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Chapter 14   Inductor Design

14.1 Filter inductor design constraints

14.2 A step-by-step design procedure

14.3 Multiple-winding magnetics design using the
Kg method

14.4 Examples

14.5 Summary of key points
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14.1    Filter inductor design constraints

P
cu

 = I
rms

2
 R

Objective:

Design inductor having a given inductance L,

which carries worst-case current Imax without saturating,

and which has a given winding resistance R, or, equivalently,
exhibits a worst-case copper loss of

L

R

i(t)

+
–

L

i(t)
i(t)

t0 DTs
Ts

I ∆iL

Example:  filter inductor in CCM buck converter
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Assumed filter inductor geometry

Solve magnetic circuit:

Air gap
reluctance
Rg

n
turns

i(t)

Φ

Core reluctance Rc

+
v(t)
– +

–ni(t) Φ(t)

Rc

Rg

Fc
+                   –

Rc =
lc

µcAc

Rg =
lg

µ0Ac

ni = Φ Rc + Rg

ni ≈ ΦRg

Usually Rc < Rg and hence
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14.1.1    Constraint: maximum flux density

Given a peak winding current Imax, it is desired to operate the core flux
density at a peak value Bmax. The value of Bmax is chosen to be less
than the worst-case saturation flux density Bsat of the core material.

From solution of magnetic circuit:

Let I = Imax and B = Bmax :

This is constraint #1. The turns ratio n and air gap length lg are

unknown.

ni = BAcRg

nImax = Bmax AcRg = Bmax

lg
µ0
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14.1.2 Constraint: inductance

Must obtain specified inductance L. We know that the inductance is

This is constraint #2. The turns ratio n, core area Ac, and air gap length

lg are unknown.

L = n2

Rg
=
µ0Ac n2

lg
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14.1.3  Constraint: winding area

core window
area WA

wire bare area
AW

core

Wire must fit through core window (i.e., hole in center of core)

nAW

Total area of
copper in window:

KuWA

Area available for winding
conductors:

Third design constraint:

KuWA ≥ nAW
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The window utilization factor Ku
also called the “fill factor”

Ku is the fraction of the core window area that is filled by copper

Mechanisms that cause Ku to be less than 1:

• Round wire does not pack perfectly, which reduces Ku  by a
factor of 0.7 to 0.55 depending on winding technique

• Insulation reduces Ku  by a factor of 0.95 to 0.65, depending on
wire size and type of insulation

• Bobbin uses some window area

• Additional insulation may be required between windings

Typical values of Ku :

0.5 for simple low-voltage inductor

0.25 to 0.3 for off-line transformer

0.05 to 0.2 for high-voltage transformer (multiple kV)

0.65 for low-voltage foil-winding inductor
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14.1.4  Winding resistance

The resistance of the winding is

where  is the resistivity of the conductor material, lb is the length of

the wire, and AW is the wire bare area. The resistivity of copper at
room temperature is 1.724 10–6 -cm. The length of the wire comprising
an n-turn winding can be expressed as

where (MLT) is the mean-length-per-turn of the winding. The mean-
length-per-turn is a function of the core geometry. The above
equations can be combined to obtain the fourth constraint:

R = ρ
n (MLT)

AW

R = ρ
lb

AW

lb = n (MLT )
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14.1.5  The core geometrical constant Kg

The four constraints:

R = ρ
n (MLT)

AW

KuWA ≥ nAW

These equations involve the quantities

Ac, WA, and MLT, which are functions of the core geometry,

Imax, Bmax , µ0, L, Ku, R, and , which are given specifications or
other known quantities, and

n, lg, and AW, which are unknowns.

Eliminate the three unknowns, leading to a single equation involving
the remaining quantities.

nImax = Bmax AcRg = Bmax

lg
µ0

L = n2

Rg
=
µ0Ac n2

lg
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Core geometrical constant Kg

Ac
2WA

(MLT)
≥

ρL2I max
2

Bmax
2 RKu

Elimination of n, lg, and AW  leads to

• Right-hand side: specifications or other known quantities

• Left-hand side: function of only core geometry

So we must choose a core whose geometry satisfies the above
equation.

