into a state of saturation
with a strong magnetic field generated by current through another winding. The reactor’s
“power” winding is the one carrying the AC load current, and the “control” winding is one
carrying a DC current strong enough to drive the core into saturation: (Figure 9.56)

The strange-looking transformer symbol shown in the above schematic represents a saturable-
core reactor, the upper winding being the DC control winding and the lower being the “power”
winding through which the controlled AC current goes. Increased DC control current produces
more magnetic flux in the reactor core, driving it closer to a condition of saturation, thus de-
creasing the power winding’s inductance, decreasing its impedance, and increasing current to
the load. Thus, the DC control current is able to exert control over the AC current delivered to
the load.

The circuit shown would work, but it would not work very well. The first problem is the
natural transformer action of the saturable reactor: AC current through the power winding
will induce a voltage in the control winding, which may cause trouble for the DC power source.
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Figure 9.56: DC, via the control winding, saturates the core. Thus, modulating the power
winding inductance, impedance, and current.

Also, saturable reactors tend to regulate AC power only in one direction: in one half of the AC
cycle, the mmf’s from both windings add; in the other half, they subtract. Thus, the core will
have more flux in it during one half of the AC cycle than the other, and will saturate first in
that cycle half, passing load current more easily in one direction than the other. Fortunately,
both problems can be overcome with a little ingenuity: (Figure 9.57)

&

@ % load

Figure 9.57: Out of phase DC control windings allow symmetrical of control AC.

Notice the placement of the phasing dots on the two reactors: the power windings are “in
phase” while the control windings are “out of phase.” If both reactors are identical, any volt-
age induced in the control windings by load current through the power windings will cancel
out to zero at the battery terminals, thus eliminating the first problem mentioned. Further-
more, since the DC control current through both reactors produces magnetic fluxes in different
directions through the reactor cores, one reactor will saturate more in one cycle of the AC
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power while the other reactor will saturate more in the other, thus equalizing the control ac-
tion through each half-cycle so that the AC power is “throttled” symmetrically. This phasing
of control windings can be accomplished with two separate reactors as shown, or in a single
reactor design with intelligent layout of the windings and core.

Saturable reactor technology has even been miniaturized to the circuit-board level in com-
pact packages more generally known as magnetic amplifiers. I personally find this to be fasci-
nating: the effect of amplification (one electrical signal controlling another), normally requiring
the use of physically fragile vacuum tubes or electrically “fragile” semiconductor devices, can
be realized in a device both physically and electrically rugged. Magnetic amplifiers do have
disadvantages over their more fragile counterparts, namely size, weight, nonlinearity, and
bandwidth (frequency response), but their utter simplicity still commands a certain degree of
appreciation, if not practical application.

Saturable-core reactors are less commonly known as “saturable-core inductors” or trans-
ductors.

9.7.7 Scott-T transformer

Nikola Tesla’s original polyphase power system was based on simple to build 2-phase com-
ponents. However, as transmission distances increased, the more transmission line efficient
3-phase system became more prominent. Both 2-¢ and 3-¢ components coexisted for a number
of years. The Scott-T transformer connection allowed 2-¢ and 3-¢ components like motors and
alternators to be interconnected. Yamamoto and Yamaguchi:

In 1896, General Electric built a 35.5 km (22 mi) three-phase transmission line
operated at 11 kV to transmit power to Buffalo, New York, from the Niagara Falls
Project. The two-phase generated power was changed to three-phase by the use of
Scott-T transformations. [1]

3-phase,; = VIO° A R
3-phases; = V[120° ,’/
3-phase;, = VI240° //

R 2-phase; = VI0° Ry

Figure 9.58: Scott-T transformer converts 2-¢ to 3-¢, or vice versa.
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The Scott-T transformer set, Figure 9.58, consists of a center tapped transformer T1 and an
86.6% tapped transformer T2 on the 3-¢ side of the circuit. The primaries of both transformers
are connected to the 2-¢ voltages. One end of the T2 86.6% secondary winding is a 3-¢ output,
the other end is connected to the T1 secondary center tap. Both ends of the T1 secondary are
the other two 3-¢ connections.

Application of 2-¢ Niagara generator power produced a 3-¢ output for the more efficient 3-¢
transmission line. More common these days is the application of 3-¢ power to produce a 2-¢
output for driving an old 2-¢ motor.

In Figure 9.59, we use vectors in both polar and complex notation to prove that the Scott-T
converts a pair of 2-¢ voltages to 3-¢. First, one of the 3-¢ voltages is identical to a 2-¢ voltage
due to the 1:1 transformer T1 ratio, Vpi2= Vap;. The T1 center tapped secondary produces
opposite polarities of 0.5V, p; on the secondary ends. This Z0° is vectorially subtracted from T2
secondary voltage due to the KVL equations V3;, Vo3. The T2 secondary voltage is 0.866V;po
due to the 86.6% tap. Keep in mind that this 2nd phase of the 2-¢ is /90°. This 0.866Vp; is
added at V3, subtracted at Va3 in the KVL equations.

Given two 90° phased voltages:

Vypy =Vsin(0+0°)E=VI0° =V(1+)0)

Vypy =VsSin(0+90°)Vceos(0)=VP0° =V(0+j1)
Derive the three phase voltages V;,, V3, V3 :
V1,=V,p; =Vsin(0+0°)=VI0° =V(1+j0)

(1) KVL: -V, +Vue= 0

(2) KVL: -V3; Vg +Vgp=0

(3) KVL: -Vyg = -Vpg - Vga = 0

(1) KVL: Vy, = Ve

(2) KVL: V3; =-Veg+Vpp

(3) KVL: Va3 =-Vpg - Vgy
Vpg = 0.866V,p, = 0.866V00° = 0.866V(0+1)
Vg = Vaa = 0.5V,p, = 0.5VI0° = 0.5V(1+{0)

Vo = Vopy = VIO°
V3, = (-0.5)VI0° +0.866V[P0° =V(-0.5(1+j0)+0.866(0+j1))=V(-0.5+j0.866)=V[120°
V,3 =(-0.5)V0° -0.866VE0° =V(-0.5(1+j0)-0.866(0+j1))=V(-0.5+-j0.866)=V[F120° =V[240°

Figure 9.59: Scott-T transformer 2-¢ to 3-¢ conversion equations.

We show “DC” polarities all over this AC only circuit, to keep track of the Kirchhoff voltage
loop polarities. Subtracting /0° is equivalent to adding /180°. The bottom line is when we add
86.6% of /90° to 50% of /180° we get /120°. Subtracting 86.6% of /90° from 50% of /180°
yields /-120° or /240°.

In Figure 9.60 we graphically show the 2-¢ vectors at (a). At (b) the vectors are scaled by
transformers T1 and T2 to 0.5 and 0.866 respectively. At (c) 1/120° =-0.5/0° + 0.866/90°, and
1/240° = -0.5/0° - 0.866/90°. The three output phases are 1/120° and 1/240° from (c), along
with input 1/0° (a).
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Figure 9.60: Graphical explanation of equations in Figure 9.59.

9.7.8 Linear Variable Differential Transformer

A linear variable differential transformer (LVDT) has an AC driven primary wound between
two secondaries on a cylindrical air core form. (Figure 9.61) A movable ferromagnetic slug con-
verts displacement to a variable voltage by changing the coupling between the driven primary
and secondary windings. The LVDT is a displacement or distance measuring transducer. Units
are available for measuring displacement over a distance of a fraction of a millimeter to a half
a meter. LVDT’s are rugged and dirt resistant compared to linear optical encoders.

) VlVI\%\/\\Ce}te—r\\/\\d"/"‘”‘_\
@ V2V13\/\\/\—/\//\/
|

, Vs / N\

Figure 9.61: LVDT: linear variable differential transformer.

The excitation voltage is in the range of 0.5 to 10 VAC at a frequency of 1 to 200 Khz. A
ferrite core is suitable at these frequencies. It is extended outside the body by an non-magnetic
rod. As the core is moved toward the top winding, the voltage across this coil increases due to
increased coupling, while the voltage on the bottom coil decreases. If the core is moved toward
the bottom winding, the voltage on this coil increases as the voltage decreases across the top
coil. Theoretically, a centered slug yields equal voltages across both coils. In practice leakage
inductance prevents the null from dropping all the way to 0 V.

With a centered slug, the series-opposing wired secondaries cancel yielding V3 = 0. Moving
the slug up increases V3. Note that it is in-phase with with V;, the top winding, and 180° out
of phase with V3, bottom winding.

Moving the slug down from the center position increases V5. However, it is 180° out of
phase with with Vi, the top winding, and in-phase with V3, bottom winding. Moving the slug
from top to bottom shows a minimum at the center point, with a 180° phase reversal in passing
the center.
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e REVIEW:

e Transformers can be used to transform impedance as well as voltage and current. When
this is done to improve power transfer to a load, it is called impedance matching.

e A Potential Transformer (PT) is a special instrument transformer designed to provide a
precise voltage step-down ratio for voltmeters measuring high power system voltages.

e A Current Transformer (CT) is another special instrument transformer designed to step
down the current through a power line to a safe level for an ammeter to measure.

e An air-core transformer is one lacking a ferromagnetic core.

e A Tesla Coil is a resonant, air-core, step-up transformer designed to produce very high
AC voltages at high frequency.

e A saturable reactor is a special type of inductor, the inductance of which can be controlled
by the DC current through a second winding around the same core. With enough DC cur-
rent, the magnetic core can be saturated, decreasing the inductance of the power winding
in a controlled fashion.

e A Scott-T transformer converts 3-¢ power to 2-¢ power and vice versa.

e A linear variable differential transformer, also known as an LVDT, is a distance measur-
ing device. It has a movable ferromagnetic core to vary the coupling between the excited
primary and a pair of secondaries.

9.8 Practical considerations

9.8.1 Power capacity

As has already been observed, transformers must be well designed in order to achieve ac-
ceptable power coupling, tight voltage regulation, and low exciting current distortion. Also,
transformers must be designed to carry the expected values of primary and secondary winding
current without any trouble. This means the winding conductors must be made of the proper
gauge wire to avoid any heating problems. An ideal transformer would have perfect coupling
(no leakage inductance), perfect voltage regulation, perfectly sinusoidal exciting current, no
hysteresis or eddy current losses, and wire thick enough to handle any amount of current. Un-
fortunately, the ideal transformer would have to be infinitely large and heavy to meet these
design goals. Thus, in the business of practical transformer design, compromises must be
made.

Additionally, winding conductor insulation is a concern where high voltages are encoun-
tered, as they often are in step-up and step-down power distribution transformers. Not only
do the windings have to be well insulated from the iron core, but each winding has to be suffi-
ciently insulated from the other in order to maintain electrical isolation between windings.

Respecting these limitations, transformers are rated for certain levels of primary and sec-
ondary winding voltage and current, though the current rating is usually derived from a volt-
amp (VA) rating assigned to the transformer. For example, take a step-down transformer with
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a primary voltage rating of 120 volts, a secondary voltage rating of 48 volts, and a VA rating of
1 kVA (1000 VA). The maximum winding currents can be determined as such:

1000 VA

=8.333 A (maximum primary winding current
120V ( p y g )

1000 VA
48V
Sometimes windings will bear current ratings in amps, but this is typically seen on small

transformers. Large transformers are almost always rated in terms of winding voltage and VA
or kVA.

=20.833 A (maximum secondary winding current)

9.8.2 Energy losses

When transformers transfer power, they do so with a minimum of loss. As it was stated earlier,
modern power transformer designs typically exceed 95% efficiency. It is good to know where
some of this lost power goes, however, and what causes it to be lost.

There is, of course, power lost due to resistance of the wire windings. Unless supercon-
ducting wires are used, there will always be power dissipated in the form of heat through the
resistance of current-carrying conductors. Because transformers require such long lengths of
wire, this loss can be a significant factor. Increasing the gauge of the winding wire is one way
to minimize this loss, but only with substantial increases in cost, size, and weight.

Resistive losses aside, the bulk of transformer power loss is due to magnetic effects in the
core. Perhaps the most significant of these “core losses” is eddy-current loss, which is resistive
power dissipation due to the passage of induced currents through the iron of the core. Because
iron is a conductor of electricity as well as being an excellent “conductor” of magnetic flux,
there will be currents induced in the iron just as there are currents induced in the secondary
windings from the alternating magnetic field. These induced currents — as described by the
perpendicularity clause of Faraday’s Law — tend to circulate through the cross-section of the
core perpendicularly to the primary winding turns. Their circular motion gives them their
unusual name: like eddies in a stream of water that circulate rather than move in straight
lines.

Iron is a fair conductor of electricity, but not as good as the copper or aluminum from which
wire windings are typically made. Consequently, these “eddy currents” must overcome sig-
nificant electrical resistance as they circulate through the core. In overcoming the resistance
offered by the iron, they dissipate power in the form of heat. Hence, we have a source of
inefficiency in the transformer that is difficult to eliminate.

This phenomenon is so pronounced that it is often exploited as a means of heating ferrous
(iron-containing) materials. The photograph of (Figure 9.62) shows an “induction heating” unit
raising the temperature of a large pipe section. Loops of wire covered by high-temperature
insulation encircle the pipe’s circumference, inducing eddy currents within the pipe wall by
electromagnetic induction. In order to maximize the eddy current effect, high-frequency alter-
nating current is used rather than power line frequency (60 Hz). The box units at the right of
the picture produce the high-frequency AC and control the amount of current in the wires to
stabilize the pipe temperature at a pre-determined “set-point.”
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Figure 9.62: Induction heating: Primary insulated winding induces current into lossy iron pipe
(secondary).

The main strategy in mitigating these wasteful eddy currents in transformer cores is to
form the iron core in sheets, each sheet covered with an insulating varnish so that the core
is divided up into thin slices. The result is very little width in the core for eddy currents to
circulate in: (Figure 9.63)

solid iron core
lleddyll
current

laminated iron core

Figure 9.63: Dividing the iron core into thin insulated laminations minimizes eddy current
loss.

Laminated cores like the one shown here are standard in almost all low-frequency trans-
formers. Recall from the photograph of the transformer cut in half that the iron core was
composed of many thin sheets rather than one solid piece. Eddy current losses increase with
frequency, so transformers designed to run on higher-frequency power (such as 400 Hz, used in
many military and aircraft applications) must use thinner laminations to keep the losses down
to a respectable minimum. This has the undesirable effect of increasing the manufacturing
cost of the transformer.
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Another, similar technique for minimizing eddy current losses which works better for high-
frequency applications is to make the core out of iron powder instead of thin iron sheets. Like
the lamination sheets, these granules of iron are individually coated in an electrically insulat-
ing material, which makes the core nonconductive except for within the width of each granule.
Powdered iron cores are often found in transformers handling radio-frequency currents.

Another “core loss” is that of magnetic Aysteresis. All ferromagnetic materials tend to re-
tain some degree of magnetization after exposure to an external magnetic field. This tendency
to stay magnetized is called “hysteresis,” and it takes a certain investment in energy to over-
come this opposition to change every time the magnetic field produced by the primary winding
changes polarity (twice per AC cycle). This type of loss can be mitigated through good core
material selection (choosing a core alloy with low hysteresis, as evidenced by a “thin” B/H hys-
teresis curve), and designing the core for minimum flux density (large cross-sectional area).

Transformer energy losses tend to worsen with increasing frequency. The skin effect within
winding conductors reduces the available cross-sectional area for electron flow, thereby increas-
ing effective resistance as the frequency goes up and creating more power lost through resistive
dissipation. Magnetic core losses are also exaggerated with higher frequencies, eddy currents
and hysteresis effects becoming more severe. For this reason, transformers of significant size
are designed to operate efficiently in a limited range of frequencies. In most power distribution
systems where the line frequency is very stable, one would think excessive frequency would
never pose a problem. Unfortunately it does, in the form of harmonics created by nonlinear
loads.

As we’ve seen in earlier chapters, nonsinusoidal waveforms are equivalent to additive series
of multiple sinusoidal waveforms at different amplitudes and frequencies. In power systems,
these other frequencies are whole-number multiples of the fundamental (line) frequency, mean-
ing that they will always be higher, not lower, than the design frequency of the transformer.
In significant measure, they can cause severe transformer overheating. Power transformers
can be engineered to handle certain levels of power system harmonics, and this capability is
sometimes denoted with a “K factor” rating.

9.8.3 Stray capacitance and inductance

Aside from power ratings and power losses, transformers often harbor other undesirable lim-
itations which circuit designers must be made aware of. Like their simpler counterparts — in-
ductors — transformers exhibit capacitance due to the insulation dielectric between conductors:
from winding to winding, turn to turn (in a single winding), and winding to core. Usually this
capacitance is of no concern in a power application, but small signal applications (especially
those of high frequency) may not tolerate this quirk well. Also, the effect of having capacitance
along with the windings’ designed inductance gives transformers the ability to resonate at a
particular frequency, definitely a design concern in signal applications where the applied fre-
quency may reach this point (usually the resonant frequency of a power transformer is well
beyond the frequency of the AC power it was designed to operate on).

Flux containment (making sure a transformer’s magnetic flux doesn’t escape so as to inter-
fere with another device, and making sure other devices’ magnetic flux is shielded from the
transformer core) is another concern shared both by inductors and transformers.

Closely related to the issue of flux containment is leakage inductance. We've already seen
the detrimental effects of leakage inductance on voltage regulation with SPICE simulations
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early in this chapter. Because leakage inductance is equivalent to an inductance connected in
series with the transformer’s winding, it manifests itself as a series impedance with the load.
Thus, the more current drawn by the load, the less voltage available at the secondary winding
terminals. Usually, good voltage regulation is desired in transformer design, but there are
exceptional applications. As was stated before, discharge lighting circuits require a step-up
transformer with “loose” (poor) voltage regulation to ensure reduced voltage after the estab-
lishment of an arc through the lamp. One way to meet this design criterion is to engineer the
transformer with flux leakage paths for magnetic flux to bypass the secondary winding(s). The
resulting leakage flux will produce leakage inductance, which will in turn produce the poor
regulation needed for discharge lighting.

9.8.4 Core saturation

Transformers are also constrained in their performance by the magnetic flux limitations of the
core. For ferromagnetic core transformers, we must be mindful of the saturation limits of the
core. Remember that ferromagnetic materials cannot support infinite magnetic flux densities:
they tend to “saturate” at a certain level (dictated by the material and core dimensions), mean-
ing that further increases in magnetic field force (mmf) do not result in proportional increases
in magnetic field flux (®).

When a transformer’s primary winding is overloaded from excessive applied voltage, the
core flux may reach saturation levels during peak moments of the AC sinewave cycle. If this
happens, the voltage induced in the secondary winding will no longer match the wave-shape
as the voltage powering the primary coil. In other words, the overloaded transformer will dis-
tort the waveshape from primary to secondary windings, creating harmonics in the secondary
winding’s output. As we discussed before, harmonic content in AC power systems typically
causes problems.

Special transformers known as peaking transformers exploit this principle to produce brief
voltage pulses near the peaks of the source voltage waveform. The core is designed to saturate
quickly and sharply, at voltage levels well below peak. This results in a severely cropped
sine-wave flux waveform, and secondary voltage pulses only when the flux is changing (below
saturation levels): (Figure 9.64)

€, = primary voltage  e,=secondary voltage @ =magnetic flux
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Figure 9.64: Voltage and flux waveforms for a peaking transformer.
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Another cause of abnormal transformer core saturation is operation at frequencies lower
than normal. For example, if a power transformer designed to operate at 60 Hz is forced
to operate at 50 Hz instead, the flux must reach greater peak levels than before in order to
produce the same opposing voltage needed to balance against the source voltage. This is true
even if the source voltage is the same as before. (Figure 9.65)

e )
60 Hz %OQX
e=voltage
® =magnetic flux

()

N

Figure 9.65: Magnetic flux is higher in a transformer core driven by 50 Hz as compared to 60
Hz for the same voltage.

Since instantaneous winding voltage is proportional to the instantaneous magnetic flux’s
rate of change in a transformer, a voltage waveform reaching the same peak value, but taking
a longer amount of time to complete each half-cycle, demands that the flux maintain the same
rate of change as before, but for longer periods of time. Thus, if the flux has to climb at the same
rate as before, but for longer periods of time, it will climb to a greater peak value. (Figure 9.66)

Mathematically, this is another example of calculus in action. Because the voltage is pro-
portional to the flux’s rate-of-change, we say that the voltage waveform is the derivative of
the flux waveform, “derivative” being that calculus operation defining one mathematical func-
tion (waveform) in terms of the rate-of-change of another. If we take the opposite perspective,
though, and relate the original waveform to its derivative, we may call the original waveform
the integral of the derivative waveform. In this case, the voltage waveform is the derivative of
the flux waveform, and the flux waveform is the integral of the voltage waveform.

The integral of any mathematical function is proportional to the area accumulated under-
neath the curve of that function. Since each half-cycle of the 50 Hz waveform accumulates
more area between it and the zero line of the graph than the 60 Hz waveform will — and we
know that the magnetic flux is the integral of the voltage — the flux will attain higher values
in Figure 9.66.

Yet another cause of transformer saturation is the presence of DC current in the primary
winding. Any amount of DC voltage dropped across the primary winding of a transformer will
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Figure 9.66: Flux changing at the same rate rises to a higher level at 50 Hz than at 60 Hz.

cause additional magnetic flux in the core. This additional flux “bias” or “offset” will push the
alternating flux waveform closer to saturation in one half-cycle than the other. (Figure 9.67)

saturation limit

flux
centerline

saturation limit
Figure 9.67: DC in primary, shifts the waveform peaks toward the upper saturation limit.

For most transformers, core saturation is a very undesirable effect, and it is avoided through
good design: engineering the windings and core so that magnetic flux densities remain well be-
low the saturation levels. This ensures that the relationship between mmf and @ is more linear
throughout the flux cycle, which is good because it makes for less distortion in the magnetiza-
tion current waveform. Also, engineering the core for low flux densities provides a safe margin
between the normal flux peaks and the core saturation limits to accommodate occasional, ab-
normal conditions such as frequency variation and DC offset.
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9.8.5 Inrush current

When a transformer is initially connected to a source of AC voltage, there may be a substan-
tial surge of current through the primary winding called inrush current. (Figure 9.72) This is
analogous to the inrush current exhibited by an electric motor that is started up by sudden con-
nection to a power source, although transformer inrush is caused by a different phenomenon.
We know that the rate of change of instantaneous flux in a transformer core is proportional
to the instantaneous voltage drop across the primary winding. Or, as stated before, the voltage
waveform is the derivative of the flux waveform, and the flux waveform is the integral of the
voltage waveform. In a continuously-operating transformer, these two waveforms are phase-
shifted by 90°. (Figure 9.68) Since flux (®) is proportional to the magnetomotive force (mmf)
in the core, and the mmf is proportional to winding current, the current waveform will be
in-phase with the flux waveform, and both will be lagging the voltage waveform by 90°:

e=voltage & =magnetic flux i = coil current

e ®
i

Figure 9.68: Continuous steady-state operation: Magnetic flux, like current, lags applied volt-
age by 90°.

Let us suppose that the primary winding of a transformer is suddenly connected to an AC
voltage source at the exact moment in time when the instantaneous voltage is at its positive
peak value. In order for the transformer to create an opposing voltage drop to balance against
this applied source voltage, a magnetic flux of rapidly increasing value must be generated.
The result is that winding current increases rapidly, but actually no more rapidly than under
normal conditions: (Figure 9.69)

Both core flux and coil current start from zero and build up to the same peak values expe-
rienced during continuous operation. Thus, there is no “surge” or “inrush” or current in this
scenario. (Figure 9.69)

Alternatively, let us consider what happens if the transformer’s connection to the AC voltage
source occurs at the exact moment in time when the instantaneous voltage is at zero. During
continuous operation (when the transformer has been powered for quite some time), this is the
point in time where both flux and winding current are at their negative peaks, experiencing
zero rate-of-change (d®/dt = 0 and di/dt = 0). As the voltage builds to its positive peak, the
flux and current waveforms build to their maximum positive rates-of-change, and on upward
to their positive peaks as the voltage descends to a level of zero:

A significant difference exists, however, between continuous-mode operation and the sud-
den starting condition assumed in this scenario: during continuous operation, the flux and
current levels were at their negative peaks when voltage was at its zero point; in a trans-
former that has been sitting idle, however, both magnetic flux and winding current should
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e =voltage
@ =magnetic flux
i = coil current
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Instant in time when transformer
is connected to AC voltage source.

Figure 9.69: Connecting transformer to line at AC volt peak: Flux increases rapidly from zero,
same as steady-state operation.

e =voltage
@® =magnetic flux
I = coil current
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Instant in time when voltage is zero,
during continuous operation.

Figure 9.70: Starting at e=0 V is not the same as running continuously in Figure 9.3 These
expected waveforms are incorrect— ® and i should start at zero.
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start at zero. When the magnetic flux increases in response to a rising voltage, it will increase
from zero upward, not from a previously negative (magnetized) condition as we would normally
have in a transformer that’s been powered for awhile. Thus, in a transformer that’s just “start-
ing,” the flux will reach approximately twice its normal peak magnitude as it “integrates” the
area under the voltage waveform’s first half-cycle: (Figure 9.71)

flux peak approximately
o twice normal height!

Instant in time when voltage is zero,
from a "cold start" condition.

Figure 9.71: Starting at e=0 V, ® starts at initial condition ®=0, increasing to twice the normal
value, assuming it doesn’t saturate the core.

In an ideal transformer, the magnetizing current would rise to approximately twice its nor-
mal peak value as well, generating the necessary mmf to create this higher-than-normal flux.
However, most transformers aren’t designed with enough of a margin between normal flux
peaks and the saturation limits to avoid saturating in a condition like this, and so the core
will almost certainly saturate during this first half-cycle of voltage. During saturation, dispro-
portionate amounts of mmf are needed to generate magnetic flux. This means that winding
current, which creates the mmf to cause flux in the core, will disproportionately rise to a value
easily exceeding twice its normal peak: (Figure 9.72)

This is the mechanism causing inrush current in a transformer’s primary winding when
connected to an AC voltage source. As you can see, the magnitude of the inrush current
strongly depends on the exact time that electrical connection to the source is made. If the
transformer happens to have some residual magnetism in its core at the moment of connection
to the source, the inrush could be even more severe. Because of this, transformer overcurrent
protection devices are usually of the “slow-acting” variety, so as to tolerate current surges such
as this without opening the circuit.

9.8.6 Heat and Noise

In addition to unwanted electrical effects, transformers may also exhibit undesirable physical
effects, the most notable being the production of heat and noise. Noise is primarily a nuisance
effect, but heat is a potentially serious problem because winding insulation will be damaged if
allowed to overheat. Heating may be minimized by good design, ensuring that the core does
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Figure 9.72: Starting at e=0 V, Current also increases to twice the normal value for an unsat-
urated core, or considerably higher in the (designed for) case of saturation.

not approach saturation levels, that eddy currents are minimized, and that the windings are
not overloaded or operated too close to maximum ampacity.

Large power transformers have their core and windings submerged in an oil bath to transfer
heat and muffle noise, and also to displace moisture which would otherwise compromise the
integrity of the winding insulation. Heat-dissipating “radiator” tubes on the outside of the
transformer case provide a convective oil flow path to transfer heat from the transformer’s core
to ambient air: (Figure 9.73)

Oil-less, or “dry,” transformers are often rated in terms of maximum operating temperature
“rise” (temperature increase beyond ambient) according to a letter-class system: A, B, F, or H.
These letter codes are arranged in order of lowest heat tolerance to highest:

e Class A: No more than 55° Celsius winding temperature rise, at 40° Celsius (maximum)
ambient air temperature.

e Class B: No more than 80° Celsius winding temperature rise, at 40° Celsius (maxi-
mum)ambient air temperature.

e Class F: No more than 115° Celsius winding temperature rise, at 40° Celsius (maxi-
mum)ambient air temperature.

e Class H: No more than 150° Celsius winding temperature rise, at 40° Celsius (maxi-
mum)ambient air temperature.

Audible noise is an effect primarily originating from the phenomenon of magnetostriction:
the slight change of length exhibited by a ferromagnetic object when magnetized. The familiar
“hum” heard around large power transformers is the sound of the iron core expanding and
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Figure 9.73: Large power transformers are submerged in heat dissipating insulating oil.
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contracting at 120 Hz (twice the system frequency, which is 60 Hz in the United States) —
one cycle of core contraction and expansion for every peak of the magnetic flux waveform —
plus noise created by mechanical forces between primary and secondary windings. Again,
maintaining low magnetic flux levels in the core is the key to minimizing this effect, which
explains why ferroresonant transformers — which must operate in saturation for a large portion
of the current waveform — operate both hot and noisy.

Another noise-producing phenomenon in power transformers is the physical reaction force
between primary and secondary windings when heavily loaded. If the secondary winding is
open-circuited, there will be no current through it, and consequently no magneto-motive force
(mmf) produced by it. However, when the secondary is “loaded” (current supplied to a load), the
winding generates an mmf, which becomes counteracted by a “reflected” mmf in the primary
winding to prevent core flux levels from changing. These opposing mmf’s generated between
primary and secondary windings as a result of secondary (load) current produce a repulsive,
physical force between the windings which will tend to make them vibrate. Transformer de-
signers have to consider these physical forces in the construction of the winding coils, to ensure
there is adequate mechanical support to handle the stresses. Under heavy load (high current)
conditions, though, these stresses may be great enough to cause audible noise to emanate from
the transformer.

e REVIEW:

e Power transformers are limited in the amount of power they can transfer from primary
to secondary winding(s). Large units are typically rated in VA (volt-amps) or kVA (kilo
volt-amps).

e Resistance in transformer windings contributes to inefficiency, as current will dissipate
heat, wasting energy.

e Magnetic effects in a transformer’s iron core also contribute to inefficiency. Among the
effects are eddy currents (circulating induction currents in the iron core) and hysteresis
(power lost due to overcoming the tendency of iron to magnetize in a particular direction).

e Increased frequency results in increased power losses within a power transformer. The
presence of harmonics in a power system is a source of frequencies significantly higher
than normal, which may cause overheating in large transformers.

e Both transformers and inductors harbor certain unavoidable amounts of capacitance due
to wire insulation (dielectric) separating winding turns from the iron core and from each
other. This capacitance can be significant enough to give the transformer a natural reso-
nant frequency, which can be problematic in signal applications.

e Leakage inductance is caused by magnetic flux not being 100% coupled between windings
in a transformer. Any flux not involved with transferring energy from one winding to
another will store and release energy, which is how (self-) inductance works. Leakage
inductance tends to worsen a transformer’s voltage regulation (secondary voltage “sags”
more for a given amount of load current).

e Magnetic saturation of a transformer core may be caused by excessive primary voltage,
operation at too low of a frequency, and/or by the presence of a DC current in any of
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the windings. Saturation may be minimized or avoided by conservative design, which
provides an adequate margin of safety between peak magnetic flux density values and
the saturation limits of the core.

e Transformers often experience significant inrush currents when initially connected to an
AC voltage source. Inrush current is most severe when connection to the AC source is
made at the moment instantaneous source voltage is zero.

e Noise is a common phenomenon exhibited by transformers — especially power transform-
ers — and is primarily caused by magnetostriction of the core. Physical forces causing
winding vibration may also generate noise under conditions of heavy (high current) sec-
ondary winding load.

9.9 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most
recent to first. See Appendix 2 (Contributor List) for dates and contact information.

Bart Anderson (January 2004): Corrected conceptual errors regarding Tesla coil operation
and safety.

Jason Starck (June 2000): HTML document formatting, which led to a much better-
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Chapter 10

POLYPHASE AC CIRCUITS
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10.1 Single-phase power systems

© P

Figure 10.1: Single phase power system schematic diagram shows little about the wiring of a
practical power circuit.

Depicted above (Figure 10.1) is a very simple AC circuit. If the load resistor’s power dis-
sipation were substantial, we might call this a “power circuit” or “power system” instead of
regarding it as just a regular circuit. The distinction between a “power circuit” and a “regular
circuit” may seem arbitrary, but the practical concerns are definitely not.

283
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One such concern is the size and cost of wiring necessary to deliver power from the AC
source to the load. Normally, we do not give much thought to this type of concern if we’re
merely analyzing a circuit for the sake of learning about the laws of electricity. However, in the
real world it can be a major concern. If we give the source in the above circuit a voltage value
and also give power dissipation values to the two load resistors, we can determine the wiring
needs for this particular circuit: (Figure 10.2)

load load
120V /\D #1 #2

P=10kw P =10 kW

Figure 10.2: As a practical matter, the wiring for the 20 kW loads at 120 Vac is rather substan-
tial (167 A).

10 kW
120V

| = 83.33A (for each load resistor)

liotal = lioads1 + ioaiz Prota = (10 kW) + (10 kW)

lota = (83.33 A) +(83.33A) Piota = 20 KW

| = 166.67 A

83.33 amps for each load resistor in Figure 10.2 adds up to 166.66 amps total circuit current.
This is no small amount of current, and would necessitate copper wire conductors of at least
1/0 gage. Such wire is well over 1/4 inch (6 mm) in diameter, weighing over 300 pounds per
thousand feet. Bear in mind that copper is not cheap either! It would be in our best interest
to find ways to minimize such costs if we were designing a power system with long conductor
lengths.

One way to do this would be to increase the voltage of the power source and use loads built
to dissipate 10 kW each at this higher voltage. The loads, of course, would have to have greater
resistance values to dissipate the same power as before (10 kW each) at a greater voltage than
before. The advantage would be less current required, permitting the use of smaller, lighter,
and cheaper wire: (Figure 10.3)
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load load
240V @ #1 #2

P=10kw P=10kwW

Figure 10.3: Same 10 kW loads at 240 Vac requires less substantial wiring than at 120 Vac (83
A).

P

E

10 kw
240V

| =41.67A  (for each load resistor)

liota = lioadss + a2 Prota = (10 kW) + (10 kW)

lio = (41.67 A) + (41.67 A) Pt = 20 KW

l o = 83.33 A

Now our total circuit current is 83.33 amps, half of what it was before. We can now use
number 4 gage wire, which weighs less than half of what 1/0 gage wire does per unit length.
This is a considerable reduction in system cost with no degradation in performance. This is why
power distribution system designers elect to transmit electric power using very high voltages
(many thousands of volts): to capitalize on the savings realized by the use of smaller, lighter,
cheaper wire.

However, this solution is not without disadvantages. Another practical concern with power
circuits is the danger of electric shock from high voltages. Again, this is not usually the sort
of thing we concentrate on while learning about the laws of electricity, but it is a very valid
concern in the real world, especially when large amounts of power are being dealt with. The
gain in efficiency realized by stepping up the circuit voltage presents us with increased danger
of electric shock. Power distribution companies tackle this problem by stringing their power
lines along high poles or towers, and insulating the lines from the supporting structures with
large, porcelain insulators.

At the point of use (the electric power customer), there is still the issue of what voltage
to use for powering loads. High voltage gives greater system efficiency by means of reduced
conductor current, but it might not always be practical to keep power wiring out of reach at
the point of use the way it can be elevated out of reach in distribution systems. This tradeoff
between efficiency and danger is one that European power system designers have decided to
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risk, all their households and appliances operating at a nominal voltage of 240 volts instead of
120 volts as it is in North America. That is why tourists from America visiting Europe must
carry small step-down transformers for their portable appliances, to step the 240 VAC (volts
AC) power down to a more suitable 120 VAC.

Is there any way to realize the advantages of both increased efficiency and reduced safety
hazard at the same time? One solution would be to install step-down transformers at the end-
point of power use, just as the American tourist must do while in Europe. However, this would
be expensive and inconvenient for anything but very small loads (where the transformers can
be built cheaply) or very large loads (where the expense of thick copper wires would exceed the
expense of a transformer).

An alternative solution would be to use a higher voltage supply to provide power to two
lower voltage loads in series. This approach combines the efficiency of a high-voltage system
with the safety of a low-voltage system: (Figure 10.4)

< 8333A .
load +120 vV
+ #1 -10 kw +
200v (V) 240V
- load +120 Vv -
#2 < 10kw
8333A —

Figure 10.4: Series connected 120 Vac loads, driven by 240 Vac source at 83.3 A total current.

Notice the polarity markings (+ and -) for each voltage shown, as well as the unidirectional
arrows for current. For the most part, I've avoided labeling “polarities” in the AC circuits
we’ve been analyzing, even though the notation is valid to provide a frame of reference for
phase. In later sections of this chapter, phase relationships will become very important, so I'm
introducing this notation early on in the chapter for your familiarity.

The current through each load is the same as it was in the simple 120 volt circuit, but the
currents are not additive because the loads are in series rather than parallel. The voltage
across each load is only 120 volts, not 240, so the safety factor is better. Mind you, we still have
a full 240 volts across the power system wires, but each load is operating at a reduced voltage.
If anyone is going to get shocked, the odds are that it will be from coming into contact with
the conductors of a particular load rather than from contact across the main wires of a power
system.

There’s only one disadvantage to this design: the consequences of one load failing open, or
being turned off (assuming each load has a series on/off switch to interrupt current) are not
good. Being a series circuit, if either load were to open, current would stop in the other load as
well. For this reason, we need to modify the design a bit: (Figure 10.5)
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<— 83.33A -
+ n O "
120V load<*120Vv
QOFL; #1<3 00° N
B "neutral" -
T ; oA 240V
- @ 120V load<t120v )
Yoo #2 < 00°
"hot" B
83.33A —» B

Figure 10.5: Addition of neutral conductor allows loads to be individually driven.

Ea = (120V 0 0°) + (120 V O 0°)

By =240V O 0°

1= P P = (10 KW) + (10 kW)
E
~ 120V

| =83.33A (for each load resistor)

Instead of a single 240 volt power supply, we use two 120 volt supplies (in phase with
each other!) in series to produce 240 volts, then run a third wire to the connection point
between the loads to handle the eventuality of one load opening. This is called a split-phase
power system. Three smaller wires are still cheaper than the two wires needed with the simple
parallel design, so we're still ahead on efficiency. The astute observer will note that the neutral
wire only has to carry the difference of current between the two loads back to the source. In
the above case, with perfectly “balanced” loads consuming equal amounts of power, the neutral
wire carries zero current.

Notice how the neutral wire is connected to earth ground at the power supply end. This is a
common feature in power systems containing “neutral” wires, since grounding the neutral wire
ensures the least possible voltage at any given time between any “hot” wire and earth ground.

An essential component to a split-phase power system is the dual AC voltage source. Fortu-
nately, designing and building one is not difficult. Since most AC systems receive their power
from a step-down transformer anyway (stepping voltage down from high distribution levels
to a user-level voltage like 120 or 240), that transformer can be built with a center-tapped
secondary winding: (Figure 10.6)

If the AC power comes directly from a generator (alternator), the coils can be similarly
center-tapped for the same effect. The extra expense to include a center-tap connection in a
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Step-down transformer with
center-tapped secondary winding

v\,
<
Praaiys

4kV H

Figure 10.6: American 120/240 Vac power is derived from a center tapped utility transformer.

transformer or alternator winding is minimal.

Here is where the (+) and (-) polarity markings really become important. This notation is
often used to reference the phasings of multiple AC voltage sources, so it is clear whether they
are aiding (“boosting”) each other or opposing (“bucking”) each other. If not for these polarity
markings, phase relations between multiple AC sources might be very confusing. Note that
the split-phase sources in the schematic (each one 120 volts / 0°), with polarity marks (+) to
(-) just like series-aiding batteries can alternatively be represented as such: (Figure 10.7)

T Ilhotll
+
120V
6’ Oo° +
| 240V
— 00°
B 120V -
(Ot
"hot"

Figure 10.7: Split phase 120/240 Vac source is equivalent to two series aiding 120 Vac sources.

To mathematically calculate voltage between “hot” wires, we must subtract voltages, be-
cause their polarity marks show them to be opposed to each other:

Polar Rectangular
120 0 0° 120+j0V

- 1200 180° -(-120+j0) V
2400 0° 240+j0V

If we mark the two sources’ common connection point (the neutral wire) with the same
polarity mark (-), we must express their relative phase shifts as being 180° apart. Otherwise,
we’d be denoting two voltage sources in direct opposition with each other, which would give
0 volts between the two “hot” conductors. Why am I taking the time to elaborate on polarity
marks and phase angles? It will make more sense in the next section!
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Power systems in American households and light industry are most often of the split-phase
variety, providing so-called 120/240 VAC power. The term “split-phase” merely refers to the
split-voltage supply in such a system. In a more general sense, this kind of AC power supply
is called single phase because both voltage waveforms are in phase, or in step, with each other.

The term “single phase” is a counterpoint to another kind of power system called “polyphase”
which we are about to investigate in detail. Apologies for the long introduction leading up to
the title-topic of this chapter. The advantages of polyphase power systems are more obvious if
one first has a good understanding of single phase systems.

e REVIEW:

e Single phase power systems are defined by having an AC source with only one voltage
waveform.

e A split-phase power system is one with multiple (in-phase) AC voltage sources connected
in series, delivering power to loads at more than one voltage, with more than two wires.
They are used primarily to achieve balance between system efficiency (low conductor
currents) and safety (low load voltages).

e Split-phase AC sources can be easily created by center-tapping the coil windings of trans-
formers or alternators.

10.2 Three-phase power systems

Split-phase power systems achieve their high conductor efficiency and low safety risk by split-
ting up the total voltage into lesser parts and powering multiple loads at those lesser voltages,
while drawing currents at levels typical of a full-voltage system. This technique, by the way,
works just as well for DC power systems as it does for single-phase AC systems. Such sys-
tems are usually referred to as three-wire systems rather than split-phase because “phase” is a
concept restricted to AC.

But we know from our experience with vectors and complex numbers that AC voltages don’t
always add up as we think they would if they are out of phase with each other. This principle,
applied to power systems, can be put to use to make power systems with even greater conductor
efficiencies and lower shock hazard than with split-phase.

Suppose that we had two sources of AC voltage connected in series just like the split-phase
system we saw before, except that each voltage source was 120° out of phase with the other:
(Figure 10.8)

Since each voltage source is 120 volts, and each load resistor is connected directly in parallel
with its respective source, the voltage across each load must be 120 volts as well. Given load
currents of 83.33 amps, each load must still be dissipating 10 kilowatts of power. However,
voltage between the two “hot” wires is not 240 volts (120 / 0° - 120 / 180°) because the phase
difference between the two sources is not 180°. Instead, the voltage is:

Ea = (120V 0 0°) - (120 V O 120°)

E = 207.85V O -30°



290 CHAPTER 10. POLYPHASE AC CIRCUITS

-— 8333A 0OC°

-
<<

+ Ilhotll +
120V load<"120 v
) 0Q° #1 < 00° +
"neutral" - 207.85V
< ] 0 -30°
T /N120V load< 120 Vv -
0 120° #2 <[ 120° /
+ " . +
hot B

<— 83.33A 0120°

Figure 10.8: Pair of 120 Vac sources phased 120°, similar to split-phase.

Nominally, we say that the voltage between “hot” conductors is 208 volts (rounding up), and
thus the power system voltage is designated as 120/208.

If we calculate the current through the “neutral” conductor, we find that it is not zero, even
with balanced load resistances. Kirchhoff’s Current Law tells us that the currents entering
and exiting the node between the two loads must be zero: (Figure 10.9)

<— 83.33A 00°

"hot" | d%r
oa o
#1 120v OO0
"neutral” -
Node
B — Ineutral -
load o
#9 §1zov 0 120

“hot"
<«— 83.33A O 120°

Figure 10.9: Neutral wire carries a current in the case of a pair of 120° phased sources.
'Iload#l - Iload#z - Ineutral =0

'Ineutral = IIoed;htl + Iload#z
Ineutral = 'Iload#l - Iload#z

e = - (83.33A 0 0°) - (83.33 A O 120°)

leura = 83.33A 0 240° or 83.33A O -120°
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So, we find that the “neutral” wire is carrying a full 83.33 amps, just like each “hot” wire.

Note that we are still conveying 20 kW of total power to the two loads, with each load’s
“hot” wire carrying 83.33 amps as before. With the same amount of current through each “hot”
wire, we must use the same gage copper conductors, so we haven’t reduced system cost over
the split-phase 120/240 system. However, we have realized a gain in safety, because the overall
voltage between the two “hot” conductors is 32 volts lower than it was in the split-phase system
(208 volts instead of 240 volts).

The fact that the neutral wire is carrying 83.33 amps of current raises an interesting pos-
sibility: since its carrying current anyway, why not use that third wire as another “hot” con-
ductor, powering another load resistor with a third 120 volt source having a phase angle of
240°? That way, we could transmit more power (another 10 kW) without having to add any
more conductors. Let’s see how this might look: (Figure 10.10)

-— 8333A0C0°

load< 120V
+ | 120v 10kw
(f\, oo° .
T~ 83.33 A [0 240° load #3 SRy
v VA
= a2y 120V 0-30°
@ 120V 10kw 120V

<«— 8333A 0 120°

Figure 10.10: With a third load phased 120° to the other two, the currents are the same as for
two loads.

A full mathematical analysis of all the voltages and currents in this circuit would necessi-
tate the use of a network theorem, the easiest being the Superposition Theorem. I'll spare you
the long, drawn-out calculations because you should be able to intuitively understand that the
three voltage sources at three different phase angles will deliver 120 volts each to a balanced
triad of load resistors. For proof of this, we can use SPICE to do the math for us: (Figure 10.11,
SPICE listing: 120/208 polyphase power system)

Sure enough, we get 120 volts across each load resistor, with (approximately) 208 volts
between any two “hot” conductors and conductor currents equal to 83.33 amps. (Figure 10.12)
At that current and voltage, each load will be dissipating 10 kW of power. Notice that this
circuit has no “neutral” conductor to ensure stable voltage to all loads if one should open.
What we have here is a situation similar to our split-phase power circuit with no “neutral”
conductor: if one load should happen to fail open, the voltage drops across the remaining
load(s) will change. To ensure load voltage stability in the event of another load opening, we
need a neutral wire to connect the source node and load node together:

So long as the loads remain balanced (equal resistance, equal currents), the neutral wire
will not have to carry any current at all. It is there just in case one or more load resistors
should fail open (or be shut off through a disconnecting switch).

This circuit we’ve been analyzing with three voltage sources is called a polyphase circuit.
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1 1

| 120v R, <1.440Q
00°

N G E N
2120 v 1.44Q

- O 240

+ D12f2\60 R, <144Q

2 2

Figure 10.11: SPICE circuit: Three 3-® loads phased at 120°.

120/ 208 pol yphase power system

vl 1 0 ac 120 O sin
v2 2 0 ac 120 120 sin
v3 3 0 ac 120 240 sin
ri1 4 1.44

r2 2 4 1.44

r3 3 4 1.44

.ac lin 1 60 60

.print ac v(1,4) v(2,4) v(3,4)
.print ac v(1,2) v(2,3) v(3,1)
.print ac i(vl) i(v2) i(v3)
.end

VOLTAGE ACROSS EACH LOAD

freq v(1,4) v(2,4) v(3,4)

6. 000E+01 1. 200E+02 1. 200E+02 1. 200E+02
VOLTAGE BETWEEN * ‘ HOT' *  CONDUCTORS

freq v(1l,2) v(2,3) v(3,1)

6. 000E+01 2. 078E+02 2. 078E+02 2. 078E+02
CURRENT THROUGH EACH VOLTAGE SOURCE

freq i(vl) i(v2) i (v3)

6. 000E+01 8. 333E+01 8. 333E+01 8. 333E+01
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<—8333A0C°

llhotll Ioad 120 V
+ | 120v < 10kw
n,)0O0°
D 83.33 A [ 240° load #3
[ 1oV hot" ANy
= o- 0 240° 10 kW
+ [0 120° load> 10 kW
nhotll #2
~ 8333A 0 120°

—<«— 0A "neutral"

Figure 10.12: SPICE circuit annotated with simulation results: Three 3-® loads phased at
120°.

The prefix “poly” simply means “more than one,” as in “polytheism” (belief in more than one de-
ity), “polygon” (a geometrical shape made of multiple line segments: for example, pentagon and
hexagon), and “polyatomic” (a substance composed of multiple types of atoms). Since the volt-
age sources are all at different phase angles (in this case, three different phase angles), this is
a “polyphase” circuit. More specifically, it is a three-phase circuit, the kind used predominantly
in large power distribution systems.

Let’s survey the advantages of a three-phase power system over a single-phase system of
equivalent load voltage and power capacity. A single-phase system with three loads connected
directly in parallel would have a very high total current (83.33 times 3, or 250 amps. (Fig-
ure 10.13)

load load load
120v /\D #1 #2 #3

250A — 10kw 10 kW 10 kW

Figure 10.13: For comparison, three 10 Kw loads on a 120 Vac system draw 250 A.

This would necessitate 3/0 gage copper wire (very large!), at about 510 pounds per thousand
feet, and with a considerable price tag attached. If the distance from source to load was 1000
feet, we would need over a half-ton of copper wire to do the job. On the other hand, we could
build a split-phase system with two 15 kW, 120 volt loads. (Figure 10.14)

Our current is half of what it was with the simple parallel circuit, which is a great improve-
ment. We could get away with using number 2 gage copper wire at a total mass of about 600
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<« 125A00° -
.\ "hot" -
@ 120V loads 120 Vv
0o #1 < 15kW +
- "neutral" 240 V
—L— _ --— (0A O 00
- @ 120V loads 120 v -
| ] 180 #2 < 15 kW
"hot" -

<— 125A 0 180°

Figure 10.14: Split phase system draws half the current of 125 A at 240 Vac compared to 120
Vac system.

pounds, figuring about 200 pounds per thousand feet with three runs of 1000 feet each between
source and loads. However, we also have to consider the increased safety hazard of having 240
volts present in the system, even though each load only receives 120 volts. Overall, there is
greater potential for dangerous electric shock to occur.

When we contrast these two examples against our three-phase system (Figure 10.12), the
advantages are quite clear. First, the conductor currents are quite a bit less (83.33 amps versus
125 or 250 amps), permitting the use of much thinner and lighter wire. We can use number
4 gage wire at about 125 pounds per thousand feet, which will total 500 pounds (four runs
of 1000 feet each) for our example circuit. This represents a significant cost savings over the
split-phase system, with the additional benefit that the maximum voltage in the system is
lower (208 versus 240).

One question remains to be answered: how in the world do we get three AC voltage sources
whose phase angles are exactly 120° apart? Obviously we can’t center-tap a transformer or
alternator winding like we did in the split-phase system, since that can only give us voltage
waveforms that are either in phase or 180° out of phase. Perhaps we could figure out some
way to use capacitors and inductors to create phase shifts of 120°, but then those phase shifts
would depend on the phase angles of our load impedances as well (substituting a capacitive or
inductive load for a resistive load would change everything!).

The best way to get the phase shifts we're looking for is to generate it at the source: con-
struct the AC generator (alternator) providing the power in such a way that the rotating mag-
netic field passes by three sets of wire windings, each set spaced 120° apart around the circum-
ference of the machine as in Figure 10.15.

Together, the six “pole” windings of a three-phase alternator are connected to comprise three
winding pairs, each pair producing AC voltage with a phase angle 120° shifted from either of
the other two winding pairs. The interconnections between pairs of windings (as shown for the
single-phase alternator: the jumper wire between windings 1a and 1b) have been omitted from
the three-phase alternator drawing for simplicity.

In our example circuit, we showed the three voltage sources connected together in a “Y”
configuration (sometimes called the “star” configuration), with one lead of each source tied to
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Three-phase alternator (b)

Wlndlng Wlndlng

>

WI |ng Wlndlng

Single-phase alternator (a)

Wlndlng Wlndlng

Figure 10.15: (a) Single-phase alternator, (b) Three-phase alternator.

a common point (the node where we attached the “neutral” conductor). The common way to
depict this connection scheme is to draw the windings in the shape of a “Y” like Figure 10.16.

Figure 10.16: Alternator ”Y” configuration.

The “Y” configuration is not the only option open to us, but it is probably the easiest to
understand at first. More to come on this subject later in the chapter.

e REVIEW:

e A single-phase power system is one where there is only one AC voltage source (one source
voltage waveform).

e A split-phase power system is one where there are two voltage sources, 180° phase-shifted
from each other, powering a two series-connected loads. The advantage of this is the
ability to have lower conductor currents while maintaining low load voltages for safety
reasons.

e A polyphase power system uses multiple voltage sources at different phase angles from
each other (many “phases” of voltage waveforms at work). A polyphase power system
can deliver more power at less voltage with smaller-gage conductors than single- or split-
phase systems.
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e The phase-shifted voltage sources necessary for a polyphase power system are created in
alternators with multiple sets of wire windings. These winding sets are spaced around
the circumference of the rotor’s rotation at the desired angle(s).

10.3 Phase rotation

Let’s take the three-phase alternator design laid out earlier (Figure 10.17) and watch what
happens as the magnet rotates.

winding winding

%fa 3a /333_;

S
windin windin
la J 1 J
- . -
winding N winding

Figure 10.17: Three-phase alternator

The phase angle shift of 120° is a function of the actual rotational angle shift of the three
pairs of windings (Figure 10.18). If the magnet is rotating clockwise, winding 3 will generate its
peak instantaneous voltage exactly 120° (of alternator shaft rotation) after winding 2, which
will hits its peak 120° after winding 1. The magnet passes by each pole pair at different
positions in the rotational movement of the shaft. Where we decide to place the windings will
dictate the amount of phase shift between the windings’ AC voltage waveforms. If we make
winding 1 our “reference” voltage source for phase angle (0°), then winding 2 will have a phase
angle of -120° (120° lagging, or 240° leading) and winding 3 an angle of -240° (or 120° leading).

This sequence of phase shifts has a definite order. For clockwise rotation of the shaft, the
order is 1-2-3 (winding 1 peaks first, them winding 2, then winding 3). This order keeps re-
peating itself as long as we continue to rotate the alternator’s shaft. (Figure 10.18)

However, if we reverse the rotation of the alternator’s shaft (turn it counter-clockwise), the
magnet will pass by the pole pairs in the opposite sequence. Instead of 1-2-3, we’ll have 3-2-1.
Now, winding 2’s waveform will be leading 120° ahead of 1 instead of lagging, and 3 will be
another 120° ahead of 2. (Figure 10.19)

The order of voltage waveform sequences in a polyphase system is called phase rotation or
phase sequence. If we're using a polyphase voltage source to power resistive loads, phase rota-
tion will make no difference at all. Whether 1-2-3 or 3-2-1, the voltage and current magnitudes
will all be the same. There are some applications of three-phase power, as we will see shortly,
that depend on having phase rotation being one way or the other. Since voltmeters and amme-
ters would be useless in telling us what the phase rotation of an operating power system is, we
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phase sequence:
1-2-3-1-2-3-1-2-3

TIME —

Figure 10.18: Clockwise rotation phase sequence: 1-2-3.

phase sequence:
3-2-1-3-2-1-3-2-1

TIME —=

Figure 10.19: Counterclockwise rotation phase sequence: 3-2-1.
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need to have some other kind of instrument capable of doing the job.

One ingenious circuit design uses a capacitor to introduce a phase shift between voltage
and current, which is then used to detect the sequence by way of comparison between the
brightness of two indicator lamps in Figure 10.20.

to phase to phase
C —/
to phase
#3

Figure 10.20: Phase sequence detector compares brightness of two lamps.

The two lamps are of equal filament resistance and wattage. The capacitor is sized to have
approximately the same amount of reactance at system frequency as each lamp’s resistance.
If the capacitor were to be replaced by a resistor of equal value to the lamps’ resistance, the
two lamps would glow at equal brightness, the circuit being balanced. However, the capacitor
introduces a phase shift between voltage and current in the third leg of the circuit equal to
90°. This phase shift, greater than 0° but less than 120°, skews the voltage and current values
across the two lamps according to their phase shifts relative to phase 3. The following SPICE
analysis demonstrates what will happen: (Figure 10.21), "phase rotation detector — sequence
=v1-v2-v3”

1 1
+ | 120y R, @ 2650 Q

n) OO0
@ .

AN 3 3 I
01— | 4
120V LUF
@ [ 240° H
+ T 120V R, CB 2650 Q
0 120°
2 2

Figure 10.21: SPICE circuit for phase sequence detector.

The resulting phase shift from the capacitor causes the voltage across phase 1 lamp (be-
tween nodes 1 and 4) to fall to 48.1 volts and the voltage across phase 2 lamp (between nodes
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phase rotation detector -- sequence = v1-v2-v3
vl 1 0 ac 120 O sin

v2 2 0 ac 120 120 sin

v3 3 0 ac 120 240 sin

rl 1 4 2650

r2 2 4 2650

cl 34 1u

.ac lin 1 60 60
.print ac v(1,4) v(2,4) v(3,4)

. end
freq v(1,4) v(2,4) v(3,4)
6. 000E+01 4. 810E+01 1. 795E+02 1. 610E+02

2 and 4) to rise to 179.5 volts, making the first lamp dim and the second lamp bright. Just the
opposite will happen if the phase sequence is reversed: “phase rotation detector — sequence =
v3-v2-vl”

phase rotation detector -- sequence = v3-v2-vl
vl 1 0 ac 120 240 sin

v2 2 0 ac 120 120 sin

v3 3 0 ac 120 O sin

rl 1 4 2650

r2 2 4 2650

cl 34 1u

.ac lin 1 60 60
.print ac v(1,4) v(2,4) v(3,4)

. end
freq v(1,4) v(2,4) v(3,4)
6. 000E+01 1. 795E+02 4. 810E+01 1. 610E+02

Here,("phase rotation detector — sequence = v3-v2-v1”) the first lamp receives 179.5 volts
while the second receives only 48.1 volts.

We've investigated how phase rotation is produced (the order in which pole pairs get passed
by the alternator’s rotating magnet) and how it can be changed by reversing the alternator’s
shaft rotation. However, reversal of the alternator’s shaft rotation is not usually an option
open to an end-user of electrical power supplied by a nationwide grid (“the” alternator actually
being the combined total of all alternators in all power plants feeding the grid). There is a
much easier way to reverse phase sequence than reversing alternator rotation: just exchange
any two of the three “hot” wires going to a three-phase load.

This trick makes more sense if we take another look at a running phase sequence of a
three-phase voltage source:
1-2-3 rotation: 1-2-3-1-

1-3-

-3-1-2-3-1-2-3-1-2-3 .
3-2-1 rotation: 3-2- -1-3-2-1-3-2-1-3-2-1

What is commonly designated as a “1-2-3” phase rotation could just as well be called “2-3-1”
or “3-1-2,” going from left to right in the number string above. Likewise, the opposite rotation
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(3-2-1) could just as easily be called “2-1-3” or “1-3-2.”
Starting out with a phase rotation of 3-2-1, we can try all the possibilities for swapping any
two of the wires at a time and see what happens to the resulting sequence in Figure 10.22.

Original 1-2-3
phgse rotation End result
1 2 .
2 >< 1 (wires 1 and 2 swapped)
3 phase rotation = 2-1-3
1

3 (wires 2 and 3 swapped)
>< 5 phase rotation = 1-3-2

(wires 1 and 3 swapped)

1
: _)(L 2 phase rotation = 3-2-1
3 1

Figure 10.22: All possibilities of swapping any two wires.

No matter which pair of “hot” wires out of the three we choose to swap, the phase rotation
ends up being reversed (1-2-3 gets changed to 2-1-3, 1-3-2 or 3-2-1, all equivalent).

e REVIEW:

e Phase rotation, or phase sequence, is the order in which the voltage waveforms of a
polyphase AC source reach their respective peaks. For a three-phase system, there are
only two possible phase sequences: 1-2-3 and 3-2-1, corresponding to the two possible
directions of alternator rotation.

e Phase rotation has no impact on resistive loads, but it will have impact on unbalanced
reactive loads, as shown in the operation of a phase rotation detector circuit.

e Phase rotation can be reversed by swapping any two of the three “hot” leads supplying
three-phase power to a three-phase load.

10.4 Polyphase motor design

Perhaps the most important benefit of polyphase AC power over single-phase is the design and
operation of AC motors. As we studied in the first chapter of this book, some types of AC motors
are virtually identical in construction to their alternator (generator) counterparts, consisting
of stationary wire windings and a rotating magnet assembly. (Other AC motor designs are not
quite this simple, but we will leave those details to another lesson).
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Step #1 S Step #2
N s < . > N s
N

Figure 10.23: Clockwise AC motor operation.

If the rotating magnet is able to keep up with the frequency of the alternating current
energizing the electromagnet windings (coils), it will continue to be pulled around clockwise.
(Figure 10.23) However, clockwise is not the only valid direction for this motor’s shaft to spin.

It could just as easily be powered in a counter-clockwise direction by the same AC voltage
waveform a in Figure 10.24.

Step #1 N Step #2 ,/\
N S N S
o N o8
S

Step #4 ,/\

Figure 10.24: Counterclockwise AC motor operation.
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Notice that with the exact same sequence of polarity cycles (voltage, current, and magnetic
poles produced by the coils), the magnetic rotor can spin in either direction. This is a common
trait of all single-phase AC “induction” and “synchronous” motors: they have no normal or “cor-
rect” direction of rotation. The natural question should arise at this point: how can the motor
get started in the intended direction if it can run either way just as well? The answer is that
these motors need a little help getting started. Once helped to spin in a particular direction.
they will continue to spin that way as long as AC power is maintained to the windings.

Where that “help” comes from for a single-phase AC motor to get going in one direction can
vary. Usually, it comes from an additional set of windings positioned differently from the main
set, and energized with an AC voltage that is out of phase with the main power. (Figure 10.25)

\/47 W|nd|n% 2’s voltage waveform is 90 degrees
out of phase with winding 1's voltage waveform

W|nd|ng

wmdlng < I> W|nd|ng

Wlndlng

winding 2's voltage waveform js 90 degrees
~— out of phase with winding 1's voltage waveform

Figure 10.25: Unidirectional-starting AC two-phase motor.

These supplementary coils are typically connected in series with a capacitor to introduce a
phase shift in current between the two sets of windings. (Figure 10.26)

That phase shift creates magnetic fields from coils 2a and 2b that are equally out of step
with the fields from coils 1a and 1b. The result is a set of magnetic fields with a definite phase
rotation. It is this phase rotation that pulls the rotating magnet around in a definite direction.

Polyphase AC motors require no such trickery to spin in a definite direction. Because their
supply voltage waveforms already have a definite rotation sequence, so do the respective mag-
netic fields generated by the motor’s stationary windings. In fact, the combination of all three
phase winding sets working together creates what is often called a rotating magnetic field. It
was this concept of a rotating magnetic field that inspired Nikola Tesla to design the world’s
first polyphase electrical systems (simply to make simpler, more efficient motors). The line
current and safety advantages of polyphase power over single phase power were discovered
later.

What can be a confusing concept is made much clearer through analogy. Have you ever
seen a row of blinking light bulbs such as the kind used in Christmas decorations? Some
strings appear to “move” in a definite direction as the bulbs alternately glow and darken in
sequence. Other strings just blink on and off with no apparent motion. What makes the
difference between the two types of bulb strings? Answer: phase shift!

Examine a string of lights where every other bulb is lit at any given time as in (Figure 10.27)
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Figure 10.26: Capacitor phase shift adds second phase.
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Figure 10.27: Phase sequence 1-2-1-2: lamps appear to move.
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When all of the “1” bulbs are lit, the “2” bulbs are dark, and vice versa. With this blinking
sequence, there is no definite “motion” to the bulbs’ light. Your eyes could follow a “motion”
from left to right just as easily as from right to left. Technically, the “1” and “2” bulb blinking
sequences are 180° out of phase (exactly opposite each other). This is analogous to the single-
phase AC motor, which can run just as easily in either direction, but which cannot start on its
own because its magnetic field alternation lacks a definite “rotation.”

Now let’s examine a string of lights where there are three sets of bulbs to be sequenced in-
stead of just two, and these three sets are equally out of phase with each other in Figure 10.28.
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phase sequence = 1-2-3
bulbs appear to be "moving" from left to right

Figure 10.28: Phase sequence: 1-2-3: bulbs appear to move left to right.

If the lighting sequence is 1-2-3 (the sequence shown in (Figure 10.28)), the bulbs will
appear to “move” from left to right. Now imagine this blinking string of bulbs arranged into a
circle as in Figure 10.29.

Now the lights in Figure 10.29 appear to be “moving” in a clockwise direction because they
are arranged around a circle instead of a straight line. It should come as no surprise that the
appearance of motion will reverse if the phase sequence of the bulbs is reversed.

The blinking pattern will either appear to move clockwise or counter-clockwise depending
on the phase sequence. This is analogous to a three-phase AC motor with three sets of windings
energized by voltage sources of three different phase shifts in Figure 10.30.

With phase shifts of less than 180° we get true rotation of the magnetic field. With single-
phase motors, the rotating magnetic field necessary for self-starting must to be created by way
of capacitive phase shift. With polyphase motors, the necessary phase shifts are there already.
Plus, the direction of shaft rotation for polyphase motors is very easily reversed: just swap any
two “hot” wires going to the motor, and it will run in the opposite direction!

e REVIEW:
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Figure 10.29: Circular arrangement; bulbs appear to rotate clockwise.

Wlndlng Wlndlng

Wlndlng<l> wmdmg

© windin wi t()jlng

Figure 10.30: Three-phase AC motor: A phase sequence of 1-2-3 spins the magnet clockwise,
3-2-1 spins the magnet counterclockwise.
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e AC “induction” and “synchronous” motors work by having a rotating magnet follow the
alternating magnetic fields produced by stationary wire windings.

e Single-phase AC motors of this type need help to get started spinning in a particular
direction.

e By introducing a phase shift of less than 180° to the magnetic fields in such a motor, a
definite direction of shaft rotation can be established.

e Single-phase induction motors often use an auxiliary winding connected in series with a
capacitor to create the necessary phase shift.

e Polyphase motors don’t need such measures; their direction of rotation is fixed by the
phase sequence of the voltage they’re powered by.

e Swapping any two “hot” wires on a polyphase AC motor will reverse its phase sequence,
thus reversing its shaft rotation.

10.5 Three-phase Y and A configurations

Initially we explored the idea of three-phase power systems by connecting three voltage sources
together in what is commonly known as the “Y” (or “star”) configuration. This configuration of
voltage sources is characterized by a common connection point joining one side of each source.
(Figure 10.31)

120V F
0 0°
N
Y,
20V
120V 7 0 240°
01200

Figure 10.31: Three-phase “Y” connection has three voltage sources connected to a common
point.

If we draw a circuit showing each voltage source to be a coil of wire (alternator or trans-
former winding) and do some slight rearranging, the “Y” configuration becomes more obvious
in Figure 10.32.

The three conductors leading away from the voltage sources (windings) toward a load are
typically called lines, while the windings themselves are typically called phases. In a Y-
connected system, there may or may not (Figure 10.33) be a neutral wire attached at the
junction point in the middle, although it certainly helps alleviate potential problems should
one element of a three-phase load fail open, as discussed earlier.
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Figure 10.32: Three-phase, four-wire “Y” connection uses a "common” fourth wire.
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Figure 10.33: Three-phase, three-wire “Y” connection does not use the neutral wire.
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When we measure voltage and current in three-phase systems, we need to be specific as to
where we're measuring. Line voltage refers to the amount of voltage measured between any
two line conductors in a balanced three-phase system. With the above circuit, the line voltage
is roughly 208 volts. Phase voltage refers to the voltage measured across any one component
(source winding or load impedance) in a balanced three-phase source or load. For the circuit
shown above, the phase voltage is 120 volts. The terms line current and phase current follow
the same logic: the former referring to current through any one line conductor, and the latter
to current through any one component.

Y-connected sources and loads always have line voltages greater than phase voltages, and
line currents equal to phase currents. If the Y-connected source or load is balanced, the line
voltage will be equal to the phase voltage times the square root of 3:

For "Y" circuits:
Eline: \Y 3 Ephase

IIine = Iphase
However, the “Y” configuration is not the only valid one for connecting three-phase voltage
source or load elements together. Another configuration is known as the “Delta,” for its geo-
metric resemblance to the Greek letter of the same name (A). Take close notice of the polarity
for each winding in Figure 10.34.

"line"
12+0V 0o°
2115 "line"
- +
120V 120V
0 240° - D120°
"line"

Figure 10.34: Three-phase, three-wire A connection has no common.

At first glance it seems as though three voltage sources like this would create a short-circuit,
electrons flowing around the triangle with nothing but the internal impedance of the windings
to hold them back. Due to the phase angles of these three voltage sources, however, this is not
the case.

One quick check of this is to use Kirchhoff’s Voltage Law to see if the three voltages around
the loop add up to zero. If they do, then there will be no voltage available to push current
around and around that loop, and consequently there will be no circulating current. Starting
with the top winding and progressing counter-clockwise, our KVL expression looks something
like this:
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(120 V 0 0°) + (120 V [ 240°) + (120 V O 120°)

Does it all equal 0?

Yes!

Indeed, if we add these three vector quantities together, they do add up to zero. Another way
to verify the fact that these three voltage sources can be connected together in a loop without
resulting in circulating currents is to open up the loop at one junction point and calculate
voltage across the break: (Figure 10.35)

120