Chapter 17 Line-Commutated Rectifiers

17.1 The single-phase full-wave rectifier

- 17.1.1 Continuous conduction mode
- 17.1.2 Discontinuous conduction mode
- 17.1.3 Behavior when *C* is large
- 17.1.4 Minimizing *THD* when *C* is small
- 17.2 The three-phase bridge rectifier
 - 17.2.1 Continuous conduction mode
 - 17.2.2 Discontinuous conduction mode

Fundamentals of Power Electronics

- 17.3 Phase control
 - 17.3.1 Inverter mode
 - 17.3.2 Harmonics and power factor
 - 17.3.3 Commutation
- 17.4 Harmonic trap filters
- 17.5 Transformer connections
- 17.6 Summary

17.1 The single-phase full-wave rectifier

Full-wave rectifier with dc-side *L*-*C* filter

Two common reasons for including the dc-side *L*-*C* filter:

- Obtain good dc output voltage (large *C*) and acceptable ac line current waveform (large *L*)
- Filter conducted EMI generated by dc load (small *L* and *C*)

17.1.1 Continuous conduction mode

THD =
$$\sqrt{\left(\frac{1}{\text{distortion factor}}\right)^2 - 1} = 48.3\%$$

Fundamentals of Power Electronics

17.1.2 Discontinuous conduction mode

Typical distortion factor of a full-wave rectifier with no inductor is in the range 55% to 65%, and is governed by ac system inductance.

17.1.3 Behavior when *C* is large

Fundamentals of Power Electronics

Sometimes the L-C filter is present only to remove high-frequency conducted EMI generated by the dc load, and is not intended to modify the ac line current waveform. If L and C are both zero, then the load resistor is connected directly to the output of the diode bridge, and the ac line current waveform is purely sinusoidal.

An approximate argument: the *L*-*C* filter has negligible effect on the ac line current waveform provided that the filter input impedance Z_i has zero phase shift at the second harmonic of the ac line frequency, $2f_L$.

Approximate THD

Example

Typical ac line current and voltage waveforms, near the boundary between continuous and discontinuous modes and with small dc filter capacitor. $f_0/f_L = 10$, Q = 1

Fundamentals of Power Electronics

17.2 The Three-Phase Bridge Rectifier

17.2.1 Continuous conduction mode

Fourier series:

$$i_a(t) = \sum_{n=1,5,7,11,\dots}^{\infty} \frac{4}{n\pi} I_L \sin\left(\frac{n\pi}{2}\right) \sin\left(\frac{n\pi}{3}\right) \sin\left(n\omega t\right)$$

- Similar to square wave, but missing triplen harmonics
- THD = 31%
- Distortion factor = $3/\pi = 95.5\%$
- In comparison with single phase case:

the missing 60° of current improves the distortion factor from 90% to 95%, because the triplen harmonics are removed

A typical CCM waveform

Inductor current contains sixth harmonic ripple (360 Hz for a 60 Hz ac system). This ripple is superimposed on the ac line current waveform, and influences the fifth and seventh harmonic content of $i_a(t)$.

17.2.2 Discontinuous conduction mode

Phase *a* current contains pulses at the positive and negative peaks of the line-to-line voltages $v_{ab}(t)$ and $v_{ac}(t)$. Distortion factor and THD are increased. Distortion factor of the typical waveform illustrated above is 71%.

17.3 Phase control

Replace diodes with SCRs:

Phase control waveforms:

Fundamentals of Power Electronics

Dc output voltage vs. delay angle α

Fundamentals of Power Electronics

17.3.1 Inverter mode

If the load is capable of supplying power, then the direction of power flow can be reversed by reversal of the dc output voltage *V*. The delay angle α must be greater than 90°. The current direction is unchanged.

17.3.2 Harmonics and power factor

Fourier series of ac line current waveform, for large dc-side inductance:

$$i_a(t) = \sum_{n=1,5,7,11,\dots}^{\infty} \frac{4}{n\pi} I_L \sin\left(\frac{n\pi}{2}\right) \sin\left(\frac{n\pi}{3}\right) \sin\left(n\omega t - n\alpha\right)$$

Same as uncontrolled rectifier case, except that waveform is delayed by the angle α . This causes the current to lag, and decreases the displacement factor. The power factor becomes:

power factor = $0.955 |\cos(\alpha)|$

When the dc output voltage is small, then the delay angle α is close to 90° and the power factor becomes quite small. The rectifier apparently consumes reactive power, as follows:

$$Q = \sqrt{3} I_{a, rms} V_{L-L, rms} \sin \alpha = I_L \frac{3\sqrt{2}}{\pi} V_{L-L, rms} \sin \alpha$$

Fundamentals of Power Electronics

Real and reactive power in controlled rectifier at fundamental frequency

Fundamentals of Power Electronics

17.4 Harmonic trap filters

A passive filter, having resonant zeroes tuned to the harmonic frequencies

Fundamentals of Power Electronics

Harmonic trap

Filter transfer function

Fundamentals of Power Electronics

Simple example

Simple example: transfer function

- Series resonance: fifth harmonic trap
- Parallel resonance: C_1 and L_s
- Parallel resonance tends to increase amplitude of third harmonic
- Q of parallel resonance is larger than Q of series resonance

Example 2

Approximate impedance asymptotes

Transfer function asymptotes

Bypass resistor

Harmonic trap filter with high-frequency roll-off

Fundamentals of Power Electronics

17.5 Transformer connections

Three-phase transformer connections can be used to shift the phase of the voltages and currents
This shifted phase can be used to cancel out the low-order harmonics
Three-phase delta-wye transformer connection shifts phase by 30°:

Fundamentals of Power Electronics

Twelve-pulse rectifier

Waveforms of 12 pulse rectifier

- Ac line current contains 1st, 11th, 13th, 23rd, 25th, etc. These harmonic amplitudes vary as 1/n
- 5th, 7th, 17th, 19th, etc. harmonics are eliminated

Fundamentals of Power Electronics

Rectifiers with high pulse number

Eighteen-pulse rectifier:

- Use three six-pulse rectifiers
- Transformer connections shift phase by 0°, +20°, and -20°
- No 5th, 7th, 11th, 13th harmonics

Twenty-four-pulse rectifier

- Use four six-pulse rectifiers
- Transformer connections shift phase by 0°, 15°, -15°, and 30°
- No 5th, 7th, 11th, 13th, 17th, or 19th harmonics

If *p* is pulse number, then rectifier produces line current harmonics of number $n = pk \pm 1$, with k = 0, 1, 2, ...