The core geometrical constant Kg is defined as

Kg =
Ac

2WA

(MLT)
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Discussion

Kg =
Ac

2WA

(MLT)
≥

ρL2I max
2

Bmax
2 RKu

Kg is a figure-of-merit that describes the effective electrical size of magnetic
cores, in applications where the following quantities are specified:

• Copper loss

• Maximum flux density

How specifications affect the core size:

A smaller core can be used by increasing

Bmax  use core material having higher Bsat

R  allow more copper loss

How the core geometry affects electrical capabilities:

 A larger Kg  can be obtained by increase of

Ac  more iron core material, or

WA  larger window and more copper
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14.2  A step-by-step procedure

The following quantities are specified, using the units noted:
Wire resistivity ( -cm)
Peak winding current Imax (A)
Inductance L (H)
Winding resistance R ( )
Winding fill factor Ku

Core maximum flux density Bmax (T)

The core dimensions are expressed in cm:
Core cross-sectional area Ac (cm2)
Core window area WA (cm2)
Mean length per turn MLT (cm)

The use of centimeters rather than meters requires that appropriate
factors be added to the design equations.
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Determine core size

Kg ≥
ρL2I max

2

Bmax
2 RKu

108 (cm5)

Choose a core which is large enough to satisfy this inequality
(see Appendix D for magnetics design tables).

Note the values of Ac, WA, and MLT for this core.
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Determine air gap length

with Ac expressed in cm2. µ0 = 4 10–7 H/m.

The air gap length is given in meters.

The value expressed above is approximate, and neglects fringing flux
and other nonidealities.

lg =
µ0LI max

2

Bmax
2 Ac

104 (m)
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AL

Core manufacturers sell gapped cores. Rather than specifying the air
gap length, the equivalent quantity AL is used.

AL  is equal to the inductance, in mH, obtained with a winding of 1000
turns.

When AL  is specified, it is the core manufacturer’s responsibility to
obtain the correct gap length.

The required AL  is given by:

AL =
10Bmax

2 Ac
2

LI max
2 (mH/1000 turns)

L = AL n2 10– 9 (Henries)

Units:
Ac        cm2,

L         Henries,

Bmax    Tesla.
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Determine number of turns n

n =
LImax

BmaxAc

104
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Evaluate wire size

AW ≤
KuWA

n
(cm2)

Select wire with bare copper area AW  less than or equal to this value.
An American Wire Gauge table is included in Appendix D.

As a check, the winding resistance can be computed:

R =
ρn (MLT)

Aw
(Ω)
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14.3 Multiple-winding magnetics design
using the Kg method

The Kg design method can be extended to multiple-
winding magnetic elements such as transformers and
coupled inductors.

This method is applicable when

– Copper loss dominates the total loss (i.e. core loss is
ignored), or

– The maximum flux density Bmax is a specification rather than
a quantity to be optimized

To do this, we must

– Find how to allocate the window area between the windings

– Generalize the step-by-step design procedure
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14.3.1  Window area allocation

n1  :  n2

:  nk

rms current
I1

rms current
I2

rms current
Ik

v1(t)
n1

=
v2(t)
n2

= =
vk(t)
nk

Core
Window area WA

Core mean length
per turn (MLT)

Wire resistivity ρ

Fill factor Ku

Given:  application with k windings
having known rms currents and
desired turns ratios

Q: how should the window
area WA be allocated among
the windings?
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Allocation of winding area

Total window
area WA

Winding 1 allocation
α1WA

Winding 2 allocation
α2WA

etc.

{
{

0 < α j < 1

α1 + α2 + + αk = 1
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Copper loss in winding j

Copper loss (not accounting for proximity loss) is

Pcu, j = I j
2Rj

Resistance of winding j is

with

AW, j =
WAKuα j

n j

length of wire, winding j

wire area, winding j

Hence

Rj = ρ
l j

AW , j

l j = n j (MLT )

Rj = ρ
n j

2 (MLT )
WAKuα j

Pcu, j =
n j

2i j
2ρ(MLT )

WAKuα j
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Total copper loss of transformer

Sum previous expression over all windings:

Pcu,tot = Pcu,1 + Pcu,2 + + Pcu,k =
ρ (MLT)

WAKu

n j
2I j

2

α j
Σ
j = 1

k

Need to select values for 1, 2, …, k  such that the total copper loss
is minimized
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Variation of copper losses with 1

For 
1
 = 0:  wire of

winding 1 has zero area.
Pcu,1  tends to infinity

For 
1
 = 1:  wires of

remaining windings have
zero area. Their copper
losses tend to infinity

There is a choice of 1

that minimizes the total
copper lossα1

Copper
loss

0 1

Pcu,tot

P
cu,1

P cu,2
+

P cu
,3

+
...

+
P cu

,k
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Method of Lagrange multipliers
to minimize total copper loss

Pcu,tot = Pcu,1 + Pcu,2 + + Pcu,k =
ρ (MLT)

WAKu

n j
2I j

2

α j
Σ
j = 1

k

subject to the constraint

α1 + α2 + + αk = 1

Define the function

f (α1, α2, , αk, ξ) = Pcu,tot(α1, α2, , αk) + ξ g(α1, α2, , αk)

Minimize the function

where

g(α1, α2, , αk) = 1 – α jΣ
j = 1

k

is the constraint that must equal zero

and  is the Lagrange multiplier
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Lagrange multipliers
continued

Optimum point is solution of
the system of equations

∂ f (α1, α2, , αk,ξ)
∂α1

= 0

∂ f (α1, α2, , αk,ξ)
∂α2

= 0

∂ f (α1, α2, , αk,ξ)
∂αk

= 0

∂ f (α1, α2, , αk,ξ)
∂ξ

= 0

Result:

ξ =
ρ (MLT)

WAKu
n jI jΣ

j = 1

k 2

= Pcu,tot

αm =
nmIm

n jI jΣ
n = 1

∞

An alternate form:

αm =
VmIm

VjI jΣ
n = 1

∞
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Interpretation of result

αm =
VmIm

VjI jΣ
n = 1

∞

Apparent power in winding j is

Vj Ij

where Vj  is the rms or peak applied voltage

Ij  is the rms current

Window area should be allocated according to the apparent powers of
the windings
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Ii1(t)

n1 turns { } n2 turns

} n2 turns

i2(t)

i3(t)

Example
PWM full-bridge transformer

• Note that waveshapes
(and hence rms values)
of the primary and
secondary currents are
different

• Treat as a three-
winding transformer

– n2

n1
I

t

i1(t)

0 0

n2

n1
I

i2(t) I
0.5I 0.5I

0

i3(t) I
0.5I 0.5I

0

0 DTs Ts 2TsTs +DTs
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Expressions for RMS winding currents

I1 = 1
2Ts

i1
2(t)dt

0

2Ts

=
n2

n1

I D

I2 = I3 = 1
2Ts

i2
2(t)dt

0

2Ts

= 1
2

I 1 + D

see  Appendix A

– n2

n1
I

t

i1(t)

0 0

n2

n1
I

i2(t) I
0.5I 0.5I

0

i3(t) I
0.5I 0.5I

0

0 DTs Ts 2TsTs +DTs
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Allocation of window area: αm =
VmIm

VjI jΣ
n = 1

∞

α1 = 1

1 + 1 + D
D

α2 = α3 = 1
2

1

1 + D
1 + D

Plug in rms current expressions. Result:

Fraction of window area
allocated to primary
winding

Fraction of window area
allocated to each
secondary winding
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Numerical example

Suppose that we decide to optimize the transformer design at the
worst-case operating point D = 0.75. Then we obtain

α1 = 0.396
α2 = 0.302
α3 = 0.302

The total copper loss is then given by

Pcu,tot =
ρ(MLT)

WAKu
n jI jΣ

j = 1

3 2

=
ρ(MLT)n2

2I 2

WAKu
1 + 2D + 2 D(1 + D)
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14.3.2   Coupled inductor design constraints

n1  :  n2

:  nk

R1 R2

Rk

+

v1(t)

–

+

v2(t)

–

+

vk(t)

–

i1(t) i2(t)

ik(t)

LM

iM (t)

+
–n1iM (t) Φ(t)

Rc

Rg

Consider now the design of a coupled inductor having k windings. We want
to obtain a specified value of magnetizing inductance, with specified turns
ratios and total copper loss.

Magnetic circuit model:
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Relationship between magnetizing
current and winding currents

n1  :  n2

:  nk

R1 R2

Rk

+

v1(t)

–

+

v2(t)

–

+

vk(t)

–

i1(t) i2(t)

ik(t)

LM

iM (t)

iM(t) = i1(t) +
n2

n1

i2(t) + +
nk

n1

ik(t)

Solution of circuit model, or by use of
Ampere’s Law:
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Solution of magnetic circuit model:
Obtain desired maximum flux density

+
–n1iM (t) Φ(t)

Rc

Rg

n1iM(t) = B(t)AcRg

Assume that gap reluctance is much
larger than core reluctance:

Design so that the maximum flux density Bmax is equal to a specified value
(that is less than the saturation flux density Bsat ). Bmax is related to the
maximum magnetizing current according to

n1I M,max = BmaxAcRg = Bmax

lg
µ0
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Obtain specified magnetizing inductance

L M =
n1

2

Rg
= n1

2 µ0 Ac

lg

By the usual methods, we can solve for the value of the magnetizing
inductance LM (referred to the primary winding):
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Copper loss

Allocate window area as described in Section 14.3.1. As shown in that
section, the total copper loss is then given by

Pcu =
ρ(MLT )n1

2I tot
2

WAK u

I tot =
n j
n1

I jΣ
j = 1

k

with



Fundamentals of Power Electronics Chapter 14: Inductor design36

Eliminate unknowns and solve for Kg

Pcu =
ρ(MLT)LM

2 I tot
2 I M,max

2

Bmax
2 Ac

2WAKu

Eliminate the unknowns lg and n1:

Rearrange equation so that terms that involve core geometry are on
RHS while specifications are on LHS:

Ac
2WA

(MLT)
=
ρLM

2 I tot
2 I M,max

2

Bmax
2 KuPcu

The left-hand side is the same Kg as in single-winding inductor design.
Must select a core that satisfies

Kg ≥
ρLM

2 I tot
2 I M,max

2

Bmax
2 KuPcu
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14.3.3  Step-by-step design procedure:
Coupled inductor

The following quantities are specified, using the units noted:
Wire resistivity ( -cm)

Total rms winding currents (A) (referred to winding 1)

Peak magnetizing current IM, max (A) (referred to winding 1)

Desired turns ratios n2/n1. n3/n2. etc.

Magnetizing inductance LM (H) (referred to winding 1)

Allowed copper loss Pcu (W)

Winding fill factor Ku

Core maximum flux density Bmax (T)

The core dimensions are expressed in cm:
Core cross-sectional area Ac (cm2)

Core window area WA (cm2)

Mean length per turn MLT (cm)

The use of centimeters rather than meters requires that appropriate factors be added to the design equations.

I tot =
n j
n1

I jΣ
j = 1

k
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1. Determine core size

Kg ≥
ρLM

2 I tot
2 I M,max

2

Bmax
2 Pcu Ku

108 (cm5)

Choose a core that satisfies this inequality. Note the values of Ac, WA,
and MLT for this core.

The resistivity  of copper wire is 1.724 · 10–6  cm at room
temperature, and 2.3 · 10–6  cm at 100˚C.



Fundamentals of Power Electronics Chapter 14: Inductor design39

2. Determine air gap length

lg =
µ0L M I M,max

2

Bmax
2 Ac

104 (m)

(value neglects fringing flux, and a longer gap may be required)

The permeability of free space is µ0 = 4  · 10–7 H/m
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3. Determine number of turns

For winding 1:

n1 =
L M I M,max

BmaxAc
104

For other windings, use the desired turns ratios:

n2 =
n2

n1

n1

n3 =
n3

n1

n1
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4. Evaluate fraction of window area
allocated to each winding

α1 =
n1I 1

n1I tot

α2 =
n2I 2

n1I tot

αk =
nkIk

n1I tot

Total window
area WA

Winding 1 allocation
α1WA

Winding 2 allocation
α2WA

etc.

{
{

0 < α j < 1

α1 + α2 + + αk = 1
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5. Evaluate wire sizes

Aw1 ≤
α1KuWA

n1

Aw2 ≤
α2K uWA

n2

See American Wire Gauge (AWG) table at end of Appendix D.
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14.4   Examples

14.4.1 Coupled Inductor for a Two-Output Forward
Converter

14.4.2 CCM Flyback Transformer
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14.4.1 Coupled Inductor for a Two-Output
Forward Converter

n1
+

v1

–

n2
turns

i1

+

v2

–

i2

+
–vg

Output 1
28 V
4 A

Output 2
12 V
2 Afs = 200 kHz

The two filter inductors can share the same core because their applied
voltage waveforms are proportional. Select turns ratio n2/n1

approximately equal to v2/v1 = 12/28.
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Coupled inductor model and waveforms

n
1  : n

2

+

v1

–

i1

+

v2

–

i2

LM
iM

Coupled
inductor
model

vM
+        –

iM(t)

vM(t)

IM

0

0
– V1

∆iM

D′Ts

Secondary-side circuit, with coupled
inductor model

Magnetizing current and voltage
waveforms. iM(t) is the sum of
the winding currents i1(t) + i2(t).
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Nominal full-load operating point

n1
+

v1

–

n2
turns

i1

+

v2

–

i2

+
–vg

Output 1
28 V
4 A

Output 2
12 V
2 Afs = 200 kHz

Design for CCM
operation with

D = 0.35

iM = 20% of IM

fs = 200 kHz

DC component of magnetizing current is

I M = I1 +
n2

n1

I2

= (4 A) + 12
28

(2 A)

= 4.86 A
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Magnetizing current ripple

iM(t)

vM(t)

IM

0

0
– V1

∆iM

D′Ts

∆iM =
V1D′Ts

2L M

To obtain

iM = 20% of IM

choose

L M =
V1D′Ts

2∆iM

=
(28 V)(1 – 0.35)(5 µs)

2(4.86 A)(20%)
= 47 µH

This leads to a peak magnetizing
current (referred to winding 1) of

I M,max = I M + ∆iM = 5.83 A
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RMS winding currents

Since the winding current ripples are small, the rms values of the
winding currents are nearly equal to their dc comonents:

I1 = 4 A I2 = 2 A

Hence the sum of the rms winding currents, referred to the primary, is

I tot = I1 +
n2
n1

I2 = 4.86 A



Fundamentals of Power Electronics Chapter 14: Inductor design49

Evaluate Kg

The following engineering choices are made:
– Allow 0.75 W of total copper loss (a small core having

thermal resistance of less than 40 ˚C/W then would have a
temperature rise of less than 30 ˚C)

– Operate the core at Bmax = 0.25 T (which is less than the
ferrite saturation flux density of 0.3 ot 0.5 T)

– Use fill factor Ku = 0.4 (a reasonable estimate for a low-
voltage inductor with multiple windings)

Evaluate Kg:

Kg ≥
(1.724 ⋅ 10– 6 Ω – cm)(47 µH)2(4.86 A)2(5.83 A)2

(0.25 T)2(0.75 W)(0.4)
108

= 16 ⋅ 10– 3 cm5
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Select core

A1

2D

It is decided to use a ferrite PQ core. From
Appendix D, the smallest PQ core having
Kg  16 · 10–3 cm5 is the PQ 20/16, with Kg =

22.4 · 10–3 cm5 . The data for this core are:

Ac = 0.62 cm2

WA = 0.256 cm2

MLT = 4.4 cm
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Air gap length

lg =
µ0L M I M,max

2

Bmax
2 Ac

104

=
(4π ⋅ 10– 7H/m)(47 µH)(5.83 A)2

(0.25 T)2(0.62 cm2)
104

= 0.52 mm
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Turns

n1 =
L M I M,max

BmaxAc
104

=
(47 µH)(5.83 A)

(0.25 T)(0.62 cm2)
104

= 17.6 turns

n2 =
n2

n1

n1

=
12
28

(17.6)

= 7.54 turns

Let’s round off to

n1 = 17 n2 = 7
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Wire sizes

Allocation of window area:

α1 =
n1I 1

n1I tot

=
(17)(4 A)

(17)(4.86 A)
= 0.8235

α2 =
n2I 2

n1I tot

=
(7)(2 A)

(17)(4.86 A)
= 0.1695

Aw1 ≤
α1KuWA

n1

=
(0.8235)(0.4)(0.256 cm2)

(17)
= 4.96 ⋅ 10– 3 cm2

use AWG #21

Aw2 ≤
α2K uWA

n2

=
(0.1695)(0.4)(0.256 cm2)

(7)
= 2.48 ⋅ 10– 3 cm2

use AWG #24

Determination of wire areas and AWG (from table at end of Appendix D):
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14.4.2   Example 2: CCM flyback transformer

+
–

LM

+

V

–
Vg

Q1

D1

n1 : n2

C

Transformer model

iMi1

R

+

vM

–

i2

vM(t)

0

Vg

DTs

iM(t)

IM

0

∆iM

i1(t)

IM

0
i2(t)

IM

0

n1

n2
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Specifications

Input voltage Vg = 200V

Output (full load) 20 V at 5 A

Switching frequency 150 kHz

Magnetizing current ripple 20% of dc magnetizing current

Duty cycle D = 0.4

Turns ratio n2/n1 = 0.15

Copper loss 1.5 W

Fill factor Ku = 0.3

Maximum flux density  Bmax = 0.25 T
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Basic converter calculations

I M =
n2

n1

1
D′

V
R = 1.25 A

∆iM = 20% I M = 0.25 A

I M,max = I M + ∆iM = 1.5 A

Components of magnetizing
current, referred to primary:

Choose magnetizing inductance:

L M =
Vg DTs

2∆iM

= 1.07 mH

RMS winding currents:

I1 = I M D 1 + 1
3

∆iM

I M

2

= 0.796 A

I2 =
n1

n2

I M D′ 1 + 1
3

∆iM

I M

2

= 6.50 A

I tot = I1 +
n2

n1

I2 = 1.77 A
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Choose core size

Kg ≥
ρLM

2 I tot
2 I M,max

2

Bmax
2 Pcu Ku

108

=
1.724 ⋅ 10– 6Ω-cm 1.07 ⋅ 10– 3 H

2
1.77 A

2
1.5 A

2

0.25 T
2

1.5 W 0.3
108

= 0.049 cm5

The smallest EE core that satisfies
this inequality (Appendix D) is the
EE30.

A
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Choose air gap and turns

lg =
µ0L M I M,max

2

Bmax
2 Ac

104

=
4π ⋅ 10– 7H/m 1.07 ⋅ 10– 3 H 1.5 A

2

0.25 T
2

1.09 cm2
104

= 0.44 mm

n1 =
L M I M,max

BmaxAc
104

=
1.07 ⋅ 10– 3 H 1.5 A

0.25 T 1.09 cm2
104

= 58.7 turns

n1 = 59Round to

n2 =
n2

n1

n1

= 0.15 59

= 8.81

n2 = 9
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Wire gauges

α1 =
I1
I tot

=
0.796 A

1.77 A
= 0.45

α2 =
n2I2
n1I tot

=
9 6.5 A

59 1.77 A
= 0.55

AW1 ≤
α1KuWA

n1
= 1.09 ⋅ 10– 3 cm2 — use #28 AWG

AW2 ≤
α2KuWA

n2
= 8.88 ⋅ 10– 3 cm2 — use #19 AWG
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Core loss
CCM flyback example

dB(t)
dt

=
vM (t)
n1Ac

dB(t)
dt

=
Vg

n1Ac

B(t)

Hc(t)

Minor B–H loop,
CCM flyback
example

B–H loop,
large excitation

Bsat

∆BBmax

vM(t)

0

Vg

DTs

B(t)

Bmax

0

∆B

Vg

n1Ac

B-H loop for this application: The relevant waveforms:

B(t) vs. applied voltage,
from Faraday’s law:

For the first
subinterval:
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Calculation of ac flux density
and core loss

Solve for B:

∆B =
Vg

n1Ac
DTs

Plug in values for flyback
example:

∆B =
200 V 0.4 6.67 µs

2 59 1.09 cm2
104

= 0.041 T

∆B, Tesla
0.01 0.1 0.3

P
ow

er
 lo

ss
 d

en
si

ty
,

W
at

ts
/c

m
3

0.01

0.1

1

20
kH

z
50

kH
z

10
0k

H
z

20
0k

H
z

40
0k

H
z

15
0k

H
z

0.04
W/cm3

0.041

From manufacturer’s plot of core
loss (at left), the power loss density
is 0.04 W/cm3. Hence core loss is

Pfe = 0.04 W/cm3 Ac lm

= 0.04 W/cm3 1.09 cm2 5.77 cm

= 0.25 W
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Comparison of core and copper loss

• Copper loss is 1.5 W

– does not include proximity losses, which could substantially increase
total copper loss

• Core loss is 0.25 W

– Core loss is small because ripple and B are small

– It is not a bad approximation to ignore core losses for ferrite in CCM
filter inductors

– Could consider use of a less expensive core material having higher
core loss

– Neglecting core loss is a reasonable approximation for this
application

• Design is dominated by copper loss

– The dominant constraint on flux density is saturation of the core,
rather than core loss
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14.5  Summary of key points

1. A variety of magnetic devices are commonly used in switching
converters. These devices differ in their core flux density
variations, as well as in the magnitudes of the ac winding
currents. When the flux density variations are small, core loss can
be neglected. Alternatively, a low-frequency material can be used,
having higher saturation flux density.

2. The core geometrical constant Kg is a measure of the magnetic
size of a core, for applications in which copper loss is dominant.
In the Kg design method, flux density and total copper loss are
specified.


