Appendix 3: Averaged switch modeling of a CCM SEPIC

SEPIC example: write circuit with switch network explicitly identified

A few points regarding averaged switch modeling

- The switch network can be defined arbitrarily, as long as
its terminal voltages and currents are independent, and
the switch network contains no reactive elements.
- It is not necessary that some of the switch network terminal quantities
coincide with inductor currents or capacitor voltages of the converter, or be nonpulsating.
- The object is simply to write the averaged equations of the switch network; i.e., to express the average values of half of the switch network terminal waveforms as functions of
the average values of the remaining switch network terminal waveforms, and
the control input.

SEPIC CCM waveforms

Sketch terminal waveforms of switch network

Port 1

Fundamentals of Power Electronics

Appendix 3: Averaged switch modeling of a CCM SEPIC

Expressions for average values of switch network terminal waveforms

Use small ripple approximation

$$
\begin{gathered}
\left\langle v_{1}(t)\right\rangle_{T_{s}}=d^{\prime}(t)\left(\left\langle v_{C 1}(t)\right\rangle_{T_{s}}+\left\langle v_{C 2}(t)\right\rangle_{T_{s}}\right) \\
\left\langle i_{1}(t)\right\rangle_{T_{s}}=d(t)\left(\left\langle i_{L 1}(t)\right\rangle_{T_{s}}+\left\langle i_{L 2}(t)\right\rangle_{T_{s}}\right) \\
\left\langle v_{2}(t)\right\rangle_{T_{s}}=d(t)\left(\left\langle v_{C 1}(t)\right\rangle_{T_{s}}+\left\langle v_{C 2}(t)\right\rangle_{T_{s}}\right) \\
\left\langle i_{2}(t)\right\rangle_{T_{s}}=d^{\prime}(t)\left(\left\langle i_{L 1}(t)\right\rangle_{T_{s}}+\left\langle i_{L 2}(t)\right\rangle_{T_{s}}\right)
\end{gathered}
$$

Need next to eliminate the capacitor voltages and inductor currents from these expressions, to write the equations of the switch network.

Derivation of switch network equations (Algebra steps)

We can write

$$
\begin{aligned}
& \left\langle i_{L 1}(t)\right\rangle_{T_{s}}+\left\langle i_{L 2}(t)\right\rangle_{T_{s}}=\frac{\left\langle i_{1}(t)\right\rangle_{T_{s}}}{d(t)} \\
& \left\langle v_{C 1}(t)\right\rangle_{T_{s}}+\left\langle v_{C 2}(t)\right\rangle_{T_{s}}=\frac{\left\langle v_{2}(t)\right\rangle_{T_{s}}}{d(t)}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\langle v_{1}(t)\right\rangle_{T_{s}} & =\frac{d^{\prime}(t)}{d(t)}\left\langle v_{2}(t)\right\rangle_{T_{s}} \\
\left\langle i_{2}(t)\right\rangle_{T_{s}} & =\frac{d^{\prime}(t)}{d(t)}\left\langle i_{1}(t)\right\rangle_{T_{s}}
\end{aligned}
$$

Result

Modeling the switch network via averaged dependent sources

Steady-state switch model: Dc transformer model

Steady-state CCM SEPIC model

Replace switch network with dc transformer model

Small-signal model

Perturb and linearize the switch network averaged waveforms, as usual:

$$
\begin{aligned}
d(t) & =D+\hat{d}(t) \\
\left\langle v_{1}(t)\right\rangle_{T_{s}} & =V_{1}+\hat{v}_{1}(t) \\
\left\langle i_{1}(t)\right\rangle_{T_{s}} & =I_{1}+\hat{i}_{1}(t) \\
\left\langle v_{2}(t)\right\rangle_{T_{s}} & =V_{2}+\hat{v}_{2}(t) \\
\left\langle i_{2}(t)\right\rangle_{T_{s}} & =I_{2}+\hat{i}_{2}(t)
\end{aligned}
$$

Voltage equation becomes

$$
(D+\hat{d})\left(V_{1}+\hat{v}_{1}\right)=\left(D^{\prime}-\hat{d}\right)\left(V_{2}+\hat{v}_{2}\right)
$$

Eliminate nonlinear terms and solve for v_{1} terms:

$$
\begin{aligned}
\left(V_{1}+\hat{v}_{1}\right) & =\frac{D^{\prime}}{D}\left(V_{2}+\hat{v}_{2}\right)-\hat{d}\left(\frac{V_{1}+V_{2}}{D}\right) \\
& =\frac{D^{\prime}}{D}\left(V_{2}+\hat{v}_{2}\right)-\hat{d}\left(\frac{V_{1}}{D D^{\prime}}\right)
\end{aligned}
$$

Linearization, continued

Current equation becomes

$$
(D+\hat{d})\left(I_{2}+\hat{i}_{2}\right)=\left(D^{\prime}-\hat{d}\right)\left(I_{1}+\hat{i}_{1}\right)
$$

Eliminate nonlinear terms and solve for i_{2} terms:

$$
\begin{aligned}
\left(I_{2}+\hat{i}_{2}\right) & =\frac{D^{\prime}}{D}\left(I_{1}+\hat{i}_{1}\right)-\hat{d}\left(\frac{I_{1}+I_{2}}{D}\right) \\
& =\frac{D^{\prime}}{D}\left(I_{1}+\hat{i}_{1}\right)-\hat{d}\left(\frac{I_{2}}{D D^{\prime}}\right)
\end{aligned}
$$

Switch network: Small-signal ac model

Reconstruct equivalent circuit in the usual manner:

Small-signal ac model of the CCM SEPIC

Replace switch network with small-signal ac model:

