NOT MEASUREMENT SENSITIVE

MIL-HDBK-704-1 9 April 2004

DEPARTMENT OF DEFENSE HANDBOOK

GUIDANCE FOR TEST PROCEDURES FOR DEMONSTRATION OF UTILIZATION EQUIPMENT COMPLIANCE TO AIRCRAFT ELECTRICAL POWER CHARACTERISTICS (PART 1 OF 8 PARTS)

Notations and comments made in this document are not official and are for reference only.

This Handbook is for guidance only. Do not cite this document as a requirement.

AMSC N/A

AREA SESS

FOREWORD

1. This handbook is approved for use by all Departments and Agencies of the Department of Defense.

2. This handbook provides guidance on test procedures for demonstration of utilization equipment to determine compliance with the aircraft electrical power characteristics of MIL-STD-704.

3. MIL-HDBK-704-1 is Part 1 in a series of 8 Parts. Part 1 provides general guidance information on compliance tests, power groups, aircraft electrical operating conditions, and utilization equipment specifications. Parts 2 through Part 8 provide guidance on application of compliance tests for utilization equipment in specific power groups. These series of handbooks and MIL-STD-704 are companion documents.

4. Comments, suggestions, or questions on this document should be addressed to Commander, Naval Air Systems Command, Code 4.1.4, Highway 547, Lakehurst, NJ 08733-5100 or email to <u>thomas.omara@navy.mil</u>. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at <u>www.dodssp.daps.mil/</u>

CONTENTS

PARA	<u>GRAPH</u> <u>PAG</u>	E
	FOREWORD	ii
1. 1.1	SCOPE	1 1
2. 2.1 2.2 2.2.1	APPLICABLE DOCUMENTS	1 1 1
3. 3.1	DEFINITIONS Acronyms and definitions	1 1
4. 4.1 4.2 4.3 4.4 4.5 4.5.1 4.6 4.7 4.8 4.9 4.10 4.10.1 4.10.2	GENERAL INFORMATION Utilization equipment compliance testing. Compliance tests. Utilization equipment power groups. Aircraft electrical operating conditions. Utilization equipment performance specifications. Examples of utilization equipment performance requirements. Dual source utilization equipment. Transformer rectifiers units. Inverters. Compliance to aircraft electrical power characteristics demonstration test methods of MIL-HDBK-704-2 through -8. Stimulation and monitoring equipment. Monitoring equipment.	1 1 2 2 2 3 6 6 7 7 7 7 7 7
5. 5.1 5.2 5.3	NOTES Intended use. Single phase test numbers. Subject term (keyword) listing.	8 8 8 8
TABL I. II.	E Power groups. Aircraft electrical power systems operating conditions. Test numbering nomenclature example SAC202A	9 9 0
IV. V. VI.	Single phase, 400 Hz, 115 V, utilization equipment compliance tests	9 0 1 2

CONTENTS

PAGE

TABLE		
VII.	Three phase, variable frequency, 115 V utilization equipment	
	compliance tests.	13
VIII.	Single phase, 60 Hz, 115 V utilization equipment compliance tests	
IX.	28 VDC utilization equipment compliance tests.	15
Х.	270 VDC utilization equipment compliance tests.	
(CONCLUDING MATERIAL	16

1. SCOPE

1.1 <u>Scope</u>. This handbook provides guidance on test procedures for demonstration of utilization equipment to determine compliance with the aircraft electrical power characteristics of MIL-STD-704. This handbook is for guidance only and cannot be cited as a requirement.

2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed below are not necessarily all of the documents referenced herein, but are those needed to understand the information provided by this handbook.

2.2 Government documents.

2.2.1 <u>Specifications, standards and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-704

DoD Interface Standard for Aircraft Electric Power Characteristics

(Copies of these documents are available at <u>http://assist.daps.dla.mil/quicksearch/</u> or <u>www.dodssp.daps.mil/</u>or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

3. DEFINITIONS

3.1 <u>Acronyms and definitions</u>. The acronyms and definitions of MIL-STD-704 are applicable to this handbook.

4. GENERAL INFORMATION

4.1 <u>Utilization equipment compliance testing</u>. MIL-STD-704 states that equipment testing is required to demonstrate that utilization equipment is compatible with the electric power characteristics as defined in MIL-STD-704. MIL-STD-704 is the interface document that defines the aircraft electrical power characteristics at the input terminals to utilization equipment. The aircraft electrical system must provide power in accordance with MIL-STD-704 and the utilization equipment must perform as specified when provided input power in accordance with MIL-STD-704. MIL-HDBK-704-1 through MIL-HDBK-704-8 provide detail test methods for demonstrating compliance to MIL-STD-704. All previous editions of MIL-STD-704, which have been cited in aircraft platform or subsystem contracts, remain in effect. The applicable edition of MIL-STD-704 for utilization equipment compliance is the edition that is applicable to the aircraft platform or platform(s) in which the utilization equipment will be installed.

4.2 <u>Compliance tests</u>. Compliance tests are intended to give a reasonable assurance that the utilization equipment will perform as specified when installed in aircraft that are

designed and built to the applicable edition of MIL-STD-704 without unduly burdening the development of utilization equipment. The compliance tests simulate the range of power characteristics that utilization equipment may experience during its life. The compliance test procedures cannot simulate exactly every power condition that may be experienced by the utilization equipment. The designer/manufacturer of utilization equipment must design and build the utilization equipment to be compatible with the power characteristics defined in the applicable edition(s) of MIL-STD-704 and should not design equipment solely based on the test procedures herein.

4.3 <u>Utilization equipment power groups</u>. There are seven utilization input power types defined by the different editions of MIL-STD-704. The MIL-STD-704 compliance tests are organized into power groups based on input electrical power type to utilization equipment. The power groups are:

- a. Single Phase, 400 Hz, 115 Volt (AC)
- b. Three Phase, 400 Hz, 115 Volt (AC)
- c. Single Phase, Variable Frequency, 115 Volt (AC)
- d. Three Phase, Variable Frequency, 115 Volt (AC)
- e. Single Phase, 60 Hz, 115 Volt (AC)
- f. Direct Current, 28 Volt (DC)
- g. Direct Current, 270 Volt (DC)

The preferable input power type for utilization equipment differs for each aircraft platform. The selection of input power type for utilization must take into consideration the aircraft power types available on the intended aircraft platform and the capacity of the electrical system on the aircraft. All power types may not be available on an aircraft platform.

4.4 <u>Aircraft electrical operating conditions</u>. MIL-STD-704 defines six distinct aircraft electrical system operating conditions: (1) Normal Electrical Power, (2) Power Transfers, (3) Abnormal Electrical Power, (4) Emergency Electrical Power, (5) Engine Starting, and (6) Power Failure. The equipment performance specification must explicitly define the performance requirement of the utilization equipment for the six aircraft electrical operating conditions.

4.5 <u>Utilization equipment performance specifications</u>. Utilization equipment specifications should include utilization equipment performance level requirements when operating with electrical input power characteristics that fall within the six aircraft electrical operating conditions. The following are given as examples only and are not intended as recommended performance levels for utilization equipment. Performance levels for utilization equipment for the six aircraft electrical operating conditions should based on the criticality to flight safety, mission requirements, cost, weight, and reliability; and are unique to each utilization equipment. Current distortion and current spectrum limits may be imposed to minimize undesirable current distortion draw of utilization equipment and reduce the likelihood of the equipment having an adverse effect on the electrical power characteristics of the aircraft. These current distortion limits should take into account the utilization equipment power draw, aircraft electrical system capacity and distribution characteristics, trade-offs with weight, volume, cost, and reliability that are specific to each type of equipment and aircraft.

4.5.1 Examples of utilization equipment performance requirements.

a. Example 1: Flight Critical Computer and Flight Displays

(1) <u>Performance level for normal aircraft electrical operating condition</u> - The flight critical computer and flight displays shall provide 100 percent full performance during normal aircraft electrical operation. The flight critical computer shall provide all data signals. There shall be no interruption, corruptions, or data loss. Displays shall not flicker or become distorted. The flight critical computer and flight display shall not be damaged or cause an unsafe condition. The flight critical computer and flight display shall not cause the aircraft electrical power to degrade beyond the limits of the applicable edition(s) of MIL-STD-704. Total current distortion shall be less than 12 percent for steady state normal aircraft electrical operation.

(2) <u>Performance level for power transfer aircraft electrical operating condition</u> -The flight critical computer and flight displays shall provide 100 percent full performance before, during, and after power transfer. The flight critical computer and flight displays shall provide the same performance level for power transfer aircraft electrical operating conditions as for normal electrical operating conditions.

(3) <u>Performance level for abnormal aircraft electrical operating condition</u> - The flight critical computer and flight displays shall provide 100 percent full performance during abnormal electrical operation. The flight critical computer and flight displays shall provide the same performance level for abnormal aircraft electrical operating conditions as for normal electrical operating conditions.

(4) <u>Performance level for emergency aircraft electrical operating condition</u> - The flight critical computer and flight displays shall provide 100 percent full performance during emergency electrical operation. The flight critical computer and flight displays shall provide the same performance level for emergency aircraft electrical operating conditions as for normal electrical operating conditions.

(5) <u>Performance level for starting aircraft electrical operating condition</u> - The flight critical computer and flight displays shall provide 100 percent full performance during emergency electrical operation. The flight critical computer and flight displays shall provide the same performance level for starting aircraft electrical operating conditions as for normal electrical operating conditions.

(6) <u>Performance level for power failure aircraft electrical operating condition</u> - The flight critical computer and flight displays are allowed to shutdown for power failures greater than 50 milliseconds. For power failure less than seven seconds, the flight critical computer and flight displays shall automatically return to 100 percent full performance within one second after power is restored. There shall be no corruption, or data loss due to the power failure. The flight critical computer and flight display shall not be damaged or cause an unsafe condition.

b. Example 2: Mission Data Storage Device and Mission Displays

(1) <u>Performance level for normal aircraft electrical operating condition</u> - The mission data storage device and mission displays shall provide 100 percent full performance during normal aircraft electrical operation. The mission data storage device and mission displays shall provide all data signals. There shall be no interruption, corruptions, or data loss. Displays shall not flicker or become distorted. The mission data storage device and mission displays shall not flicker or ause an unsafe condition. The mission data storage device and mission displays shall not be damaged or cause an unsafe condition. The mission data storage device and mission displays shall not cause the aircraft electrical power to degrade beyond the limits of the applicable edition(s) of MIL-STD-704. Total current distortion shall be less than 12 percent for steady state normal aircraft electrical operation.

(2) <u>Performance level for power transfer aircraft electrical operating condition</u> -The mission data storage device and mission displays may momentarily interrupt during power transfer. The mission data storage device and mission displays shall automatically return to 100 percent full performance within 5 seconds after the power returns to within normal limits. There shall be no corruption, or data loss. The mission data storage device and mission displays shall not be damaged or cause an unsafe condition due to the power transfer. The mission data storage device and mission displays shall not cause the aircraft electrical power to degrade beyond the limits of the applicable edition(s) of MIL-STD-704.

(3) <u>Performance level for abnormal aircraft electrical operating condition</u> - The mission data storage device and mission displays may momentarily interrupt during abnormal aircraft electrical operation. The mission data storage device and mission displays shall automatically return to normal operation within 5 seconds after the aircraft electrical system operation returns to normal. There shall be no corruption or data loss. Displays may flicker or become distorted, but must still be readable. The mission data storage device and mission displays shall not be damaged or cause an unsafe condition.

(4) <u>Performance level for emergency aircraft electrical operating condition</u> - The mission data storage device shall provide 100 percent full performance and the mission displays may provide degraded performance during emergency aircraft electrical operation. The mission displays shall automatically return to normal operation within 5 seconds when the aircraft electrical system operation returns to normal. There shall be no corruption or data loss. Displays may flicker or become distorted but must still be readable. The mission data storage device and mission displays shall not be damaged or cause an unsafe condition.

(5) <u>Performance level for starting aircraft electrical operating condition</u> - The mission data storage device and mission displays may momentarily interrupt during starting. The mission data storage device and mission displays shall automatically return to 100 percent full performance within 5 seconds after the power returns to within normal limits. There shall be no corruption, or data loss. The mission data storage device and mission displays shall not be no corruption, or data loss. The mission data storage device and mission displays shall not be damaged or cause an unsafe condition due to the starting operation.

(6) <u>Performance level for power failure aircraft electrical operating condition</u> -The mission data storage device and mission displays are allowed to shutdown for power failures

greater than 50 milliseconds. For power failure less than seven seconds, the mission data storage device and mission displays shall automatically reboot within 5 seconds and return to 100 percent full performance within 2 minutes after power is restored. There shall be no corruption, but data loss may occur due to the power failure. The mission data storage device and mission displays shall not be damaged or cause an unsafe condition.

c. Example 3: Circulation Fan

(1) <u>Performance level for normal aircraft electrical operating condition</u> - The circulation fan shall provide continuous operation during normal aircraft electrical operation. The circulation fan shall maintain airflow between the minimum and maximum limits during normal aircraft electrical operation. The circulation fan shall not be damaged or cause an unsafe condition.

(2) <u>Performance level for power transfer aircraft electrical operating condition</u> -The circulation fan may shut off during power transfer. The circulation fan shall automatically resume operation within 30 seconds after the transfer is complete and power is restored. The circulation fan shall not be damaged or cause an unsafe condition.

(3) <u>Performance level for abnormal aircraft electrical operating condition</u> - The circulation fan shall provide continuous operation during abnormal aircraft electrical operation. The circulation fan shall maintain airflow between 50 percent below normal minimum limits and 50 percent above the normal maximum limits during abnormal aircraft electrical operation. The circulation fan shall not be damaged or cause an unsafe condition.

(4) <u>Performance level for emergency aircraft electrical operating condition</u> - The circulation fan shall provide continuous operation during emergency aircraft electrical operation. The circulation fan shall maintain airflow between 50 percent below normal minimum limits and 50 percent above the normal maximum limits during emergency aircraft electrical operation. The circulation fan shall not be damaged or cause an unsafe condition.

(5) <u>Performance level for starting aircraft electrical operating condition</u> - The circulation fan may shut off during starting aircraft electrical operations. The circulation fan shall automatically resume operation within 30 seconds after the power reaches normal limits. The circulation fan shall not be damaged or cause an unsafe condition.

(6) <u>Performance level for power failure aircraft electrical operating condition</u> -The circulation fan is allowed to shutdown for power failures greater than 50 milliseconds. For power failure less than seven seconds, the circulation fan shall automatically resume operation within 30 seconds after the power is restored. The circulation fan shall not be damaged or cause an unsafe condition.

d. Example 4: Coffeepot

(1) <u>Performance level for normal aircraft electrical operating condition</u> - The coffeepot shall provide 100 percent performance during normal electrical operating conditions.

The coffeepot shall not be damaged or cause an unsafe condition. The coffeepot shall not cause the aircraft electrical power to degrade beyond the limits of the applicable edition(s) of MIL-STD-704. The current drawn by the coffeepot shall not have a total current distortion greater than 12 percent for steady state normal aircraft electrical operation.

(2) <u>Performance level for power transfer aircraft electrical operating condition</u> -The coffeepot may shut off during power transfer. The coffeepot is not required to automatically reset after the power transfer is complete. The coffeepot shall not be damaged or cause an unsafe condition.

(3) <u>Performance level for abnormal aircraft electrical operating condition</u> - The coffeepot may shutdown for abnormal aircraft electrical operating conditions. The coffeepot is not required to return to normal operation automatically when normal power is restored. The coffeepot shall not be damaged or cause an unsafe condition.

(4) <u>Performance level for emergency aircraft electrical operating condition</u> - The coffeepot may shutdown for emergency aircraft electrical operating conditions. The coffeepot is not required to return to normal operation automatically when normal power is restored. The coffeepot shall not be damaged or cause an unsafe condition

(5) <u>Performance level for starting aircraft electrical operating condition</u> - The coffeepot may shutdown for starting aircraft electrical operating conditions. The coffeepot is not required to return to normal operation automatically when normal power is restored.

(6) <u>Performance level for power failure aircraft electrical operating condition</u> -The coffeepot may shutdown for power failures. The coffeepot is not required to return to normal operation automatically when normal power is restored. The coffeepot shall not be damaged or cause an unsafe condition

4.6 Dual source utilization equipment. Special consideration must be taken when utilization equipment is dual sourced, especially for flight critical equipment. Fault conditions may momentarily disturb the electrical power of a battery bus until the battery bus can be isolated from the other systems. Ideally, the tests for compliance to MIL-STD-704 should involve the disconnecting of the backup system to perform testing on the primary system. The tests should then be repeated with the primary system disconnected with only the backup system connected. In cases where this is not possible or not permitted by the design of the equipment, the backup system for MIL-STD-704 test compliance should be representative of the aircraft electrical system performance. If, for example, the unit under test were connected to a transformer rectifier for its backup power, the DC backup power would experience some variation of power quality during AC input disturbances. The test setup should therefore simulate the simultaneous disturbance on both the AC and DC as it would be on the aircraft. Failure to tie the backup power to the dynamic system during testing would not reveal an accurate representation of the backup power during aircraft operations. Circumventing a systems approach to the test may not reflect the unit under test's true performance on actual aircraft.

4.7 <u>Transformer rectifiers units</u>. Transformer rectifiers units fall into a unique category

that is both utilization equipment and source equipment. The transformer rectifier must provide DC output power that is in accordance with the appropriate edition of MIL-STD-704 when provided AC input power according to the applicable edition of MIL-STD-704. For example, allowing the coupling of AC input transients to the DC output that result in DC power outside of the applicable edition of MIL-STD-704 for a power group would be evaluated as a failure. The transformer rectifier unit should be supplying full rated load during MIL-STD-704 compliance testing.

4.8 <u>Inverters</u>. Inverters fall into a unique category that is both utilization equipment and source equipment. The inverter must provide AC output power that is in accordance with the appropriate edition of MIL-STD-704 when provided DC input power according to the applicable edition of MIL-STD-704. For example, allowing the coupling of DC input transients to the AC output that result in AC power outside of the applicable edition of MIL-STD-704 for a power group would be evaluated as a failure. The Inverter should be supplying full rated load during MIL-STD-704 compliance testing.

4.9 <u>Compliance to aircraft electrical power characteristics demonstration test methods</u> of MIL-HDBK-704-2 through -8. The MIL-HDBK-704-1 through -8 test methods are grouped by power type defined in the applicable editions of MIL-STD-704 and as listed in table I. For each power type, the test methods are further divided into the six aircraft electrical operating conditions as listed in table II. Utilization equipment performance levels may differ for each of the six aircraft electrical operating conditions and must be defined in the utilization equipment performance specification. The nomenclature for individual test method labeling is shown in table III. The Unit Under Test (UUT) must be subjected to all test methods for UUT's applicable power group as shown in tables IV through X. The UUT test method limits are defined by the applicable edition(s) of MIL-STD-704.

4.10 <u>Stimulation and monitoring equipment</u>. Demonstration test stimulation and monitoring equipment is required to confirm utilization equipment performance for the compliance to aircraft electrical power characteristics. Together the stimulation and monitoring equipment should definitively determine if the utilization equipment is performing to specified levels when the utilization equipment is provided with input power in accordance with the applicable edition(s) of MIL-STD-704 testing. This includes input power for the six aircraft electrical operating conditions of both steady state characteristics and transient characteristics.

4.10.1 <u>Stimulation equipment</u>. The stimulation equipment is unique to each utilization equipment and aircraft. Stimulation equipment is the equipment that will simulate all aircraft inputs and outputs other than the electrical input power. These may be analog signals, digital signals, relays, hydraulics, pneumatics, sensors, test patterns, test data, etc. The intent is to closely reproduce the inputs from other systems in the aircraft and the outputs to other systems in the aircraft. Care must be taken to ensure that the stimulation equipment will accurately reproduce the aircraft environment for the MIL-STD-704 compliance testing to be valid. This is especially important during transient testing where the power can deviate from normal power characteristics for only a few milliseconds.

4.10.2 Monitoring equipment. Monitoring equipment is unique to each utilization

equipment and aircraft. Monitoring equipment is the equipment that determines that utilization equipment is performing at the specified levels during the compliance testing. Monitoring equipment may include means to monitor, measure and/or record sample data exchanges, display test patterns, mechanical outputs, etc. Care must be taken to ensure that the monitoring equipment can accurately measure the performance of the utilization equipment for all the test methods. This is especially important during transient testing were the power can deviate from normal power characteristics for only a few milliseconds.

5. NOTES

5.1 <u>Intended use</u>. This handbook should be used as guidance when establishing test requirements, for inclusion in performance specifications developed for the procurement of utilization equipment, and to ensure compliance with the aircraft electrical power characteristics as specified by MIL-STD-704.

5.2 <u>Single phase test numbers</u>. There are no tests required for SAC103, SAC602, SVF103, SVF602, and SXF103. The numbering has been specified so the Single Phase test numbers coincide with the corresponding Three Phase test numbers.

5.3 Subject term (keyword) listing.

Aircraft, electrical power Aircraft, electrical test Electrical operating conditions Equipment, utilization Power groups Specification, utilization equipment

TABLE I.	Power	group)S.

Power Group	Acronym
Single Phase, 400 Hz, 115 V	SAC
Three Phase, 400 Hz, 115 V	TAC
Single Phase, Variable Frequency, 115 V	SVF
Three Phase, Variable Frequency, 115V	TVF
Single Phase, 60 Hz, 115 V	SXF
Low Voltage DC (28 VDC)	LDC
High Voltage DC (270 VDC)	HDC

TABLE II. Aircraft electrical power systems operating conditions.

Aircraft Electrical Operating Condition					
Normal	1				
Transfer	2				
Abnormal	3				
Emergency	4				
Starting	5				
Power Failure	6				

TABLE III. <u>Test numbering nomenclature example SAC303A</u>.

Power Group	Aircraft Electrical	Test number	Revision letter of test when applicable
SAC	3	03	A
Single Phase, 400 Hz, 115 V	Abnormal	Test 3	Revision A

Normal, Aircraft I	Electrical Operation
SAC101	Load and Current Harmonic Measurements
SAC102	Steady State Limits for Voltage and Frequency
SAC103	No Test See Note #1
SAC104	Voltage Modulation
SAC105	Frequency Modulation
SAC106	Voltage Distortion Spectrum
SAC107	Total Voltage Distortion
SAC108	DC Voltage Component
SAC109	Normal Voltage Transients
SAC110	Normal Frequency Transients
Transfer, Aircraft	Electrical Operation
SAC201	Power Interrupt
Abnormal, Aircrat	ft Electrical Operation
SAC301	Abnormal Limits for Voltage and Frequency
SAC302	Abnormal Voltage Transients (Overvoltage/Undervoltage)
SAC303	Abnormal Frequency Transients
	(Overfrequency/Underfrequency)
Emergency, Aircr	aft Electrical Operation
SAC401	Emergency Limits for Voltage and Frequency
Starting, Aircraft	Electrical Operation
SAC501	See Note #2
Power Failure, Air	rcraft Electrical Operation
SAC601	Power Failure (Single Phase)
SAC602	No Test See Note #1
SAC603	Phase Reversal

FABLE IV.	Single	phase,	400 Hz,	115 V	utilization	equi	pment co	ompliance	tests.

Note 1: There are no tests required for SAC103 and SAC602. The numbering has been arranged so that the single phase test numbers coincide with the three phase test numbers. Note 2: Starting operation conditions are usually not applicable to AC utilization equipment. No test is required for SAC501 unless specified by the equipment performance specification.

Normal, Aircraft Electric	cal Operation					
TAC101	Three Phase Load and Current Harmonic Measurements					
TAC102	Steady State Limits for Voltage (Including Unbalance) and					
	Frequency					
TAC103	Voltage Phase Difference					
TAC104	Voltage Modulation					
TAC105	Frequency Modulation					
TAC106	Voltage Distortion Spectrum					
TAC107	Total Voltage Distortion					
TAC108	DC Voltage Component					
TAC109	Normal Voltage Transients					
TAC110	Normal Frequency Transients					
Transfer, Aircraft Electrical Operation						
TAC201	Power Interrupt					
Abnormal, Aircraft Electrical Operation						
TAC301	Abnormal Limits for Voltage and Frequency					
TAC302	Abnormal Voltage Transients (Overvoltage/Undervoltage)					
TAC303	Abnormal Frequency Transients					
	(Overfrequency/Underfrequency)					
Emergency, Aircraft Ele	ctrical Operation					
TAC401	Emergency Limits for Voltage and Frequency					
Starting, Aircraft Electri	Starting, Aircraft Electrical Operation					
TAC501	See Note #1					
Power Failure, Aircraft I	Electrical Operation					
TAC601	Power Failure (Three Phase)					
TAC602	One Phase and Two Phase Power Failures					
TAC603	Phase Reversal					

TABLE V.	Three	phase,	400 Hz,	115 V	⁷ utilization	equi	pment	com	pliance	tests.

Note 1: Starting operation conditions are usually not applicable to AC utilization equipment. No test is required for TAC501 unless specified by the equipment performance specification.

Normal, Aircraft Electric	cal Operation				
SVF101	Load and Current Harmonic Measurements				
SVF102	Steady State Limits for Voltage and Frequency				
SVF103	No Test, See Note #1				
SVF104	Voltage Modulation				
SVF105	Frequency Modulation				
SVF106	Voltage Distortion Spectrum				
SVF107	Total Voltage Distortion				
SVF108	DC Voltage Component				
SVF109	Normal Voltage Transients				
SVF110	Normal Frequency Transients				
Transfer, Aircraft Electrical Operation					
SVF201	Transfer Interrupt				
Abnormal, Aircraft Elec	trical Operation				
SVF301	Abnormal Limits for Voltage and Frequency				
SVF302	Abnormal Voltage Transients (Overvoltage/Undervoltage)				
SVF303	Abnormal Frequency Transients				
	(Overfrequency/Underfrequency)				
Emergency, Aircraft Ele	ctrical Operation				
SVF401	Emergency Limits for Voltage and Frequency				
Starting, Aircraft Electrical Operation					
SVF501	See Note #2				
Power Failure, Aircraft Electrical Operation					
SVF601	Power Failure				
SVF602	No Test See Note #1				
SVF603	Phase Reversal				

TABLE VI.	Single phas	e, variable freq	uency, 115	V utilization	eauipmen	t compliance tests.
	Oligite plices	•, •••••••••••	0,010,110			

Note 1: There are no tests required for SVF103 and SVF602. This is done so that the single phase test numbers coincide with the three phase test numbers.

Note 2: Starting operation conditions are usually not applicable to AC utilization equipment. No test is required for SVF501 unless specified by the equipment performance specification.

Normal, Aircraft Electri	cal Operation	
TVF101	Three Phase Load and Current Harmonic Measurements	
TVF102	Steady State Limits for Voltage (Including Unbalance) and	
	Frequency	
TVF103	Voltage Phase Difference	
TVF104	Voltage Modulation	
TVF105	Frequency Modulation	
TVF106	Voltage Distortion Spectrum	
TVF107	Total Voltage Distortion	
TVF108	DC Voltage Component	
TVF109	Normal Voltage Transients	
TVF110	Normal Frequency Transients	
Transfer, Aircraft Electr	ical Operation	
TVF201	Power Interrupt	
Abnormal, Aircraft Elec	trical Operation	
TVF301	Abnormal Limits for Voltage and Frequency	
TVF302	Abnormal Voltage Transients (Overvoltage/Undervoltage)	
TVF303	Abnormal Frequency Transients	
	(Overfrequency/Underfrequency)	
Emergency, Aircraft Ele	ectrical Operation	
TVF401	Emergency Limits for Voltage and Frequency	
Starting, Aircraft Electri	cal Operation	
TVF501	See Note#1	
Power Failure, Aircraft	Electrical Operation	
TVF601	Power Failure (Three Phase)	
TVF602	One Phase and Two Phase Power Failures	
TVF603	Phase Reversal	

TABLE VII. Three phase, variable frequency, 115 V utilization equipment compliance tests.

Note 1: Starting operation conditions are usually not applicable to AC utilization equipment. No test is required for TVF501 unless specified by the equipment performance specification.

Normal, Aircraft Elec	trical Operation		
SXF101	Load and Current Harmonic Measurements		
SXF102	Steady State Limits for Voltage and Frequency		
SXF103	No Test, See Note #1		
SXF104	Voltage Modulation		
SXF105	Frequency Modulation		
SXF106	Voltage Distortion Spectrum		
SXF107	Total Voltage Distortion		
SXF108	DC Voltage Component		
SXF109	Normal Voltage Transients		
SXF110	Normal Frequency Transients		
Transfer, Aircraft Elec	etrical Operation		
SXF201	Fransfer Interrupt		
Abnormal, Aircraft El	ectrical Operation		
SXF301	bnormal Limits for Voltage and Frequency		
SXF302	Abnormal Voltage Transients (Overvoltage/Undervoltage)		
SXF303	Abnormal Frequency Transients		
Emorgonau Aircraft I	Cleatricel Operation		
SYEA01	Emergency Limits for Voltage and Frequency		
SAF401 Starting Aircraft Flag	Intergency Limits for Voltage and Frequency		
Starting, Anotari Elec	See Note #2		
Dower Failure Aircra	f Electrical Operation		
rower ranule, Allela	Dower Failure		
SAF001	Fower Failure		
SAF602	INO 1 est, See Note #1		
SXF603	Phase Reversal		

TABLE VIII.	Single phase,	60 Hz, 115 V	utilization	equipment	compliance tests

Note 1: There are no tests required for SXF103 and SXF602. The numbering has been arranged so that the single phase test numbers coincide with the three phase test numbers. Note 2: Starting operation conditions are usually not applicable to AC utilization equipment. No test is required for SXF501 unless specified by the equipment performance specification.

Normal, Aircraft Electrical Operation				
LDC101	Load Measurements			
LDC102	Steady State Limits for Voltage			
LDC103	Voltage Distortion Spectrum			
LDC104	Total Ripple			
LDC105	Normal Voltage Transients			
Transfer, Aircraft Electrical Oper	ration			
LDC201	Power Interrupt			
Abnormal, Aircraft Electrical Operation				
LDC301	Abnormal Steady State Limits for Voltage			
LDC302	Abnormal Voltage Transients (Overvoltage/Undervoltage)			
Emergency, Aircraft Electrical O	peration			
LDC401	Emergency Limits for Voltage			
Starting, Aircraft Electrical Oper	ation			
LDC501	Starting Voltage Transients			
Power Failure, Aircraft Electrical Operation				
LDC601	Power Failure			
LDC602	Polarity Reversal			

TABLE IX. <u>28 VDC utilization equipment compliance tests</u>.

Normal, Aircraft Electrical Operation				
HDC101	Load Measurements			
HDC102	Steady State Limits for Voltage			
HDC103	Voltage Distortion Spectrum			
HDC104	Total Ripple			
HDC105	Normal Voltage Transients			
Transfer, Aircraft Electrical Oper	ration			
HDC201	Power Interrupt			
Abnormal, Aircraft Electrical Operation				
HDC301	Abnormal Steady State Limits for Voltage			
HDC302	Abnormal Voltage Transients (Overvoltage/Undervoltage)			
Emergency, Aircraft Electrical O	peration			
HDC401	Emergency Limits for Voltage			
Starting, Aircraft Electrical Operation				
HDC501	Starting Voltage Transients			
Power Failure, Aircraft Electrica	1 Operation			
HDC601	Power Failure			
HDC602	Polarity Reversal			

TABLE X. 270 VDC utilization equipment compliance tests.

CONCLUDING MATERIAL

Custodians: Army - AV Navy - AS Air Force - 11 Preparing Activity: Navy - AS

(Project No. SESS-0047)

Review Activities: Army - CR, MI, TE Navy - EC, MC, SA, SH, YD

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at www.dodssp.daps.mil.

NOT MEASUREMENT SENSITIVE

MIL-HDBK-704-2 9 April 2004

DEPARTMENT OF DEFENSE HANDBOOK

GUIDANCE FOR TEST PROCEDURES FOR DEMONSTRATION OF UTILIZATION EQUIPMENT COMPLIANCE TO AIRCRAFT ELECTRICAL POWER CHARACTERISTICS SINGLE PHASE, 400 Hz, 115 VOLT (PART 2 OF 8 PARTS)

This Handbook is for guidance only. Do not cite this document as a requirement.

AMSC N/A

AREA SESS

FOREWORD

1. This handbook is approved for use by all Departments and Agencies of the Department of Defense.

2. This handbook provides guidance on test procedures for demonstration of single phase, 400 Hz, 115 volt utilization equipment to determine compliance with the applicable edition of MIL-STD-704.

3. MIL-HDBK-704-2 is Part 2 in a series of 8 Parts. Part 2 describes the test methods and procedures to demonstrate that single phase, 400 Hz, 115 volt utilization equipment is compatible with the electric power characteristics of MIL-STD-704. These series of handbooks and MIL-STD-704 are companion documents.

4. Comments, suggestions, or questions on this document should be addressed to Commander, Naval Air Systems Command, Code 4.1.4, Highway 547, Lakehurst, NJ 08733-5100 or email to <u>thomas.omara@navy.mil</u>. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at <u>www.dodssp.daps.mil/</u>.

CONTENTS

PAR/	AGRAPH P	AGE
	FOREWORD	ii
1.	SCOPE	1
1.1	Scope	I
2. 2.1 2.2 2.2.1	APPLICABLE DOCUMENTS General Government documents Specifications, standards and handbooks	1 1 1 1
3. 3.1	DEFINITIONS Acronyms and definitions	1 1
4. 4.1 4.1.1 4.2 4.3	TEST METHODS INFORMATION. Demonstration of compatibility Recording performance. Calibration of test equipment. Test methods	1 1 1 1 2
5.	 TEST METHODS	4 5 9 14 15 19 24 29 34 38 47 54 59 64 72 77 82 77 82
	METHOD SAC602 (No Test Required) METHOD SAC603 Phase Reversal (Single Phase)	87 88

PARAGR	APH	PAGE
6. NC	DTES	
6.1	Intended use	
6.2	Single phase test numbers	
6.3	Subject term (keyword) listing	
TABLE		
SAC-I.	Summary of single phase, 400 Hz, 115 volt utilization equipment	
	MIL-STD-704 compliance tests	
CONCLU	DING MATERIAL	

1. SCOPE

1.1 <u>Scope</u>. This handbook provides, as guidance, test methods used to demonstrate that single phase, 400 Hz, 115 volt utilization equipment is compatible with the electric power characteristics of the applicable edition(s) of MIL-STD-704. This handbook is for guidance only and cannot be cited as a requirement.

2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed below are not necessarily all of the documents referenced herein, but are those needed to understand the information provided by this handbook.

2.2 Government documents.

2.2.1 <u>Specifications, standards, and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-704

DoD Interface Standard for Aircraft Electric Power Characteristics

(Copies of these documents are available online at <u>http://assist. daps.dla.mil/quicksearch</u> or <u>http://www.dodssp.daps.mil</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

3. DEFINITIONS

3.1 <u>Acronyms and definitions</u>. The acronyms and definitions of MIL-STD-704 are applicable to this handbook.

4. TEST METHODS INFORMATION

4.1 <u>Demonstration of compatibility</u>. This section contains the test methods which will ensure that single phase, 400 Hz, 115 volt utilization equipment is compatible with the electric power characteristics of the applicable edition(s) of MIL-STD-704, by testing the Unit Under Test (UUT) in accordance with the test procedures as described in test methods SAC 101 through SAC 603.

4.1.1 <u>Recording performance</u>. In table SAC-I, record the UUT information, the edition(s) of MIL-STD-704 that defined the aircraft electric power characteristics used for testing, the dates of the testing, and the performance of the UUT for each of the test methods.

4.2 <u>Calibration of test equipment</u>. Test equipment and accessories required for measurement in accordance with this handbook should be calibrated in accordance with an approved calibration program traceable to the National Institute for Standards and Technology.

The serial numbers, model, and calibration date of all test equipment should be included with the test data.

4.3 <u>Test methods</u>. The test methods listed in table SAC-I are provided in section 5 of this handbook.

TABLE SAC-I. Summary of single phase, 400 Hz, 115 volt utilization equipment MIL-STD-704 compliance tests.

UUT:			
Complia	nce to MIL-STD-704 Edition(s):		
Test Date	25:		
Test	Description	Performance	Comments
Method		(Pass/Fail)	
Normal,	Aircraft Electrical Operation		
SAC101	Load and Current Harmonic		
	Measurements		
SAC102	Steady State Limits for Voltage		
	and Frequency		
SAC103	No Test, See Note #1	N/A	N/A
SAC104	Voltage Modulation		
SAC105	Frequency Modulation		
SAC106	Voltage Distortion Spectrum		
SAC107	Total Voltage Distortion		
SAC108	DC Voltage Component		
SAC109	Normal Voltage Transients		
SAC110	Normal Frequency Transients		
Transfer,	Aircraft Electrical Operation		
SAC201	Power Interrupt		
Abnorma	l, Aircraft Electrical Operation		
SAC301	Abnormal Limits for Voltage and		
	Frequency		
SAC302	Abnormal Voltage Transients		
	(Overvoltage/Undervoltage)		
SAC303	Abnormal Frequency Transients		
	(Overfrequency/Underfrequency)		
Emergen	cy, Aircraft Electrical Operation		
SAC401	Emergency Limits for Voltage		
	and Frequency		
Starting,	Aircraft Electrical Operation		
SAC501	See Note #2	N/A	N/A
Power Fa	ilure, Aircraft Electrical Operati	on	
SAC601	Power Failure (Single Phase)		
SAC602	No Test, See Note #1	N/A	N/A
SAC603	Phase Reversal		

Note 1: There are no tests required for SAC103 and SAC602. The numbering has been arranged so that the single phase test numbers coincide with the three phase test numbers.

Note 2: Starting operation conditions are usually not applicable to AC utilization equipment. No test is required for SAC501 unless specified by the equipment performance specification.

5. TEST METHODS

METHOD SAC101 Load Measurements

POWER GROUP:

Single Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

N: Normal

PARAMETER:

Load Measurements

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is intended to verify that single phase, 115 Volt, 400 Hz power utilization equipment utilizes only 115 Volt line-to-neutral power, does not require more power than allowed, maintains power factor within limits, and does not use half-wave rectification for the applicable edition(s) of MIL-STD-704. Additionally, when the utilization equipment performance specification document imposes current waveform requirements, this test procedure is used to verify that the utilization equipment current waveform is within total current distortion and current spectrum (current distortion vs. frequency) limits defined in the utilization equipment performance specification document.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment requires less than or equal to the power limit for single phase equipment, is within the power factor limits, and does not use half-wave rectification for the applicable edition(s) of MIL-STD-704 and as noted in table SAC101-I. If required by the utilization equipment performance specification document, the utilization equipment current waveform must be within the total current distortion and current spectrum limits defined in the utilization equipment performance specification document. The utilization equipment must not suffer damage or cause an unsafe condition.

Limit	704A	704B	704C	704D	704E	704F
Single Phase	0.5 kVA					
kVA						
Power	Figure12	N/A	N/A	N/A	N/A	No Leading
Factor	MIL-STD-					Power
	704A					Factor for
						>100 VA
Rectification	N/A ^{1/}	N/A 1/	N/A 1/	N/A 1/	No	No
Restriction	1,1,11	1,111	1,711	10/11	Half-Wave	Half-Wave
					Rectification	Rectification
Current	See Note 2/	See Note ^{2/}	See Note ^{2/}	See Note ^{2/}	See Note ^{2/}	See Note 2/
Distortion	5					
Current	See Note ^{2/}	See Note $\frac{2}{}$	See Note ^{2/}	See Note ^{2/}	See Note ^{2/}	See Note ^{2/}
Spectrum						

TABLE SAC101-I. MIL-STD-704 limits for single phase power, power factor, rectification
restriction, current distortion, and current spectrum for single phase 400 Hz utilization
equipment.

1/ It is highly recommended that equipment built to MIL-STD-704 edition(s) A, B, C, or D should not use half-wave rectification.

2/ The utilization equipment performance specification document should include requirements that reduce the likelihood of the equipment having an adverse effect on the electrical power characteristics of the aircraft. Current distortion and current spectrum limits may be imposed to minimize undesirable effects to the electrical power characteristics. These limits should take into account the utilization equipment power draw, aircraft electrical system capacity and distribution characteristics, trade-offs with weight, volume, cost, and reliability that are specific to each type of equipment and aircraft.

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply (rotating AC source for current waveform limits)
- b. True RMS voltmeter
- c. Frequency counter
- d. Power meter
- e. Spectrum analyzer
- f. Distortion meter
- g. Current transformer
- h. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SAC101-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT. Current measurements must be taken from the 115 Volt conductor. If the utilization equipment performance specification document imposes current waveform limits, the AC power source should be a rotating machine.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SAC101-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz.

Close the circuit breaker, energizing the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the voltage, frequency, kVA, and power factor in table SAC101-II. Confirm that the utilization equipment does not use half-wave rectification and record in table SAC101-II. Compare the kVA, power factor, and rectification with the required limits/restriction of the applicable edition(s) of MIL-STD-704. If the utilization equipment performance specification imposes current waveform limits, record the total current distortion and current spectrum in the data sheet shown in table SAC101-II and compare to the limits defined in the utilization equipment performance specification document. Repeat for each mode of operation of the UUT.

- Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)
- If current waveform limits are imposed by the detailed performance specification, the AC power source shall be a rotating machine.

 \neg

FIGURE SAC101-1. Load measurement.

Parameter	Measurement	Unit	Performance Pass/Fail
Voltage		V _{rms}	N/A
Frequency		Hz	N/A
KVA		kVA	
Power Factor		pf	
No Half-Wave Rectification		N/A	
Current		A _{rms}	
Total Current Distortion		% Current	
Total Current Distortion		Distortion	
Current Spectrum	Attach Spectrum Plot	Amplitude vs.	
Current Spectrum	Attach Spectrum Flot	Frequency	

TABLE SAC101-II. Sample data sheet for load measurements.

METHOD SAC102 Steady State Limits for Voltage and Frequency

POWER GROUP:	Single Phase, 400 Hz, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Normal

PARAMETER: Steady State Limits for Voltage and Frequency

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when provided power with voltage and frequency at the Normal Low Steady State (NLSS) limits and the Normal High Steady State (NHSS) limits as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when supplied input power of voltage and frequency at the specified normal steady state limits of the applicable edition(s) of MIL-STD-704 and as noted in table SAC102-I. The utilization equipment should maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage and frequency limits and should be, not less than thirty (30) minutes for each of the test conditions. The utilization equipment must not suffer damage or cause an unsafe condition.

Note: If the utilization has exactly the same full performance requirements for abnormal steady state limits and emergency steady state limits as required for the normal aircraft electrical conditions, then performance of test methods SAC301 and SAC401 will constitute performance of SAC102.

Normal Limit	704A	704B	704C	704D	704E	704F
Voltage NLSS	108 V	108 V	108 V	108 V	108 V	108 V
Voltage NHSS	118 V	118 V	118 V	118 V	118 V	118 V
Frequency NLSS	380 Hz	395 Hz (380 Hz) ^{1/}	393 Hz	393 Hz	393 Hz	393 Hz
Frequency NHSS	420 Hz	405 Hz (420 Hz) ^{$1/$}	407 Hz	407 Hz	407 Hz	407 Hz

TABLE SAC102-I. MIL-STD-704 normal limits for steady state voltage and frequency.

1/ Normal steady state frequency limits for MIL-STD-704B for helicopters is 400 ±20 Hz.

- 3. <u>Apparatus</u>. The test equipment should be as follows:
 - a. Adjustable AC power supply
 - b. True RMS voltmeter
 - c. Frequency counter

4. <u>Test Setup</u>. Configure the test setup as shown in figure SAC102-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance Test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SAC102-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through I noted in table SAC102-II, the UUT must remain for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage and frequency limits and should be, not less than thirty (30) minutes. At each test condition conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. For each test condition shutdown the UUT and verify that the UUT can be re-started. After re-start conduct a performance test of the UUT is providing specified performing to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. For each test condition shutdown the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the voltage, frequency, time duration at test condition, successful/unsuccessful re-start and the performance of the UUT for each test condition in the data sheet shown in table SAC102-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Voltage	Frequency
А	Nominal Voltage	Nominal Frequency
В	Nominal Voltage	NLSS Frequency
С	Nominal Voltage	NHSS Frequency
D	NLSS Voltage	Nominal Frequency
E	NLSS Voltage	NLSS Frequency
F	NLSS Voltage	NHSS Frequency
G	NHSS Voltage	Nominal Frequency
Н	NHSS Voltage	NLSS Frequency
Ι	NHSS Voltage	NHSS Frequency

TABLE SAC102-II. Test conditions for steady state limits for voltage and frequency.

 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

12

FIGURE SAC102-1. Steady state limits for voltage and frequency.
TABLE SAC102-III. Sample data sheet for SAC102 steady state limits for voltage and frequency.

Test			Performance				
Condition	Voltage	Frequ	ency	Time Duration		Re-Start	Pass/Fail
		1 5		at Condition		(Yes/No)	
А	V _{rms}		Hz		min		
В	V _{rms}		Hz		min		
С	V _{rms}		Hz		min		
D	V _{rms}		Hz		min		
E	V _{rms}		Hz		min		
F	V _{rms}		Hz		min		
G	V _{rms}		Hz		min		
H	V _{rms}		Hz		min		
Ι	V _{rms}		Hz		min		

METHOD SAC103 (No Test Required)

POWER GROUP:	Single Phase, 400 Hz, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Normal
PARAMETER:	No Test Required. Test number SAC103 is not used so that the single phase, 400 Hz, 115V (SAC) test numbers coincide with the three phase, 400 Hz, 115 V (TAC) test sequence numbers.

Single Dhage 400 Hr 115 V

METHOD SAC104 Voltage Modulation

POWER GROUP:

Single Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: Normal

PARAMETER:

Voltage Modulation

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to voltage modulation as specified in the application edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when supplied input power having voltage modulation as specified in the applicable edition(s) of MIL-STD-704 and as noted in table SAC104-I. The utilization equipment should maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when provided power having voltage modulation. The utilization equipment should not suffer damage or cause an unsafe condition.

TABLE SAC104-I. MIL-STD-704 limits for voltage modulation.

Limit	704A	704B ^{1/}	704C ^{1/}	704D ^{1/}	704E	704F
Voltage	3.5 V	Sideband	N/A	N/A	2.5 Vrms	2.5 Vrms
Modulation	Peak-to-	0.62 Vrms			max	max
	Valley	over the				
	Figure 1	range				
	MIL-STD-	400 ± 60				
	704A	Hz				

1/ For utilization equipment being tested to MIL-STD-704 editions B, C, and D, use MIL-STD-704E limits.

3. <u>Apparatus</u>. The test equipment should be as follows:

a. Programmable AC power supply

- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SAC104-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SAC104-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through G noted in table SAC104-II, set the voltage modulation amplitude and frequency of voltage modulation. The UUT should remain at the test condition for a length of time that confirms the utilization equipment can continuously operate, and should be at least ten (10) minutes at an average steady state voltage of 115 Vrms, at least ten (10) minutes at an average steady state voltage of 109.25 Vrms, and at least ten (10) minutes at an average steady state voltage of 109.25 Vrms, and at least ten (10) minutes at an average steady state voltage of 116.75 Vrms. During the test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record average voltage, frequency, amplitude of voltage modulation, frequency of voltage modulation, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table SAC104-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Frequency of	MIL-STD-704A	MIL-STD-704E
	Voltage Modulation	Amplitude of	& F ^{1/}
		Voltage	Amplitude of
		Modulation	Voltage
		Voltage Peak-to-	Modulation
		Valley	Vrms
А	1.0 Hz	0.5 Vp-v	0.375 Vrms
В	1.7 Hz	0.5 Vp-v	0.375 Vrms
С	10 Hz	3.5 Vp-v	2.5 Vrms
D	25 Hz	3.5 Vp-v	2.5 Vrms
Е	70 Hz	0.5 Vp-v	0.375 Vrms
F	100 Hz	0.5 Vp-v	0.375 Vrms
G	200 Hz	0.5 Vp-v	0.375 Vrms

TABLE SAC104-II. Test conditions for voltage modulation.

1/ For utilization equipment being tested to MIL-STD-704 editions B, C, and D, use MIL-STD-704E limits.

17

FIGURE SAC104-1. Voltage modulation.

Test		Parameters						
Condition	Average	Frequency	Amplitude of	Frequency of	Time Duration at	Pass/Fail		
	Voltage		Voltage	Voltage	Condition			
	_		Modulation	Modulation				
	V _{rms}	Hz	V _{rms}	Hz	min			
А	V _{rms}	Hz	V _{rms}	Hz	min			
	V _{rms}	Hz	V _{rms}	Hz	min			
	V _{rms}	Hz	V _{rms}	Hz	min			
В	V _{rms}	Hz	V _{rms}	Hz	min			
	V _{rms}	Hz	V _{rms}	Hz	min			
	V _{rms}	Hz	V _{rms}	Hz	min			
С	V _{rms}	Hz	V _{rms}	Hz	min			
	V _{rms}	Hz	V _{rms}	Hz	min			
	V _{rms}	Hz	V _{rms}	Hz	min			
D	V _{rms}	Hz	V _{rms}	Hz	min			
	V _{rms}	Hz	V _{rms}	Hz	min			
	V _{rms}	Hz	V _{rms}	Hz	min			
Е	V _{rms}	Hz	V _{rms}	Hz	min			
	V _{rms}	Hz	V _{rms}	Hz	min			
	V _{rms}	Hz	V _{rms}	Hz	min			
F	V _{rms}	Hz	V _{rms}	Hz	min			
	V _{rms}	Hz	V _{rms}	Hz	min			
	V _{rms}	Hz	V _{rms}	Hz	min			
G	V _{rms}	Hz	V _{rms}	Hz	min			
	V _{rms}	Hz	V _{rms}	Hz	min			

TABLE SAC104-III. Sample data sheet for SAC104 voltage modulation

MIL-HDBK-704-2

METHOD SAC105 Frequency Modulation

POWER GROUP:

Single Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Normal

Frequency Modulation

1. <u>Scope</u>.

PARAMETER:

1.1. <u>Purpose</u>. This test procedure is used to verify that single phase, 115 volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to frequency modulation as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when supplied input power having frequency modulation as specified in the applicable edition(s) of MIL-STD-704 and as noted in table SAC105-I. The utilization equipment should maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when provided power having frequency modulation. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE SAC105-I. MIL-STD-704 limits for frequency modulation.

Limit	704A	704B	704C	704D	704E	704F
Frequency Modulation	±4Hz	± 5 Hz Figure 3 MIL-STD- 704B	± 5 Hz Figure 4 MIL-STD- 704C	± 5 Hz Figure 4 MIL-STD- 704D	4 Hz	4 Hz

3. <u>Apparatus</u>: The test equipment should be as follows:

a. Programmable AC power supply

- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SAC105-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SAC105-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient

time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

5.1 <u>Compliance test for MIL-STD-704A</u>. For each test condition A through D noted in table SAC105-II, set the amplitude of frequency modulation and rate of change for frequency modulation. The UUT must remain at the test condition for a length of time that confirms the utilization equipment can continuously operate, and should be at least ten (10) minutes at an average steady state frequency of 400 Hz, at least ten (10) minutes at an average steady state frequency of 384 Hz, and at least ten (10) minutes at an average steady state frequency of 416 Hz. During the test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record voltage, average frequency, amplitude of frequency modulation, rate of change for frequency modulation, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table SAC105-III. Repeat for each mode of operation of the UUT

5.2 Compliance test for MIL-STD-704B, C & D. For each test condition A through E noted in table SAC105-II, set the amplitude of frequency modulation and rate of change for frequency modulation. The UUT must remain at the test condition for a length of time that confirms the utilization equipment can continuously operate. For test condition A, the UUT must remain at the test condition for a length of time that confirms the utilization equipment can continuously operate, and should be at an average steady state frequency of 400 Hz for at least thirty (30) minutes. For test condition B through E, the UUT must remain at the test condition for a length of time that confirms the utilization equipment can continuously operate and should be at least ten (10) minutes at an average steady state frequency of 400 Hz, at least ten (10) minutes at an average steady state frequency of 395 Hz, and at least ten (10) minutes at an average steady state frequency of 405 Hz. At each test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record voltage, average frequency, amplitude of frequency modulation, rate of change for frequency modulation, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table SAC105-III. Repeat for each mode of operation of the UUT.

5.3 <u>Compliance test for MIL-STD-704E & F</u>. For each test condition A through E noted in table SAC105-II, set the amplitude of frequency modulation and rate of change for frequency modulation. The UUT must remain at the test condition for a length of time that confirms the utilization equipment can continuously operate, and should be at least ten (10) minutes at an average steady state frequency of 400 Hz, at least ten (10) minutes at an average steady state frequency of 395 Hz, and at least ten (10) minutes at an average steady state frequency of 405 Hz. During the test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record voltage, average frequency, amplitude of frequency modulation, rate of change for frequency modulation, time duration at

test condition, and the performance of the UUT for each test condition in the data sheet shown in table SAC105-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test	Rate of change for	MIL-STD-704	MIL-STD-704	MIL-STD-704
Condition	frequency modulation	А	B, C, & D	E &F
		Amplitude of	Amplitude of	Amplitude of
		Frequency	Frequency	Frequency
		Modulation	Modulation	Modulation
А	1 Hz/sec	±4 Hz	± 5.00 Hz	4 Hz (± 2 Hz)
В	5 Hz/sec	±4 Hz	± 1.75 Hz	4 Hz (± 2 Hz)
C	10 Hz/sec	±4 Hz	± 1.20 Hz	4 Hz (± 2 Hz)
D	25 Hz/sec	±4 Hz	± 0.85 Hz	4 Hz (± 2 Hz)
Е	100 Hz/sec	N/A	± 0.58 Hz	4 Hz (± 2 Hz)

TABLE SAC105-II. <u>Test conditions for frequency modulation</u>.

3. CAUTION: Verify suitability of instrumentation inputs and/or use appropriate attenuation.

22

 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

FIGURE SAC105-1. Frequency modulation.

Test		Parameters						
Condition	Voltage	Average	Amplitude of	Rate of change for	Time Duration	Pass/Fail		
		Frequency	Frequency	frequency	at Condition			
			Modulation	modulation				
	V _{rms}	Hz	± Hz	Hz/sec	min			
A	V _{rms}	Hz	± Hz	Hz/sec	min			
	V _{rms}	Hz	± Hz	Hz/sec	min			
	V _{rms}	Hz	± Hz	Hz/sec	min			
В	V _{rms}	Hz	± Hz	Hz/sec	min			
	V _{rms}	Hz	± Hz	Hz/sec	min			
	V _{rms}	Hz	± Hz	Hz/sec	min			
C	V _{rms}	Hz	± Hz	Hz/sec	min			
	V _{rms}	Hz	± Hz	Hz/sec	min			
	V _{rms}	Hz	± Hz	Hz/sec	min			
D	V _{rms}	Hz	± Hz	Hz/sec	min			
	V _{rms}	Hz	± Hz	Hz/sec	min			
	V _{rms}	Hz	± Hz	Hz/sec	min			
E	V _{rms}	Hz	± Hz	Hz/sec	min			
	V _{rms}	Hz	±Hz	Hz/sec	min			

TABLE SAC105-III. Sample data sheet for SAC105 frequency modulation.

METHOD SAC106 Voltage Distortion Spectrum

e Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Normal

PARAMETER: Voltage Distortion Spectrum

1. <u>Scope</u>.

1.1 <u>Purpose</u>: This test procedure is used to verify that single phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to voltage distortion of frequencies and amplitudes as specified by the voltage distortion spectrum in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to voltage distortions as specified by the voltage distortion spectrum in the applicable edition(s) of MIL-STD-704 and as noted in table SAC106-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when provided power having voltage distortion. The utilization equipment must not suffer damage or cause an unsafe condition.

Note: This test method subjects the UUT to voltage distortion having frequencies components from 50 Hz to 10 kHz. These voltage distortions simulate voltage distortions within aircraft due to the cumulative effects of generators, electrical distribution systems equipments, and aircraft loads. MIL-STD-461, (Requirements For The Control of Electromagnetic Interference Characteristics of Subsystems and Equipment), Test Method CS101, (Conducted Susceptibility, Power Leads, 30 Hz to 150 kHz) is a complimentary test. Power levels of the voltage distortions differ for the two test methods. Performance of Test Method SAC106 of this handbook does not relinquish the requirement to perform Test Method CS101 of MIL-STD-461, and performance of Method CS101 of MIL-STD-461 does not relinquish the requirement to perform Test Method CS101 of MIL-STD-461, and performance of Method SAC 106 of this handbook.

TABLE SAC106-I. MIL-STD-704 limits for voltage distortion spectrum.

Limit	704A ^{1/}	704B	704C	704D	704E	704F
Voltage	Individual	Figure 2	Figure 3	Figure 3	Figure 3	Figure 7
Distortion	Harmonic	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-
Spectrum	< 5%	704B	704C	704D	704E	704F

1/ For utilization equipment being tested to MIL-STD-704 edition A, use MIL-STD-704B limits.

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. Variable frequency power source
- c. Coupling transformer
- d. True RMS voltmeter
- e. Frequency counter
- f. Spectrum analyzer
- g. (2) Inductors, 50 μ H
- h. Capacitor, $10 \ \mu F$
- i. Resistor, calibrated load

4. <u>Test setup</u>. Configure the test setup as shown in figure SAC106-1. Measurements, except current, should be made within 10 cm of the input power terminals of the UUT.

4.1 <u>Calibration</u>. Install a calibrated resistive load in the test setup shown in figure SAC106-1 in place of the UUT. The calibrated resistive load should be sized to draw the same current as the UUT. Turn on the adjustable AC power supply and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Set the variable frequency power source to output a sine wave and adjust the frequency and amplitude so that the voltage distortion measured at the input to the calibrated resistive load conforms to each test condition A through H in table SAC106-II of the applicable edition(s) of MIL-STD-704. Record the settings of the variable frequency power source for each test condition.

5. <u>Compliance test</u>. With the adjustable AC power supply off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SAC106-1. Turn on the adjustable AC power supply and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

Set the variable frequency power source to the settings recorded for test condition A of the calibration procedure. For each test condition, remain for a length of time that confirms the utilization equipment can continuously operate with the voltage distortion and should be, not less than five (5) minutes. At each test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. After each test condition, monitor the voltage distortion frequency and adjusting the amplitude until the next test condition is reached. Do not exceed the voltage distortion spectrum limits. Repeat for each test condition A through H noted in table SAC106-II. For each test condition, record voltage, frequency, frequency of

voltage distortion, amplitude of voltage distortion, time duration at test condition, and the performance of the UUT in the data sheet shown in table SAC106-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, turn the adjustable AC power supply off and remove the coupling transformer from the circuit. Turn on the adjustable AC power supply. Adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Frequency of Voltage	MIL-STD-704B
	Distortion	C, D, E & F ¹ /
		Amplitude of Voltage Distortion
		Voltage rms
А	50 Hz	0.316 Vrms
В	100 Hz	0.316 Vrms
С	500 Hz	1.580 Vrms
D	1 kHz	3.160 Vrms
Е	2 kHz	3.160 Vrms
F	3 kHz	3.160 Vrms
G	5 kHz	1.900 Vrms
Н	10 kHz	0.950 Vrms

TABLE SAC106-II. Test conditions for voltage distortion spectrum.

1/ For utilization equipment being tested to MIL-STD-704 edition A, use MIL-STD-704B limits.

FIGURE SAC106-1. Normal operation - voltage distortion spectrum.

Test		Performance				
Condition	Voltage	Frequency	Frequency of	Amplitude of	Time Duration	Pass/Fail
			Voltage	Voltage	at Condition	
			Distortion	Distortion		
А	V _{rms}	Hz	Hz	V _{rms}	min	
В	V _{rms}	Hz	Hz	V _{rms}	min	
С	V _{rms}	Hz	Hz	V _{rms}	min	
D	V _{rms}	Hz	kHz	V _{rms}	min	
E	V _{rms}	Hz	kHz	V _{rms}	min	
F	V _{rms}	Hz	kHz	V _{rms}	min	
G	V _{rms}	Hz	kHz	V _{rms}	min	
Н	V _{rms}	Hz	kHz	V _{rms}	min	

TABLE SAC106-III. Sample data sheet for SAC106 voltage distortion spectrum.

METHOD SAC107 Total Voltage Distortion

POWER GROUP:

Single Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Normal

Total Voltage Distortion

1. <u>Scope</u>.

PARAMETER:

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to a voltage waveform having a distortion factor as specified by the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to a voltage waveform having a distortion factor as specified by the applicable edition(s) of MIL-STD-704 and as noted in table SAC107-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when subjected to a distorted voltage waveform and should be, not less than thirty (30) minutes. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE SAC107-I. MIL-STD-704 limits for total voltage distortion.

Limit	704A	704B	704C	704D	704E	704F
Voltage Distortion Factor	0.08	0.05	0.05	0.05	0.05	0.05

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Spectrum analyzer
- e. Distortion meter

4. <u>Test setup</u>. Configure the test setup as shown in figure SAC107-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

4.1 <u>Calibration</u>. Install a resistive load in the test setup shown in figure SAC107-1 in place of the UUT. The resistive load should be sized to draw the same current as the UUT. Set the programmable power supply to produce a voltage waveform having harmonic contents listed

in table SAC107-II. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Confirm that the programmable power supply is producing a voltage waveform having harmonic content listed in table SAC107-II. Record the settings of the programmable power supply.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SAC107-1. Set the programmable power supply to the settings recorded during the calibration procedure. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. The UUT must remain for a length of time that confirms the utilization equipment can continuously operate with the total voltage distortion and should be, not less than thirty (30) minutes. Conduct a performance test or verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the voltage, frequency, voltage distortion factor, voltage harmonics, time duration at test condition, and the performance of the UUT in the data sheet shown in table SAC107-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, set the programmable power supply to produce a sine wave. Adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Harmonic	MIL-STD-704A	MIL-STD-704B, C, D, E, & F
	Percent of Fundamental	Percent of Fundamental
Fundamental	100%	100%
2nd	0%	0%
3rd	5.00%	2.75%
4th	0%	0%
5th	4.12%	2.75%
6th	0%	0%
7th	2.94%	1.97%
8th	0%	0%
9th	2.29%	1.53%
10th	0%	0%
11th	1.87%	1.25%
12th	0%	0%
13th	1.58%	1.06%
14th	0%	0%
15th	1.37%	0.92%

TABLE SAC107-II. Voltage harmonics as percent of fundamental for total voltage distortion test.

32

FIGURE SAC107-1. Total voltage distortion.

					Performance			
Voltage Frequ		iency	ncy Voltage Distortion Factor		Time Duration at Condition		Pass/Fail	
	V _{rms}		Hz		No Units		min	
			Volta	oe Harm	onics			
			Fund	ige mann	%			
			2^{nd}		%			
			3^{rd}		%			
			4 th		%			
			5 th		%			
			6 th		%			
			7 th		%			
			8 th		%			
			9 th		%			
			10^{th}		%			
			11 th		%			
			12 ^m		%			
			13 th		<u>%</u>			
			14		% 0/			
			15		70	l		

TABLE SAC107-III. Sample data sheet for SAC107 total voltage distortion.

METHOD SAC108 DC Voltage Component

POWER GROUP:

Single Phase, 400 Hz 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Normal

PARAMETER: DC Voltage Component

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to a direct current component of AC voltage as specified by the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to a direct current component of AC voltage as specified by the applicable edition(s) of MIL-STD-704 and as noted in table SAC108-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when subjected to a direct current component of AC voltage and should be not less than thirty (30) minutes. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE SAC108-I. MIL-STD-704 limits for direct current component of AC voltage.

Limit	704A	704B	704C	704D	704E	704F
DC Voltage Component of the AC Voltage	± 0.10 V					

- 3. <u>Apparatus</u>. The test equipment should be as follows:
 - a. Programmable AC power supply
 - b. True RMS voltmeter (with capability to measure DC component of AC waveform)
 - c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure SAC108-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SAC108-1. Set the programmable power supply to produce a voltage waveform having a DC component for test condition A as noted in

table SAC108-II. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. The UUT should remain for a length of time that confirms the utilization equipment can continuously operate with the direct current component of the AC voltage and should be not less than thirty (30) minutes. Repeat the test for test condition B as noted in table SAC108-II. Record the voltage, frequency, DC voltage component, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table SAC108-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, set the programmable power supply to produce a voltage sine wave without a DC component. Adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

TABLE SAC108-II.	Test conditions for d	direct current com	ponent of AC voltage.

Test Condition	MIL-STD-704A, B
	C, D, E & F
	Direct Current Component
	of AC Voltage
А	+ 0.10 V
В	– 0.10 V

 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

FIGURE SAC108-1. DC voltage component.

Test		Performance							
Condition	Volt	age	Freque	Frequency		DC Voltage		uration	Pass/Fail
				1 5		Component		dition	
А		V _{rms}		Hz		V _{dc}		min	
В		V _{rms}		Hz		V _{dc}		min	

TABLE SAC108-III. Sample data sheet for SAC108 DC voltage component.

METHOD SAC109 Normal Voltage Transients

POWER GROUP: Single Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Normal

PARAMETER: Normal Voltage Transients

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to normal voltage transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to voltage transients within the normal limits of the applicable edition(s) of MIL-STD-704 and as noted in table SAC109-I. The utilization equipment must maintain specified performance during and after the voltage transients. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE SAC109-I. MIL-STD-704 limits for normal voltage transients.

Limit	704A	704B	704C	704D	704E	704F
Normal	Figure 3	Figure 4	Figure 5	Figure 5	Figure 4	Figure 3
Voltage	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-
Transients	704A	704B	704C	704D	704E	704F
	Locus of					
	Equivalent					
	Step					
	Function					
	Curves 2					
	and 3					

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SAC109-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SAC109-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions

5.1 Compliance test for MIL-STD-704A. The UUT must be subjected to the voltage transients for each test condition A through O noted in table SAC109-II. The voltage must increase or decrease from steady state voltage to the voltage transient level within $\frac{1}{2}$ cycle (1.25) milliseconds). The voltage must remain at the voltage transient level for the duration noted in table SAC109-II. The voltage should return to steady state over the time duration noted in table SAC109-II. For test condition G, three over-voltage transients of 160 Vrms for 25 milliseconds are performed, separated by 0.5 seconds. For test condition N, three under-voltage transients of 58 Vrms for 25 milliseconds are performed, separated by 0.5 seconds. For test condition O, an under-voltage transient of 58 Vrms for 25 milliseconds is immediately followed by an overvoltage transient of 160 Vrms for 25 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal steady state limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltage, steady state frequency, voltage transient level, time duration at voltage transient, oscilloscope trace, and the performance of the UUT for each test condition in the data sheet shown in table SAC109-IV. Repeat for each mode of operation of the UUT. In addition, for MIL-STD-704A test compliance perform the repetitive normal voltage transient test described in 5.3.

5.2 Compliance test for MIL-STD-704B, C, D, E, & F. The UUT must be subjected to the voltage transients for each test condition AA through MM noted in table SAC109-III. The voltage must increase or decrease from steady state voltage to the voltage transient level within ¹/₂ cycle (1.25 milliseconds). The voltage must remain at the voltage transient level for the duration noted in table SAC109-III. The voltage must return to steady state over the time duration noted in table SAC109-III. For test condition GG, three overvoltage transients of 180 Vrms for 10 milliseconds are performed, separated by 0.5 seconds. For test condition LL, three undervoltage transients of 80 Vrms for 10 milliseconds are performed, separated by 0.5 seconds. For test condition MM, an undervoltage transient of 80 Vrms for 10 milliseconds is immediately followed by an overvoltage transient of 180 Vrms for 10 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal steady state limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft

electrical conditions. Record the steady state voltage, steady state frequency, voltage transient level, time duration at voltage transient, oscilloscope trace, and the performance of the UUT for each test condition in the data sheet shown in table SAC109-V. Repeat for each mode of operation of the UUT. In addition, for MIL-STD-704B, C, D, E, & F test compliance perform the repetitive normal voltage transient test described in 5.3.

5.3 <u>Repetitive normal voltage transients test</u>. Program the power supply to provide a continually repeating voltage transient that decreases from 115 Vrms to 90 Vrms in 2.5 msec, then increases to 140 Vrms over 50 msec, then decreases to 115 Vrms over 5.0 msec. The voltage transient is repeated every 0.5 seconds, see figure SAC109-2. The UUT must be subjected to the repetitive voltage transient for a length of time that confirms the utilization equipment can continuously operate and should be, not less than thirty (30) minutes. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltage, steady state frequency, high voltage transient level, low voltage transient level, oscilloscope trace, time duration at test condition, and the performance of the UUT in the data sheet shown in table SAC109-IV or table SAC109-V. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Time From Steady State	Voltage Transient Level	Duration at Voltage	Time From Voltage
	Voltage to	Vrms	Transient Level	Transient Level
	Voltage		milliseconds	to Steady State
	Transient Level			Voltage
	milliseconds			milliseconds
Overvoltage Transients				
A	< 1.25 msec	135 Vrms	210 msec	< 1.25 msec
В	< 1.25 msec	135 Vrms	145 msec	130 msec
С	< 1.25 msec	145 Vrms	130 msec	< 1.25 msec
D	< 1.25 msec	145 Vrms	90 msec	80 msec
Е	< 1.25 msec	160 Vrms	48 msec	< 1.25 msec
F	< 1.25 msec	160 Vrms	30 msec	40 msec
G	< 1.25 msec	160 Vrms	25 msec	< 1.25 msec
0		(3 times)	every 0.5 sec	
Undervoltage Transients				
Н	< 1.25 msec	90 Vrms	300 msec	< 1.25 msec
Ι	< 1.25 msec	90 Vrms	210 msec	180 msec
J	< 1.25 msec	70 Vrms	140 msec	< 1.25 msec
K	< 1.25 msec	70 Vrms	95 msec	85 msec
L	< 1.25 msec	58 Vrms	48 msec	< 1.25 msec
М	< 1.25 msec	58 Vrms	30 msec	40 msec
N	< 1.25 msec	58 Vrms	25 msec	< 1.25 msec
1		(3 times)	every 0.5 sec	
Combined Transient				
0	< 1.25 msec	58 Vrms	25 msec	< 1.25 msec
U	then < 1.25 msec	160 Vrms	25 msec	50 msec

TABLE SAC109-II. Test conditions for MIL-STD-704A normal voltage transients.

Test Condition	Time From	Voltage	Duration at	Time From
	Steady State	Transient Level	Voltage	Voltage
	Voltage to	Vrms	Transient Level	Transient Level
	Voltage		milliseconds	to Steady State
	Transient Level			Voltage
	milliseconds			milliseconds
Overvoltage Transients				
AA	< 1.25 msec	140 Vrms	60 msec	< 1.25 msec
BB	< 1.25 msec	140 Vrms	60 msec	25 msec
CC	< 1.25 msec	160 Vrms	34 msec	< 1.25 msec
DD	< 1.25 msec	160 Vrms	34 msec	52 msec
EE	< 1.25 msec	180 Vrms	10 msec	< 1.25 msec
FF	< 1.25 msec	180 Vrms	10 msec	77 msec
GG	< 1.25 msec	180 Vrms	10 msec	< 1.25 msec
00		(3 times)	every 0.5 sec	
Undervoltage Transients				
HH	< 1.25 msec	90 Vrms	35 msec	< 1.25 msec
Π	< 1.25 msec	90 Vrms	35 msec	45 msec
JJ	< 1.25 msec	80 Vrms	10 msec	< 1.25 msec
KK	< 1.25 msec	80 Vrms	10 msec	70 msec
TT	< 1.25 msec	80 Vrms	10 msec	< 1.25 msec
		(3 times)	every 0.5 sec	
Combined Transient				
ММ	< 1.25 msec	80 Vrms	10 msec	< 1.25 msec
101101	then < 1.25 msec	180 Vrms	10 msec	77 msec

TABLE SAC109-III. Test conditions for MIL-STD-704B, C, D, E and F normal voltage.

 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

FIGURE SAC109-1. Normal voltage transients.

44

FIGURE SAC109-2. Repetitive normal voltage transient.

Test			Parameters			Performance
Condition	Steady State	Steady State	Voltage Transient	Time at Voltage	Oscilloscope Trace	Pass/Fail
	Voltage	Frequency		Transient Level	_	
Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
В	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
С	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
D	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
E	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
F	V _{rms}	Hz	V _{rms}	msec	Attach Trace V_{rms} vs. Time	
G	V _{rms}	Hz	V _{rms}	msec	Attach Trace V_{rms} vs. Time	
Н	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
Ι	V _{rms}	Hz	V _{rms}	msec	Attach Trace V_{rms} vs. Time	
J	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
K	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
L	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
М	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
Ν	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
0	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
0			V _{rms}	msec		
Repetitive Nor	mal Voltage Transien	t				
	Steady State	Steady State	High Voltage	Low Voltage	Oscilloscope Trace	
	Voltage	Frequency	Transient	Transient		
Repetitive	V_{rms}	Hz	V _{rms}	V _{rms}	Attach Trace V _{rms} vs. Time	
Iransient	Time Duration at	÷		·		
	Test Condition					
	minutes					

TABLE SAC109-IV. Sample data sheet for SAC109 normal voltage transients for MIL-STD-704A.

MIL-HDBK-704-2

Test			Parameters			Performance
Condition	Steady State	Steady State	Voltage Transient	Time at Voltage	Oscilloscope Trace	Pass/Fail
	Voltage	Frequency		Transient Level		
AA	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
BB	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
CC	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
DD	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
EE	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
FF	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
GG	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
HH	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
II	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
JJ	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
KK	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
LL	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
ММ	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
101101			V _{rms}	msec		
Repetitive Nor	mal Voltage Transien	t				
	Steady State	Steady State	High Voltage	Low Voltage	Oscilloscope Trace	
	Voltage	Frequency	Transient	Transient		
Repetitive	V _{rms}	Hz	V _{rms}	V _{rms}	Attach Trace V _{rms} vs. Time	
Iransient	Time Duration at				· ·	
	Test Condition					
	minutes					

TABLE SAC109-V. Sample data sheet for SAC109 normal voltage transients for MIL-STD-704B, C, D, E, & F.

METHOD SAC110 Normal Frequency Transients

POWER GROUP: Single Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: No

Normal

PARAMETER: Normal Frequency Transients

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to normal frequency transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to frequency transients within the normal limits of the applicable edition(s) of MIL-STD-704 and as noted in table SAC110-I. The utilization equipment must maintain specified performance during and after the frequency transients. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE SAC110-I. MIL-STD-704 limits for normal frequency transients.

Limit	704A	704B	704C	704D	704E	704F
Normal	Figure 5	¶ 5.1.3	Figure 6	Figure 6	Figure 5	Figure 5
Frequency	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-
Transients	704A	704B	704C	704D	704E	704F
	Locus of					
	Equivalent					
	Step					
	Function					
	Curves 2					
	and 3					
Normal	250 Hz/sec	N/A	N/A	N/A	N/A	N/A
Maximum						
Rate of						
Change of						
Frequency						

3. <u>Apparatus</u>. The test equipment should be as follows:

a. Programmable AC power supply

- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SAC110-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SAC110-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

5.1 <u>Compliance test for MIL-STD-704A</u>. The UUT should be subjected to the frequency transients for each test condition A through I noted in table SAC110-II. The frequency must increase or decrease from steady state frequency to the frequency transient level over the duration noted; the frequency must remain at the frequency transient level for the duration noted; and the frequency should return from the frequency transient level over the duration noted. For test condition I, an underfrequency transient of 350 Hz is immediately followed by an overfrequency transient of 450 Hz. For each test condition, monitoring the performance of the UUT during the frequency transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal steady state limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltage, steady state frequency, frequency transient level, time at frequency transient, oscilloscope trace (Hz vs. time), and the performance of the UUT for each test condition in the data sheet shown in table SAC110-IV. Repeat for each mode of operation of the UUT.

5.2 Compliance test for MIL-STD-704B, C, D, E, & F. The UUT must be subjected to the frequency transients for each test condition AA through II noted in table SAC110-III. The frequency should increase or decrease from steady state frequency to the frequency transient level over the duration noted; the frequency must remain at the frequency transient level for the duration noted; and the frequency must return from the frequency transient level over the duration noted. For test condition II, an underfrequency transient of 375 Hz is immediately followed by an overfrequency transient of 425 Hz. For each test condition, monitoring the performance of the UUT during the frequency transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal steady state limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltage, steady state frequency, frequency transient level, time at frequency transient, oscilloscope trace (Hz vs. time), and the performance of the UUT for each test condition in the data sheet shown in table SAC110-V. Repeat for each mode of operation of the UUT.
After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

TABLE SAC110-II.	Test conditions	for MIL	-STD-704A	normal	frequency	y transients.

Test Condition	Time From Steady State Frequency to Frequency Transient Level	Frequency Transient Level Hz	Duration at Frequency Transient Level	Time From Frequency Transient Level to Steady State Frequency
Overfrequency Transients	mmseconds			
Ă	120 msec	430 Hz	¹ / ₂ cycle	120 msec
В	300 msec	430 Hz	¹ / ₂ cycle	1.2 seconds
С	200 msec	450 Hz	¹ / ₂ cycle	200 msec
D	250 msec	450 Hz	¹ / ₂ cycle	3 seconds
Underfrequency Transients				
E	120 msec	370 Hz	¹∕₂ cycle	120 msec
F	300 msec	370 Hz	¹∕₂ cycle	1.2 seconds
G	200 msec	350 Hz	¹∕₂ cycle	200 msec
Н	250 msec	350 Hz	¹ / ₂ cycle	3 seconds
Combined Transient				
Ι	200 msec then 200 msec	350 Hz 450 Hz	¹ / ₂ cycle ¹ / ₂ cycle	200 msec 200 msec

TABLE SAC110-III. Test conditions for MIL-STD-704B, C, D, E, and F normal frequency transients.

Test Condition	Time From Steady State Frequency to Frequency Transient Level milliseconds	Frequency Transient Level Hz	Duration at Frequency Transient Level	Time From Frequency Transient Level to Steady State Frequency milliseconds
Overfrequency Transients	minisceonas			minisceonas
AA	40 msec	410 Hz	10 seconds	40 msec
BB	80 msec	420 Hz	5 seconds	80 msec
CC	100 msec	425 Hz	1 seconds	100 msec
	100 msec	425 Hz	1 seconds	10 msec
DD	then 10 msec	420 Hz	4 seconds	20 msec
	then 20 msec	410 Hz	5 seconds	40 msec
Underfrequency Transients				
EE	40 msec	390 Hz	10 seconds	40 msec
FF	80 msec	380 Hz	5 seconds	80 msec
GG	100 msec	375 Hz	1 seconds	100 msec
	100 msec	375 Hz	1 seconds	10 msec
HH	then 10 msec	380 Hz	4 seconds	20 msec
	then 20 msec	390 Hz	5 seconds	40 msec
Combined Transient				
	100 msec	375 Hz	1 seconds	100 msec
11	then 100 msec	425 Hz	1 seconds	100 msec

 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

51

FIGURE SAC110-1. Normal frequency transients.

Test	Parameters						
Condition	Steady State	Steady State	Frequency	Time at	Oscillosc	ope Trace	Pass/Fail
	Voltage	Frequency	Transient	Frequency			
				Transient			
				Level			
А	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs. Time	
В	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs. Time	
С	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs. Time	
D	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs. Time	
E	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs. Time	
F	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs. Time	
G	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs. Time	
Н	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs. Time	
I	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs. Time	
1			Hz	msec			

TABLE SAC110-IV. Sample data sheet for SAC110 normal frequency transients for MIL-STD-704A.

Test	Parameters						
Condition	Steady State	Steady State	Frequency	Time at	Oscillosc	ope Trace	Pass/Fail
	Voltage	Frequency	Transient	Frequency			
				Transient			
				Level			
AA	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs. Time	
BB	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs. Time	
CC	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs. Time	
	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs. Time	
DD			Hz	sec			
			Hz	sec			
EE	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs. Time	
FF	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs. Time	
GG	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs. Time	
	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs. Time	
HH			Hz	sec			
			Hz	sec			
П	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs. Time	
11			Hz	sec			

TABLE SAC110-V. Sample data sheet for SAC110 normal frequency transients for MIL-STD-704B, C, D, E, & F.

METHOD SAC201 Power Interrupt

POWER GROUP:

Single Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL **OPERATING CONDITION:**

Transfer Interrupt

PARAMETER:

Power Interrupt

1. Scope.

1.1 Purpose. This test procedure is used to verify that single phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to power interrupts as specified in the applicable edition(s) of MIL-STD-704.

2. Validation criteria. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for transfer aircraft electrical conditions when subjected to power interrupts as specified by the applicable edition(s) of MIL-STD-704 and as noted in table SAC201-I. The utilization equipment must maintain the specified performance during power interrupts. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

	TABLE SAC201-I.	MIL-STD-704	power transfer	limits.
--	-----------------	-------------	----------------	---------

Limit	704A	704B	704C	704D	704E	704F
Power	50 msec					
Interrupt						
Voltage	108 V					
NLSS						
Voltage	118 V					
NHSS						

3. Apparatus. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope
- e. Resistive dummy load

4. Test setup. Configure the test setup as shown in figure SAC201-1. The dummy resistive load placed in parallel to the UUT should be sized to draw three times the steady state current of the UUT. Note: This is done to ensure that the UUT test does not lose stored energy to other aircraft loads during power interrupts. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SAC201-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through K noted in table SAC201-II, adjust the voltage to the steady state voltage listed. Perform a power interrupt (0 V) of the duration listed. The voltage should decrease from the steady state voltage to 0 Volts within ¹/₂ cycle (1.25 milliseconds), remain at 0 Volts for the duration listed for the test condition, and return form 0 Volts to the Steady State voltage within ¹/₂ cycle (1.25 milliseconds). For test condition J, three 50 millisecond power interrupts are performed, separated by 0.5 seconds. For test condition K a normal overvoltage transient follows the power interrupt. The normal voltage transient is 160 Vrms for 30 milliseconds and returns to nominal voltage over the next 40 milliseconds. For test condition L a normal undervoltage transient follows the power interrupt. The normal voltage transient is 70 Vrms for 30 milliseconds and returns to nominal voltage over the next 40 milliseconds. For each test condition, monitoring the performance of the UUT according to the utilization equipment performance test procedures for power transfer operation to verify that the UUT is providing specified performance for transfer aircraft electrical conditions. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing the performance specified for normal aircraft electrical conditions (if the UUT is allowed degraded performance during power interrupts, verify the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage). Record the steady state voltage, steady state frequency, time duration of power interrupts, and the performance of the UUT for each test condition in the data sheet shown in table SAC201-III. Repeat each test condition 5 times. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Steady State Voltage	Duration of Interrupt
А	Nominal Voltage	50 msec
В	NLSS Voltage	50 msec
С	NHSS Voltage	50 msec
D	Nominal Voltage	30 msec
Е	NLSS Voltage	30 msec
F	NHSS Voltage	30 msec
G	Nominal Voltage	10 msec
Н	NLSS Voltage	10 msec
Ι	NHSS Voltage	10 msec
J	Nominal Voltage	50 msec (repeated 3 times, separated by 0.5 sec)
К	Nominal Voltage	50 msec (followed by a normal voltage transient of 160 Vrms for 30 msec and return to steady state voltage in 40 msec)
L	Nominal Voltage	50 msec (followed by a normal voltage transient of 70 Vrms for 30 msec and return to steady state voltage in 40 msec)

TABLE SAC201-II. Test conditions for transfer interrupt.

outputs (e.g.: RPM, signals, data, etc.)

FIGURE SAC201-1. Power interrupt.

Test		Paran	eters			Performance	
Condition	Voltage	Frequ	iency	Time Duration		uration	Pass/Fail
				(of Po	ower	
]	Inter	rupt	
Α	V _{rr}	ns	Hz			msec	
В	Vm	ns	Hz			msec	
С	Vm	ns	Hz			msec	
D	Vm	ns	Hz			msec	
E	Vm	ns	Hz			msec	
F	Vm	ns	Hz			msec	
G	Vm	ns	Hz			msec	
Н	Vm	ns	Hz			msec	
Ι	Vrr	ns	Hz			msec	
J	Vrr	ns	Hz			msec	
	Vm	ns	Hz			msec	
		Overvoltag	e Transie	ent			
K	Voltage T	ransient	Time at Voltage				
	_		Transient Level		evel		
	V _{rms}		msec		msec		
	Vm	ns	Hz			msec	
	Undervolta		ge Transient				
L	Voltage T	Voltage Transient		Time at Voltage			
			Tra	Transient Level			
		V _{rms}]	msec	

TABLE SAC201-III. Sample data sheet for SAC201 power interrupt.

METHOD SAC301 Abnormal Steady State Limits for Voltage and Frequency

POWER GROUP:	Single Phase, 400 Hz, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Abnormal
PARAMETER:	Abnormal Steady State Limits for Voltage and Frequency
1. <u>Scope</u> .	

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when provided power with voltage and frequency at the Abnormal Low Steady State (ALSS) limits and the Abnormal High Steady State (AHSS) limits as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment performance specification document for abnormal aircraft electrical conditions when supplied input power of voltage and frequency at the specified abnormal steady state limits of the applicable edition(s) of MIL-STD-704 and as noted in table SAC301-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the abnormal steady state voltage and frequency limits and should be, not less than thirty (30) minutes for each of the test conditions. Unless otherwise specified in the utilization equipment must demonstrate re-start at the abnormal steady state voltage and frequency limits. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

Abnormal	704A	704B	704C	704D	704E	704F
LIIIII						
Voltage ALSS	102 V	100 V				
Voltage AHSS	124 V	125 V				
Frequency ALSS	370 Hz	375 Hz	380 Hz	375 Hz	380 Hz	380 Hz
Frequency AHSS	430 Hz	425 Hz	420 Hz	425 Hz	420 Hz	420 Hz

TABLE SAC301-I. MIL-STD-704 abnormal limits for steady state voltage and frequency.

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. True RMS voltmeter
- c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure SAC301-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SAC301-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through H noted in table SAC301-II, the UUT must remain for a length of time that confirms the utilization equipment can perform as specified at the abnormal steady state voltage and frequency limits and should be, not less than thirty (30) minutes. At each test condition conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. For each test condition shutdown the UUT and verify that the UUT can be re-started. After re-start conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Adjust the voltage to the nominal steady state voltage of 115 Vrms and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the voltage, frequency, time duration at test condition, successful/unsuccessful re-start and the performance of the UUT for each test condition in the data sheet shown in table SAC301-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Voltage	Frequency
А	Nominal Voltage	ALSS Frequency
В	Nominal Voltage	AHSS Frequency
С	ALSS Voltage	Nominal Frequency
D	ALSS Voltage	ALSS Frequency
Е	ALSS Voltage	AHSS Frequency
F	AHSS Voltage	Nominal Frequency
G	AHSS Voltage	ALSS Frequency
Н	AHSS Voltage	AHSS Frequency

TABLE SAC301-II. Test conditions for abnormal steady state limits for voltage and frequency.

 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

62

FIGURE SAC301-1. Abnormal steady state limits for voltage and frequency.

TABLE SAC301-III. Sample data sheet for SAC301 abnormal steady state limits for voltage and frequency.

Test	Parameters						Performance
Condition	Voltage	Frequ	ency	Time Duration		Re-Start	Pass/Fail
	_	_	-	at Con	dition	(Yes/No)	
А	V _{rm}	3	Hz		min		
В	V _{rm}	3	Hz		min		
С	V _{rm}	3	Hz		min		
D	V _{rm}	3	Hz		min		
E	V _{rm}	3	Hz		min		
F	V _{rm}	3	Hz		min		
G	V _{rm}	3	Hz		min		
Н	V _{rm}	3	Hz		min		

METHOD SAC302 Abnormal Voltage Transients

POWER GROUP: Single Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: Abn

Abnormal

PARAMETER: Abnormal Voltage Transients

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to abnormal voltage transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for abnormal aircraft electrical conditions when subjected to voltage transients within the abnormal limits of the applicable edition(s) of MIL-STD-704 and as noted in table SAC302-I. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE SAC302-I. MIL-STD-704 limits for abnormal voltage transients.

Limit	704A	704B	704C	704D	704E	704F
Abnormal Voltage Transients	Figure 3 MIL-STD- 704A Locus of Equivalent Step Function Curves 1 and 4	Figure 5 MIL-STD- 704B	Figure 7 MIL-STD- 704C	Figure 7 MIL-STD- 704D	Figure 6 MIL-STD- 704E	Figure 4 MIL-STD- 704F

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SAC301-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SAC301-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

5.1 Compliance test for MIL-STD-704A. The UUT must be subjected to the voltage transients for each test condition A through O noted in table SAC302-II. The voltage should increase or decrease from steady state voltage to the voltage transient level within $\frac{1}{2}$ cycle (1.25) milliseconds). The voltage must remain at the voltage transient level for the duration noted in table SAC302-II. The voltage must return to steady state over the time duration noted in table SAC302-II For test condition G, three over-voltage transients of 180 Vrms for 20 milliseconds are performed, separated by 0.5 seconds. For test condition N, three under-voltage transients of 45 Vrms for 20 milliseconds are performed, separated by 0.5 seconds. For test condition O, an under-voltage transient of 45 Vrms for 20 milliseconds is immediately followed by an overvoltage transient of 180 Vrms for 75 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT automatically returns to specified performance for normal aircraft electrical conditions when the power returns to within normal limits, and has not suffered damage. Record the steady state voltage, steady state frequency, voltage transient level, time duration at voltage transient, oscilloscope trace, and the performance of the UUT for each test condition in the data sheet shown in table SAC302-IV. Repeat for each mode of operation of the UUT.

5.2. <u>Compliance test for MIL-STD-704B, C, D, E, & F</u>. The UUT must be subjected to the voltage transients for each test condition AA through OO noted in table SAC302-III. The voltage must increase or decrease from steady state voltage to the voltage transient level within ½ cycle (1.25 milliseconds)</u>. The voltage must remain at the voltage transient level for the duration noted in table SAC302-III. The voltage should return to steady state over the time duration noted in table SAC302-III. For test condition GG, three over-voltage transients of 180 Vrms for 20 milliseconds are performed, separated by 0.5 seconds. For test condition NN, three under-voltage transients of 45 Vrms for 20 milliseconds are performed, separated by 0.5 seconds. For test condition OO, an under-voltage transient of 45 Vrms for 20 milliseconds is immediately followed by an overvoltage transient of 180 Vrms for 50 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test

procedures to verify that the UUT automatically returns to specified performance for normal aircraft electrical conditions when the power returns to within normal limits, and has not suffered damage. Record the steady state voltage, steady state frequency, voltage transient level, time duration at voltage transient, oscilloscope trace, and the performance of the UUT for each test condition in the data sheet shown in table SAC302-V. Repeat for each mode of operation of the UUT.

TABLE SAC302-II	Test conditions	for MIL_STD_	704 abnormal	voltage tr	ansients
TADLE SACJUZ-II.	i est conditions	IOI MIL-SID-	/04 aunormai	vonage u	ansients.

Test Condition	Time From	Voltage	Duration at	Time From
	Steady State	Transient Level	Voltage	Voltage
	Voltage to	Vrms	Transient Level	Transient Level
	Voltage		milliseconds	to Steady State
	Transient Level			Voltage
	milliseconds			milliseconds
Overvoltage Transients				
А	< 1.25 msec	140 Vrms	1450 msec	< 1.25 msec
В	< 1.25 msec	140 Vrms	1025 msec	850 msec
С	< 1.25 msec	160 Vrms	520 msec	< 1.25 msec
D	< 1.25 msec	160 Vrms	390 msec	250 msec
Е	< 1.25 msec	180 Vrms	98 msec	< 1.25 msec
F	< 1.25 msec	180 Vrms	75 msec	50 msec
G	< 1.25 msec	180 Vrms	20 msec	< 1.25 msec
0		(3 times)	every 0.5 sec	
Undervoltage Transients				
Н	< 1.25 msec	85 Vrms	1450 msec	< 1.25 msec
Ι	< 1.25 msec	85 Vrms	1025 msec	850 msec
J	< 1.25 msec	75 Vrms	520 msec	< 1.25 msec
K	< 1.25 msec	75 Vrms	390 msec	250 msec
L	< 1.25 msec	45 Vrms	98 msec	< 1.25 msec
М	< 1.25 msec	45 Vrms	75 msec	50 msec
N	< 1.25 msec	45 Vrms	20 msec	< 1.25 msec
19		(3 times)	every 0.5 sec	
Combined Transient				
0	< 1.25 msec	45 Vrms	20 msec	< 1.25 msec
U	then < 1.25 msec	180 Vrms	75 msec	50 msec

TABLE SAC302-III. Test conditions for MIL-STD-704B, C, D, E, and F abnormal voltage transients.

Test Condition	Time From Steady State Voltage to Voltage Transient Level milliseconds	Voltage Transient Level Vrms	Duration at Voltage Transient Level milliseconds	Time From Voltage Transient Level to Steady State Voltage or Next Voltage Level
Overvoltage Transients				
AA	< 1.25 msec	140 Vrms	180 msec	< 1.25 msec
	< 1.25 msec	140 Vrms	180 msec	87 msec
	then	135 Vrms	Decreasing	253 msec
BB	then	130 Vrms	Decreasing	6.41 sec
	then	125 Vrms	Decreasing	>10 sec
		115 Vrms		
CC	< 1.25 msec	160 Vrms	78 msec	< 1.25 msec
	< 1.25 msec	160 Vrms	78 msec	31 msec
	then	150 Vrms	Decreasing	71 msec
	then	140 Vrms	Decreasing	87 msec
DD	then	135 Vrms	Decreasing	253 msec
	then	130 Vrms	Decreasing	6.41 sec
	then	125 Vrms	Decreasing	>10 sec
		115 Vrms		
EE	< 1.25 msec	180 Vrms	50 msec	< 1.25 msec
	< 1.25 msec	180 Vrms	50 msec	11 msec
	then	170 Vrms	Decreasing	17 msec
	then	160 Vrms	Decreasing	31 msec
	then	150 Vrms	Decreasing	71 msec
FF	then	140 Vrms	Decreasing	87 msec
	then	135 Vrms	Decreasing	253 msec
	then	130 Vrms	Decreasing	6.41 sec
	then	125 Vrms	Decreasing	>10 sec
		115 Vrms		
GG	< 1.25 msec	180 Vrms	20 msec	< 1.25 msec
		(3 times)	every 0.5 sec	

TABLE SAC302-III. Test conditions for MIL-STD-704B, C, D, E, and F abnormal voltage transients - Continued

Test Condition	Time From	Voltage	Duration at	Time From
	Steady State	Transient Level	Voltage	Voltage
	Voltage to	Vrms	Transient Level	Transient Level
	Voltage		milliseconds	to Steady State
	Transient Level			Voltage
	milliseconds			or
				Next Voltage
				Level
Undervoltage Transients				
HH	< 1.25 msec	85 Vrms	180 msec	< 1.25 msec
	< 1.25 msec	85 Vrms	180 msec	87 msec
	then	90 Vrms	Increasing	253 msec
II	then	95 Vrms	Increasing	6.41 sec
	then	100 Vrms	Increasing	>10 sec
		115 Vrms		
JJ	< 1.25 msec	66 Vrms	78 msec	< 1.25 msec
	< 1.25 msec	65 Vrms	78 msec	31 msec
	then	75 Vrms	Increasing	71 msec
	then	85 Vrms	Increasing	87 msec
KK	then	90 Vrms	Increasing	253 msec
	then	95 Vrms	Increasing	6.41 sec
	then	100 Vrms	Increasing	>10 sec
		115 Vrms		
LL	< 1.25 msec	45 Vrms	50 msec	< 1.25 msec
	< 1.25 msec	45 Vrms	50 msec	11 msec
	then	55 Vrms	Increasing	17 msec
	then	65 Vrms	Increasing	31 msec
	then	75 Vrms	Increasing	71 msec
MM	then	85 Vrms	Increasing	87 msec
	then	90 Vrms	Increasing	253 msec
	then	95 Vrms	Increasing	6.41 sec
	then	100 Vrms	Increasing	>10 sec
		115 Vrms		
NN	< 1.25 msec	45 Vrms	20 msec	< 1.25 msec
111		(3 times)	every 0.5 sec	
Combined Transient				
	< 1.25 msec	45 Vrms	20 msec	< 1.25 msec
	< 1.25 msec	then 180 Vrms	50 msec	11 msec
	then	170 Vrms	Decreasing	17 msec
	then	160 Vrms	Decreasing	31 msec
00	then	150 Vrms	Decreasing	71 msec
	then	140 Vrms	Decreasing	87 msec
	then	135 Vrms	Decreasing	253 msec
	then	130 Vrms	Decreasing	6.41 sec
	then	125 Vrms	Decreasing	>10 sec
		115 Vrms		

 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

69

FIGURE SAC302-1. Abnormal voltage transients.

Test		Parameters					
Condition	Steady State	Steady State	Voltage Transient	Time at Voltage	Oscilloscope Trace	Pass/Fail	
	Voltage	Frequency	_	Transient Level	_		
А	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
В	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
С	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
D	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
E	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
F	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
G	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
Н	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
Ι	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
J	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
K	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
L	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
М	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
N	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
0	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
0			V _{rms}	msec			

TABLE SAC302-IV. Sample data sheet for SAC302 abnormal voltage transients for MIL-STD-704A.

MII,-HDBK-704-2

Test		Parameters					
Condition	Steady State	Steady State	Voltage Transient	Time at Voltage	Oscilloscope Trace	Pass/Fail	
	Voltage	Frequency		Transient Level	_		
AA	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
BB	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
CC	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
DD	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
EE	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
FF	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
GG	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
HH	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
II	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
JJ	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
KK	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
LL	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
MM	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
NN	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
00	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
00			V _{rms}	msec			

TABLE SAC302-V. Sample data sheet for SAC302 abnormal voltage transients for MIL-STD-704B, C, D, E, and F.

METHOD SAC303 Abnormal Frequency Transients

POWER GROUP:	Single Phase, 400 Hz, 115 V
AIRCRAFT ELECTRICAL	

OPERATING CONDITION: Abnormal

PARAMETER:	Abnormal Frequency Transients
	1 5

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to abnormal frequency transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for abnormal aircraft electrical conditions when subjected to frequency transients within the abnormal limits of the applicable edition(s) of MIL-STD-704 and as noted in table SAC303-I. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE SAC303-I. MIL-STD-704 limits for abnormal frequency transients.

Limit	704A	704B	704C	704D	704E	704F
Abnormal Frequency Transients	Figure 5 MIL-STD- 704A Locus of Equivalent Step Function Curves 1 and 4	¶ 5.1.5 MIL-STD- 704B	Figure 8 MIL-STD- 704C	Figure 8 MIL-STD- 704D	Figure 7 MIL-STD- 704E	Figure 6 MIL-STD- 704F
Abnormal Maximum Rate of Change of Frequency	500 Hz/sec	500 Hz/sec	500 Hz/sec	N/A	N/A	N/A

- 3. <u>Apparatus</u>. The test equipment should be as follows:
 - a. Programmable AC power supply
 - b. True RMS voltmeter
 - c. Frequency counter

d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SAC303-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SAC303-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions.

5.1 Compliance test for MIL-STD-704A. The UUT must be subjected to the frequency transients for each test condition A through E noted in table SAC303-II. The frequency should increase or decrease from steady state frequency to the frequency transient level over the duration noted; the frequency must remain at the frequency transient level for the duration noted; and the frequency must return from the frequency transient level over the duration noted. For test condition E, an underfrequency transient of 320 Hz is immediately followed by an overfrequency transient of 480 Hz. For each test condition, monitor the performance of the UUT during the frequency transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions, and has not suffered damage. Record the steady state voltage, steady state frequency, frequency transient level, time at frequency transient, oscilloscope trace (Hz vs. time), and the performance of the UUT for each test condition in the data sheet shown in table SAC303-IV. Repeat for each mode of operation of the UUT.

5.2 Compliance test for MIL-ST<u>D-704B, C, D, E, & F</u>. The UUT must be subjected to the frequency transients for each test condition AA through EE noted in table SAC303-III. The frequency should increase or decrease from steady state frequency to the frequency transient level over the duration noted; the frequency must remain at the frequency transient level for the duration noted; and the frequency must return from the frequency transient level over the duration noted. For test condition EE, an underfrequency transient of 320 Hz is immediately followed by an overfrequency transient of 480 Hz. For each test condition, monitor the performance of the UUT during the frequency transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions, and has not suffered damage. Record the steady state voltage, steady state frequency, frequency transient level, time at frequency transient, oscilloscope trace (Hz vs. time), and the performance of the UUT for each test condition in the data sheet shown in table SAC303-V. Repeat for each mode of operation of the UUT.

Test Condition	Time From	Frequency	Duration at	Time From
	Steady State	Transient Level	Frequency	Frequency
	Frequency to	Hz	Transient Level	Transient Level
	Frequency			to Steady State
	Transient Level			Frequency
	milliseconds			milliseconds
Overfrequency Transients				
А	333 msec	480 Hz	¹ / ₂ cycle	60 msec
В	333 msec	480 Hz	6.69 seconds	60 msec
Underfrequency Transients				
С	333 msec	320 Hz	¹ / ₂ cycle	60 msec
D	333 msec	320 Hz	6.69 seconds	60 msec
Combined Transient				
E	333 msec	320 Hz	¹ / ₂ cycle	333 msec
E	333 msec	then 480 Hz	¹ / ₂ cycle	333 msec

TABLE SAC303-II.	Test conditions for MIL-STD-704A abnormal frequency	transients.

 TABLE SAC303-III.
 Test conditions for MIL-STD-704B, C, D, E, and F abnormal frequency transients.

Test Condition	Time From	Frequency	Duration at	Time From
	Steady State	Transient Level	Frequency	Frequency
	Frequency to	Hz	Transient Level	Transient Level
	Frequency			to Steady State
	Transient Level			Frequency
	milliseconds			milliseconds
Overfrequency Transients				
AA	160 msec	480 Hz	¹ / ₂ cycle	160 msec
BB	160 msec	480 Hz	4.78 seconds	160 msec
Underfrequency Transients				
CC	160 msec	320 Hz	¹ / ₂ cycle	160 msec
DD	160 msec	320 Hz	4.78 seconds	160 msec
Combined Transient				
DE	160 msec	320 Hz	¹ / ₂ cycle	160 msec
EE	160 msec	then 480 Hz	¹ / ₂ cycle	160 msec

 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

75

FIGURE SAC303-1. Abnormal frequency transients.

Test	Parameters									Performance
Condition	Steady State	Steady	State	Frequ	iency	Time at 0		Oscillosco	Oscilloscope Trace	
	Voltage	Freque	encv	Tran	sient	f Frequency		1		
		1	5	11 will stoll v		Transient				
						Lo	vol			
						LC	VEI			
А	V _{rms}		Hz		Hz		msec	Attach Trace	Hz vs. Time	
В	V _{rms}		Hz		Hz		sec	Attach Trace	Hz vs. Time	
С	V _{rms}		Hz		Hz		msec	Attach Trace	Hz vs. Time	
D	V _{rms}		Hz		Hz		sec	Attach Trace	Hz vs. Time	
Б	V _{rms}		Hz		Hz		msec	Attach Trace	Hz vs. Time	
Ľ					Hz		msec			

TABLE SAC303-IV. Sample data sheet for SAC303 abnormal frequency transients for MIL-STD-704A.

TABLE SAC303-V. Sample data sheet for SAC303 abnormal frequency transients for MIL-STD-704B, C, D, E, & F.

Test	Parameters							Performance			
Condition	Steady	y State	Steady	Steady State Frequency		Time at		Oscilloscope Trace		Pass/Fail	
	Vol	tage	Frequ	Frequency Transi		sient	nt Frequency				
							Transier				
							Le	vel			
AA		V _{rms}		Hz		Hz		msec	Attach Trace	Hz vs. Time	
BB		V _{rms}		Hz		Hz		sec	Attach Trace	Hz vs. Time	
CC		V _{rms}		Hz		Hz		msec	Attach Trace	Hz vs. Time	
DD		V _{rms}		Hz		Hz		sec	Attach Trace	Hz vs. Time	
FF		V _{rms}		Hz		Hz		msec	Attach Trace	Hz vs. Time	
						Hz		msec			

METHOD SAC401 Emergency Steady State Limits for Voltage and Frequency

POWER GROUP:	Single Phase, 400 Hz, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Emergency
PARAMETER:	Emergency Steady State Limits for Voltage and Frequency
1. Scope.	

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when provided power with voltage and frequency at the Emergency Low Steady State (ELSS) limits and the Emergency High Steady State (EHSS) limits as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for emergency aircraft electrical conditions when supplied input power of voltage and frequency at the specified emergency steady state limits of the applicable edition(s) of MIL-STD-704 and as noted in table SAC401-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the emergency steady state voltage and frequency limits and should be, not less than thirty (30) minutes for each of the test conditions. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must demonstrate re-start at the emergency steady state voltage and frequency limits. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

Emergency Limit	704A	704B	704C	704D	704E ^{1/}	704F ^{1/}
Voltage ELSS	104 V	102 V	104 V	104 V	108 V	108 V
Voltage EHSS	122 V	124 V	122 V	122 V	118 V	118 V
Frequency ELSS	360 Hz	360 Hz	360 Hz	360 Hz	393 Hz	393 Hz
Frequency EHSS	440 Hz	440 Hz	440 Hz	440 Hz	407 Hz	407 Hz

TABLE SAC401-I. MIL-STD-704 emergency limits for steady state voltage and frequency.

² For MIL-STD-704E and F, performance of test method SAC102 will constitute performance of test method SAC401.

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. True RMS voltmeter
- c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure SAC401-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SAC401-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through H noted in table SAC401-II, the UUT must remain for a length of time that confirms the utilization equipment can perform as specified at the emergency steady state voltage and frequency limits and should be, not less than thirty (30) minutes. At each test condition conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for emergency aircraft electrical conditions. For each test condition shutdown the UUT and verify that the UUT can be re-started. After re-start conduct a performance test of the UUT according to the utilization equipment performance for emergency aircraft electrical conditions. For each test procedures to verify that the UUT according to the utilization equipment performance test procedures to verify that the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for emergency aircraft electrical conditions. Adjust the voltage to the nominal steady state voltage of 115 Vrms and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test of the UUT according to the utilization equipment performance test of the UUT according to the utilization equipment performance test of the UUT according to the utilization equipment performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the voltage, frequency, time duration at test condition, successful/unsuccessful re-start

and the performance of the UUT for each test condition in the data sheet shown in table SAC401-III. Repeat for each mode of operation of the UUT.

TABLE SAC401-II. Test conditions for emergency steady state limits for voltage and frequency.

Test Condition	Voltage	Frequency
А	Nominal Voltage	ELSS Frequency
В	Nominal Voltage	EHSS Frequency
С	ELSS Voltage	Nominal Frequency
D	ELSS Voltage	ELSS Frequency
Е	ELSS Voltage	EHSS Frequency
F	EHSS Voltage	Nominal Frequency
G	EHSS Voltage	ELSS Frequency
Н	EHSS Voltage	EHSS Frequency

outputs (e.g.: RPM, signals, data, etc.)

08

FIGURE SAC401-1. Emergency steady state limits for voltage and frequency.

TABLE SAC401-III. Sample data sheet for SAC401 emergency steady state limits for voltage and frequency.

Test	Domain stores Domformour og						
Test		Paran	leters		Performance		
Condition	Voltage	Frequency	Time Duration	Re-Start	Pass/Fail		
			at Condition	(Yes/No)			
А	V _{rms}	Hz	min				
В	V _{rms}	Hz	min				
С	V _{rms}	Hz	min				
D	V _{rms}	Hz	min				
E	V _{rms}	Hz	min				
F	V _{rms}	Hz	min				
G	V _{rms}	Hz	min				
Н	V _{rms}	Hz	min				

METHOD SAC501 (No Test Required)

POWER GROUP: Single Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Starting

PARAMETER: No Tests

Starting operations are usually not applicable to AC utilization equipment.

METHOD SAC601 Power Failure (Single Phase)

POWER GROUP: Single Phase, 400 Hz, 115 V AIRCRAFT ELECTRICAL

OPERATING CONDITION: Power Failure

PARAMETER: Power Failure (Single Phase)

1. <u>Scope</u>

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to power failures as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for power failure aircraft electrical conditions when subjected to power failures as specified by the applicable edition(s) of

MIL-STD-704 and as noted in table SAC601-I. The utilization equipment must maintain the specified performance during the power failures. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE SAC601-I. MIL-STD-704 power failure limits.

Limit	704A	704B	704C	704D	704E	704F
Power Failure	7 sec Figure 3 Curve 4 MIL-STD-	7 sec Figure 5 MIL-STD- 704B	7 sec Figure 7 MIL-STD- 704C	7 sec Figure 7 MIL-STD- 704D	7 sec Figure 6 MIL-STD- 704E	7 sec Figure 4 MIL-STD- 704F
	704B					

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SAC106-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SAC601-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through D noted in table SAC601-II, perform a power failure (0 V) of the duration listed. The voltage should decrease from the steady state voltage to 0 Volts within $\frac{1}{2}$ cycle (1.25 milliseconds), remain at 0 Volts for the duration listed for the test condition, and return form 0 Volts to the steady state voltage within $\frac{1}{2}$ cycle (1.25 milliseconds). For each test condition, monitor the performance of the UUT according to the utilization equipment performance test procedures for power failure operation to verify that the UUT is providing specified performance for power failure aircraft electrical conditions. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the steady state voltage, steady state frequency, time duration of power failure, and the performance of the UUT for each test condition in the data sheet shown in table SAC601-III. Repeat each test condition 5 times. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Duration of Power Failure
А	100 msec
В	500 msec
С	3 seconds
D	7 seconds

TABLE SAC601-II. Test conditions for single phase power failures.

- appropriate attenuation.
- Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

FIGURE SAC601-1. Power failure.

Test			Performance			
Condition	Voltage	Frequency		Frequency Time Duration		Pass/Fail
		1 2		of Power		
				Failure		
А	V _{rms}		Hz		msec	
В	V _{rms}		Hz		msec	
С	V _{rms}		Hz		sec	
D	V _{rms}		Hz		sec	

TABLE SAC601-III. Sample data sheet for SAC601 power failure (single phase).

METHOD SAC602 (No Test Required)

POWER GROUP:	Single Phase, 400 Hz, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Power Failure
PARAMETER:	No Test Required. Test number SAC602 is not used so that the single phase, 400 Hz, 115 V (SAC) test numbers coincide with the three phase, 400 Hz, 115 V (TAC) test sequence numbers.

METHOD SAC603 Phase Reversal (Single Phase)

POWER GROUP:	Single Phase, 400 Hz, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Power Failure
PARAMETER:	Phase Reversal (Single Phase)

1. Scope.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, 400 Hz power utilization equipment is not damaged by phase reversal or a positive physical means is employed to prevent phase reversal.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment is not damaged and does not cause an unsafe condition when the line and neutral connection are reversed for the applicable edition(s) of MIL-STD-704 and as noted in table SAC603-I. A positive physical means to prevent phase reversal may be used to fulfill this requirement.

TABLE SAC603-I. MIL-STD-704 phase reversal requirement.

Limit	704A	704B	704C	704D	704E	704F
Phase Reversal	N/A	N/A	N/A	N/A	N/A	Phase Reversal Does not Cause Damage

3. <u>Apparatus</u>. The test equipment should be as follows:

a. Adjustable AC power supply

b. True RMS voltmeter

c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure SAC603-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. If a positive physical means is employed to prevent phase reversal, confirm that the line and neutral conductor cannot be reversed.

If the line and neutral conductor can be reversed, with the power source off, install the UUT and the stimulation and monitoring rquipment into the test setup of figure SAC603-1 (line and neutral conductors reversed). Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady

state frequency of 400 Hz. Energize the UUT. The UUT must remain for a length of time that confirms the utilization equipment is not damaged and does not cause an unsafe condition due to phase reversal and should be not less than thirty (30) minutes. Record the steady state voltage, steady state frequency, time duration at phase reversal test condition, and the performance of the UUT in the data sheet shown in table SAC603-II. Repeat for each mode of operation of the UUT.

With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SAC603-II (line and neutral conductors connected properly). Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. The UUT must remain for a length of time that confirms the utilization equipment was not damaged and does not cause an unsafe condition after the phase reversal and should be not less than thirty (30) minutes. Conduct a performance test of the UUT has returned to the performance specified for normal aircraft electrical conditions and has not suffered damage. Record the steady state voltage, steady state frequency, time duration at test condition, and the performance of the UUT in the data sheet shown in table SAC603-II. Repeat for each mode of operation of the UUT.

5. Phase Polarity is reversed.

90

FIGURE SAC603-1. Phase reversal.

 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

91

FIGURE SAC603-2. Correct phase connection.

Test	Parameters						Performance
Condition							Yes/No
Phase Reversal Prevented by Positive Physical Means							
If No							
	Vol	tage	Frequ	iency	Time Duration		Pass/Fail
					at Condition		
Phase		V _{rms}		Hz		min	
Reversal							
Correct Phase		V _{rms}		Hz min		min	
Connection							

TABLE SAC603-II. Sample data sheet for SAC603 phase reversal.

6. NOTES

6.1 <u>Intended use</u>. This handbook should be used as guidance when establishing test requirements, for inclusion in performance specifications developed for the procurement of utilization equipment, to ensure compliance with the aircraft electrical power characteristics as specified by MIL-STD-704.

6.2 <u>Single phase test numbers</u>. There are no tests required for SAC103 and SAC602. This is done so that the single phase test numbers coincide with the three phase test numbers.

6.3 Subject term (keyword) listing.

Aircraft, electrical power Aircraft, electrical test Electrical operating areas Equipment, utilization Power groups Specification, utilization equipment

CONCLUDING MATERIAL

Custodians:

Army - AV Navy - AS Air Force - 11 Preparing Activity: Navy - AS

(Project No. SESS-0048)

Review Activities: Army - CR, MI, TE Navy - EC, MC, SA, SH, YD

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities change, you should verify the currency of the information above using the ASSIST Online database at <u>www.dodssp.daps.mil</u>.

NOT MEASUREMENT SENSITIVE

> MIL-HDBK-704-3 9 April 2004

DEPARTMENT OF DEFENSE HANDBOOK

GUIDANCE FOR TEST PROCEDURES FOR DEMONSTRATION OF UTILIZATION EQUIPMENT COMPLIANCE TO AIRCRAFT ELECTRICAL POWER CHARACTERISTICS THREE PHASE, 400 Hz, 115 VOLT (PART 3 OF 8 PARTS)

This Handbook is for guidance only. Do not cite this document as a requirement.

AMSC N/A

AREA SESS

FOREWORD

1. This handbook is approved for use by all Departments and Agencies of the Department of Defense.

2. This handbook provides guidance on test procedures for demonstration of three phase, 400 Hz, 115 volt utilization equipment to determine compliance with the applicable edition of MIL-STD-704.

3. MIL-HDBK-704-3 is Part 3 in a series of 8 Parts. Part 3 describes the test methods and procedures to demonstrate that three phase, 400 Hz, 115 volt utilization equipment is compatible with the electric power characteristics of MIL-STD-704. These series of handbooks and MIL-STD-704 are companion documents.

4. Comments, suggestions, or questions on this document should be addressed to Commander, Naval Air Systems Command, 4.1.4, Highway 547, Lakehurst, NJ 08733-5100 or email to <u>thomas.omara@navy.mil</u>. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at <u>http://www.dodssp.daps.mil/</u>.

CONTENTS

PAR/	AGRAPH	PAGE
	FOREWORD	ii
1. 1.1	SCOPEScope	
2. 2.1 2.2 2.2.1	APPLICABLE DOCUMENTS General Government documents Specifications, standards and handbooks	
3. 3.1	DEFINITIONS Acronyms and definitions	
4. 4.1 4.1.1 4.2 4.3	TEST METHODS INFORMATION Demonstration of compatibility Recording performance Calibration of test equpment Test methods	1 1 1 1 1 2
5.	TEST METHODS METHOD TAC101 Load Measurements METHOD TAC102 Steady State Limits for Voltage, Including	
	Unbalance, and Frequency METHOD TAC103 Voltage Phase Difference	
	METHOD TAC104 Voltage Modulation METHOD TAC105 Frequency Modulation METHOD TAC106 Voltage Distortion Spectrum	
	METHOD TAC107 Total Voltage Distortion	
	METHOD TAC109 Normal Voltage Transients METHOD TAC110 Normal Frequency Transients METHOD TAC201 Power Interrupt METHOD TAC301 Abnormal Steady State Limits for Voltage	
	and Frequency METHOD TAC302 Abnormal Voltage Transients METHOD TAC303 Abnormal Frequency Transients	
	METHOD TAC401 Emergency Steady State Limits for Voltage and Frequency	
	METHOD TAC601 Power Failure (Three Phase) METHOD TAC602 One and Two Phase Power Failures METHOD TAC603 Phase Reversal (Three Phase)	

PARA	<u>GRAPH</u>	<u>PAGE</u>
6.	NOTES	121
6.1	Intended use	121
6.2	Subject term (keyword) listing	121
TABL	E	
TAC-I.	Summary of three phase, 400 Hz, 115 volt utilization equipment	
	MIL-STD-704 compliance tests	
CONC	LUDING MATERIAL	121

1. SCOPE

1.1 <u>Scope</u>. This handbook provides, as guidance, test methods used to demonstrate that three phase, 400 Hz, 115 volt utilization equipment is compatible with the electric power characteristics of the applicable edition(s) of MIL-STD-704. This handbook is for guidance only and cannot be cited as a required.

2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed below are not necessarily all of the documents referenced herein, but are those needed to understand the information provided by this handbook.

2.2 Government documents.

2.2.1 <u>Specifications, standards, and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-704

DoD Interface Standard for Aircraft Electric Power Characteristics

(Copies of these documents are available online at <u>http://assist. daps.dla.mil/quicksearch</u> or <u>http://www.dodssp.daps.mil</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

3. DEFINITIONS

3.1 <u>Acronyms and definitions</u>. The acronyms and definitions of MIL-STD-704 are applicable to this handbook.

4. TEST METHODS INFORMATION

4.1 <u>Demonstration of compatibility</u>. This section contains the test methods which will ensure that three phase, 400 Hz, 115 volt utilization equipment is compatible with the electric power characteristics of the applicable edition(s) of MIL-STD-704, by testing the Unit Under Test (UUT) in accordance with the test procedures as described in test methods TA101 through TAC603.

4.1.1 <u>Recording performance</u>. In table TAC-I, record the edition(s) of MIL-STD-704 that defined the aircraft electric power characteristics used for testing and the performance of the UUT for each of the test methods.

4.2 <u>Calibration of test equipment</u>. Test equipment and accessories required for measurement in accordance with this handbook should be calibrated in accordance with an approved calibration program traceable to the National Institute for Standards and Technology.

The serial numbers, model, and calibration date of all test equipment should be included with the test data.

4.3 <u>Test methods</u>. The test methods listed in table TAC-I are provided in section 5 of this handbook.

TABLE TAC-I.Summary of Three Phase, 400 Hz, 115 volt utilization equipmentMIL-STD-704 compliance tests.

UUT:							
Compliance to MIL-STD-704 Edition(s):							
Test Date	s:						
Test	Description	Performance	Comments				
Method	-	(Pass/Fail)					
Normal, A	Aircraft Electrical Operation						
TAC101	Three Phase Load and Current						
	Harmonic Measurements						
TAC102	Steady State Limits for Voltage						
	(Including Unbalance) and						
	Frequency						
TAC103	Voltage Phase Difference						
TAC104	Voltage Modulation						
TAC105	Frequency Modulation						
TAC106	Voltage Distortion Spectrum						
TAC107	Total Voltage Distortion						
TAC108	DC Voltage Component						
TAC109	Normal Voltage Transients						
TAC110	Normal Frequency Transients						
Transfer,	Aircraft Electrical Operation						
TAC201	Power Interrupt						
Abnorma	l, Aircraft Electrical Operation						
TAC301	Abnormal Limits for Voltage and						
	Frequency						
TAC302	Abnormal Voltage Transients						
	(Overvoltage/Undervoltage)						
TAC303	Abnormal Frequency Transients						
	(Overfrequency/Underfrequency)						
Emergen	cy, Aircraft Electrical Operation						
TAC401	Emergency Limits for Voltage						
	and Frequency						
Starting,	Aircraft Electrical Operation						
TAC501	See Note #1						
Power Fa	ilure, Aircraft Electrical Operati	on					
TAC601	Power Failure (Three Phase)						
TAC602	One Phase and Two Phase Power						
	Failures						
TAC603	Phase Reversal						

Note 1: Starting operation conditions are usually not applicable to AC utilization equipment. No test is required for TAC501 unless specified by the equipment performance specification.

5. TEST METHODS

METHOD TAC101 Load Measurements

POWER GROUP:

Three Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Normal

Load Measurements

1. <u>Scope</u>.

PARAMETER:

1.1 <u>Purpose</u>. This test is used to verify that three phase, 115 Volt, 400 Hz power utilization equipment utilizes only 115 Volt line-to-neutral power, current inrush is within limits, has balanced power, the power factor is within limits, and does not use half-wave rectification for the applicable edition(s) of MIL-STD-704. Additionally, when the utilization equipment performance specification document imposes current waveform requirements, this test procedure is used to verify that the utilization equipment current waveform is within total current distortion and current spectrum (current distortion vs. frequency) limits defined in the utilization equipment performance specification document.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment utilize only 115 Volt line-to-neutral power, is within current inrush limits, is within the balanced load limits, is within the power factor limits, and does not use half-wave rectification for the applicable edition(s) of MIL-STD-704 and as noted in table TAC101-I. If required by the utilization equipment performance specification document, the utilization equipment current waveform must be within the total current distortion and current spectrum limits defined in the utilization equipment performance specification document. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE TAC101-I. MIL-STD-704 limits for inrush current, balanced load, power factor, rectification restriction, current distortion, and current spectrum for three phase, 400 Hz utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Inrush Current	N/A	N/A	N/A	N/A	N/A	300 Percent for Loads >3 kVA
Percent Unbalanced Load	Figure 11 MIL- STD- 704A	N/A ^{1/}	Figure 1 MIL- STD- 704C	Figure 1 MIL- STD- 704D	Figure 1 MIL-STD-704E or 3.33% for Loads >30 kVA	Figure 1 MIL-STD-704F or 3.33% for Loads >30 kVA
Power Factor	Figure 12 MIL- STD- 704A	N/A	N/A	N/A	N/A	0.85 Lagging to Unity for Loads >500 VA and No Leading Power Factor for > 100VA
Rectification Restriction	N/A ^{2/}	N/A ^{2/}	N/A ^{2/}	N/A ^{2/}	No Half-Wave Rectification	No Half-Wave Rectification
Current	See Note 3/	See Note 3/	See	See Note 3/	See Note 3/	See Note 3/
Current Spectrum	See Note <u>3</u> /	See Note <u>3</u> /	See Note <u>3</u> /	See Note <u>3</u> /	See Note <u>3</u> /	See Note <u>3</u> /

 $\underline{1}$ / For utilization equipment being tested to MIL-STD-704 edition B use the unbalanced load limits of MIL-STD-704C.

2/ It is highly recommended that equipment built to MIL-STD-704 editions A, B, C, or D should not use half-wave rectification.

3/ Utilization equipment specification should include requirements that reduce the likelihood of the equipment having an adverse effect on the electrical power characteristics of the aircraft. Current distortion and current spectrum limits may be imposed to minimize the undesirable effects to the electrical power characteristics. These limits should take into account the utilization equipment power draw, aircraft electrical system capacity and distribution characteristics, trade-offs with weight, volume, cost, and reliability that are specific to each type of equipment and aircraft.

- 3. <u>Apparatus</u>. The test equipment should be as follows:
 - a. Adjustable AC power supply (rotating AC source for current waveform limits)
 - b. True RMS voltmeter
 - c. Frequency counter
 - d. Power meter
 - e. Spectrum analyzer
 - f. Distortion meter
 - g. Current transformer
 - h. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure TAC101-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT. Current measurements must be taken from the 115 Volt conductors. If the utilization equipment performance specification document imposes current waveform limits, the AC power source must be a rotating machine.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TAC101-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz.

Close the circuit breaker, energizing the UUT. Record the inrush currents (oscilloscope traces) and record the maximum rms current of each phase in the data sheet shown in table TAC101-II. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the frequency in table TAC101-II. For each phase, record the voltage, VA, and power factor in the data sheet shown in table TAC101-II. Compare the calculated percent inrush current, the load unbalance, and power factor with the limits of the applicable edition(s) of MIL-STD-704. Repeat for each mode of operation of the UUT.

Confirm the UUT does not use half-wave rectification and record in the data sheet shown in table TAC101-II. If the utilization equipment performance specification document imposes current waveform limits, for each phase record the total current distortion and current spectrum in the data sheet shown in table TAC101-II and compare to the limits defined in the utilization equipment performance specification document. Repeat for each mode of operation of the UUT.

 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

 ∞

If current waveform limits are imposed by the detail performance specification, the AC power source shall be a rotating machine.

FIGURE TAC101-1. Load measurement.

	Parameters							
Inrush Current								
Phase	Inrush	Percent of	Oscilloscope Trace		Pass/Fail	Comments		
	Current	Rated Current						
А	A _{rms}	%	Attach Trace	A_{rms} vs. Time				
В	A _{rms}	%	Attach Trace	A _{rms} vs. Time				
С	A _{rms}	%	Attach Trace	A_{rms} vs. Time				
Balanced L	load and Power	Factor						
Phase	Voltage	Frequency	Volt-Amp	Power Factor	Pass/Fail	Comments		
А	V _{rms}	Hz	VA	pf				
В	V _{rms}		VA	pf				
С	V _{rms}		VA	pf				
Total VA VA								
Maximum Unbalance (difference between VA								
highe	est and lowest p	hase load)						
Rectificatio	on Type							
					Pass/Fail	Comments		
Does not up	se half-wave re	ctification.						
Current Wa	aveform Measu	rements	_		_			
Phase	Total Curre	ent Distortion	Current S	Spectrum	Pass/Fail	Comments		
			Attach	Amplitude				
A		% Distortion	Spectrum Plot	Vs.				
				Frequency				
			Attach	Amplitude				
В		% Distortion	Spectrum Plot	Vs.				
			A 441-	Frequency				
C		% Distortion	Attach Spectrum Plat	Amplitude				
			Spectrum r lot	v s. Frequency				
				Frequency				

TABLE TAC101-II. Sample data sheet for TAC101 load measurement.

MIL-HDBK-704-3

METHOD TAC102 Steady State Limits for Voltage, Including Unbalance, and Frequency

POWER GROUP:	Three Phase, 400 Hz, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Normal
PARAMETER:	Steady State Limits for Voltage, Including Unbalance, and Frequency
1. <u>Scope</u> .	

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when provided power with voltage and frequency at the Normal Low Steady State (NLSS) limits and the Normal High Steady State (NHSS) limits as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when supplied input power of voltage and frequency at the specified normal steady state limits of the applicable edition(s) of MIL-STD-704 and as noted in table TAC102-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage and frequency limits and should be, not less than thirty (30) minutes for each of the test conditions. The utilization equipment must demonstrate re-start at the steady state voltage and frequency limits. The utilization equipment must not suffer damage or cause an unsafe condition.

Note: If the utilization has exactly the same full performance requirements for abnormal steady state limits and emergency steady state limits as required for the normal aircraft electrical conditions, then performance of test methods TAC301 and TAC401 will constitute performance of test conditions A through I of TAC102.

Normal Limit	704A	704B	704C	704D	704E	704F
Voltage NLSS	108 V	108 V	108 V	108 V	108 V	108 V
Voltage NHSS	118 V	118 V	118 V	118 V	118 V	118 V
Voltage Unbalance	3.0V	3.0V	3.0V	3.0V	3.0V	3.0V
Frequency NLSS	380 Hz	395 Hz (380 Hz) ^{1/}	393 Hz	393 Hz	393 Hz	393 Hz
Frequency NHSS	420 Hz	$405 \text{ Hz} (420 \text{ Hz})^{1/2}$	407 Hz	407 Hz	407 Hz	407 Hz

TABLE TAC102-I. MIL-STD-704 normal limits for steady state voltage, voltage unbalance, and frequency.

1/ Normal steady state frequency limits for MIL-STD-704B for helicopters is 400 \pm 20 Hz.

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. True RMS voltmeter
- c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure TAC102-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TAC102-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through K noted in table TAC102-II, the UUT must remain for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage and frequency limits and should be not less than thirty (30) minutes. Test conditions A through I are three phase balanced voltages. Test conditions J and K are unbalanced voltage conditions. At each test condition conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. For each test condition shutdown the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. For each test conditions. Record the UUT according to the utilization equipment performance for normal aircraft electrical conditions. Record the voltages, frequency, time duration at test condition, successful/unsuccessful re-start and the performance of the UUT for each test condition in the data sheet shown in table TAC102-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Voltage	Frequency
Balanced Voltages		
А	Nominal Voltage	Nominal Frequency
В	Nominal Voltage	NLSS Frequency
С	Nominal Voltage	NHSS Frequency
D	NLSS Voltage	Nominal Frequency
Е	NLSS Voltage	NLSS Frequency
F	NLSS Voltage	NHSS Frequency
G	NHSS Voltage	Nominal Frequency
Н	NHSS Voltage	NLSS Frequency
Ι	NHSS Voltage	NHSS Frequency
Unbalanced Voltages		
	Van NLSS Voltage	Nominal Frequency
J	Vbn NLSS Voltage+3.0V	
	Vcn NLSS Voltage+3.0V	
	Van NHSS Voltage	Nominal Frequency
K	Vbn NHSS Voltage-3.0V	
	Vcn NHSS Voltage-3.0V	

TABLE TAC102-II. Test conditions for steady state limits for voltage and frequency.

FIGURE TAC102-1. Steady state limits for voltage including unbalance.

13

Test		Performance				
Condition	Phase	Voltage	Frequency	Time Duration	Re-Start	Pass/Fail
				at Test	(Yes/No)	
				Condition		
	A	V _{rms}	Hz	min		
A	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
В	В	V _{rms}				
	С	V _{rms}				
	A	V _{rms}	Hz	min		
C	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
D	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
Е	В	V _{rms}				
	С	V _{rms}				
	A	V _{rms}	Hz	min		
F	В	V _{rms}				
	С	V _{rms}				
	A	V _{rms}	Hz	min		
G	В	V _{rms}				
	C	V _{rms}				

TABLE TAC102-III. Sample data sheet for TAC102 steady state limits for voltage and frequency.

Test			Performance						
Condition	Phase	Volt	age	Frequ	uency	Time Duration		Re-Start	Pass/Fail
						at 7	ſest	(Yes/No)	
						Conc	lition		
	A		V _{rms}		Hz		min		
Н	В		V _{rms}						
	C		V _{rms}						
	A		V _{rms}		Hz		min		
Ι	В		V _{rms}						
	C		V _{rms}						
	A		V _{rms}		Hz		min		
J	В		V _{rms}						
	С		V _{rms}						
	A		V _{rms}		Hz		min		
K	В		V _{rms}						
	С		V _{rms}						

TABLE TAC102-III. Sample data sheet for TAC102 steady state limits for voltage and frequency. - Continued

METHOD TAC103 Voltage Phase Difference

POWER GROUP: Three Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Normal

Voltage Phase Difference

1. <u>Scope</u>.

PARAMETER:

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when provided voltages having phase angles within the limits specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when provided voltages having phase angles at the limits of the applicable edition(s) of MIL-STD-704 and as noted in table TAC103-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate and should be not less than thirty (30) minutes for each of the test conditions. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE TAC103-I. MIL-STD-704 limits for voltage phase difference.

Limit	704A	704B	704C	704D	704E	704F
Voltage	116°	116°	116°	116°	116°	116°
Phase	to	to	to	to	to	to
Difference	124°	124°	124°	124°	124°	124°

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Phase angle meter

4. <u>Test setup</u>. Configure the test setup as shown in figure TAC103-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TAC103-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient

time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A and B noted in table TAC103-II, the UUT must remain for a length of time that confirms the utilization equipment can continuously operate with voltage phase differences and should be, not less than thirty (30) minutes. The phase angles are referenced to Van. At each test condition conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the voltages, frequency, phase angles, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table TAC103-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Adjust the phase angles to Van 0° , Vbn 120°, and Vcn 240°. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Voltage Phase Angle	Voltage Phase Angle	Voltage Phase Angle
	Van	Vbn	Vcn
А	0°	116°	240°
В	0°	124°	240°

TABLE TAC103-II.	Test conditions	for voltage	phase difference

18

FIGURE TAC103-1. Voltage phase difference.

Test		Parameters									
Condition	Phase	Vol	tage	Frequ	lency	Phase Angle			Time D	uration	Pass/Fail
				1 2				at T	ſest		
									Cond	lition	
	A		V _{rms}		Hz	Van		0		min	
А	В		V _{rms}			Vbn		0			
	С		V _{rms}			Vcn		0			
	A		V _{rms}		Hz	Van		0		min	
В	В		V _{rms}			Vbn		0			
	C		V _{rms}			Vcn		0			

TABLE TAC103-III. Sample data sheet for TAC103 voltage phase difference.

METHOD TAC104 Voltage Modulation

POWER GROUP:

Three Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: Normal

PARAMETER:

Voltage Modulation

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to voltage modulation as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when supplied input power having voltage modulation as specified in the applicable edition(s) of MIL-STD-704 and as noted in table TAC104-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when provided power having voltage modulation. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE TAC104-I	MIL-STD-704 limits for	r voltage modulation
1 ADLL 1 AC 10 1.	MIL-51D-704 IIIIII 10	vonage modulation.

Limit	704A	704B ^{1/}	704C ^{1/}	704D ^{1/}	704E	704F
Voltage	3.5 V	sideband	N/A	N/A	2.5 Vrms	2.5 Vrms
Modulation	Peak-to-	0.62 Vrms			max	max
	Valley	over the				
	Figure 1	range				
	MIL-STD-	$400 \pm 60 \text{ Hz}$				
	704A					

1/ For utilization equipment being tested to MIL-STD-704 edition B, C, and D, use MIL-STD-704E limits.

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure TAC104-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TAC104-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions

For each test condition A through G noted in table TAC104-II, set the voltage modulation amplitude and frequency of voltage modulation. The UUT must remain at the test condition for a length of time that confirms the utilization equipment can continuously operate, and should be at least ten (10) minutes at an average steady state voltage of 115 Vrms, at least ten (10) minutes at an average steady state voltage of 115 Vrms, at least ten (10) minutes at an average steady state voltage of 109.25 Vrms, and at least ten (10) minutes at an average steady state voltage of 116.75 Vrms. During the test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record average voltage, frequency, amplitude of voltage modulation, frequency of voltage modulation, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table TAC104-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Frequency of Voltage Modulation	MIL-STD-704A Amplitude of Voltage Modulation Voltage Peak-to- Valley	MIL-STD-704E & F ^{1/} Amplitude of Voltage Modulation Vrms	
А	1.0 Hz	0.5 Vp-v	0.375 Vrms	
В	1.7 Hz	0.5 Vp-v	0.375 Vrms	
С	10 Hz	3.5 Vp-v	2.5 Vrms	
D	25 Hz	3.5 Vp-v	2.5 Vrms	
Е	70 Hz	0.5 Vp-v	0.375 Vrms	
F	100 Hz	0.5 Vp-v	0.375 Vrms	
G	200 Hz	0.5 Vp-v	0.375 Vrms	

TABLE TAC104-II. Test conditions for voltage modulation.

1/ For utilization equipment being tested to MIL-STD-704 edition B, C, and D, use MIL-STD-704E limits.

5. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

FIGURE TAC104-1. Voltage modulation.

Test	Parameters								
Condition	Phase	Average	Frequency	Amplitude of	Frequency of	Time Duration	Pass/Fail		
		Voltage		Voltage	Voltage	at Test			
		_		Modulation	Modulation	Condition			
	A	V _{rms}	Hz	V _{rms}	Hz	min			
A-1	В	V _{rms}		V _{rms}	Hz				
	С	V _{rms}		V _{rms}	Hz				
	А	V _{rms}	Hz	V _{rms}	Hz	min			
A-2	В	V _{rms}		V _{rms}	Hz				
	С	V _{rms}		V _{rms}	Hz				
	А	V _{rms}	Hz	V _{rms}	Hz	min			
A-3	В	V _{rms}		V _{rms}	Hz				
	С	V _{rms}		V _{rms}	Hz				
	А	V _{rms}	Hz	V _{rms}	Hz	min			
B-1	В	V _{rms}		V _{rms}	Hz				
	С	V _{rms}		V _{rms}	Hz				
	А	V _{rms}	Hz	V _{rms}	Hz	min			
B-2	В	V _{rms}		V _{rms}	Hz				
	С	V _{rms}		V _{rms}	Hz				
	A	V _{rms}	Hz	V _{rms}	Hz	min			
B-3	В	V _{rms}		V _{rms}	Hz				
	С	V _{rms}		V _{rms}	Hz				
	A	V _{rms}	Hz	V _{rms}	Hz	min			
C-1	В	V _{rms}		V _{rms}	Hz				
	С	V _{rms}		V _{rms}	Hz				

TABLE TAC104-III. Sample data sheet for TAC104 voltage modulation.

MIL-HDBK-704-3
Test			F	Parameters			Performance
Condition	Phase	Average	Frequency	Amplitude of	Frequency of	Time Duration	Pass/Fail
		Voltage		Voltage	Voltage	at Test	
				Modulation	Modulation	Condition	
	A	V _{rms}	Hz	V _{rms}	Hz	min	
C-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	A	V _{rms}	Hz	V _{rms}	Hz	min	
C-3	В	V _{rms}	·	V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	A	V _{rms}	Hz	V _{rms}	Hz	min	
D-1	В	V _{rms}	·	V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	A	V _{rms}	Hz	V _{rms}	Hz	min	
D-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	A	V _{rms}	Hz	V _{rms}	Hz	min	
D-3	В	V _{rms}	·	V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	A	V _{rms}	Hz	V _{rms}	Hz	min	
E-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	A	V _{rms}	Hz	V _{rms}	Hz	min	
E-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz]	

TABLE TAC104-III. Sample data sheet for TAC104 voltage modulation. - Continued

Test			F	Parameters			Performance
Condition	Phase	Average	Frequency	Amplitude of	Frequency of	Time Duration	Pass/Fail
		Voltage		Voltage	Voltage	at Test	
		_		Modulation	Modulation	Condition	
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
E-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	A	V _{rms}	Hz	V _{rms}	Hz	min	
F-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	A	V _{rms}	Hz	V _{rms}	Hz	min	
F-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
F-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	A	V _{rms}	Hz	V _{rms}	Hz	min	
G-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
G-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	A	V _{rms}	Hz	V _{rms}	Hz	min	
G-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		

TABLE TAC104-III. Sample data sheet for TAC104 voltage modulation. - Continued

METHOD TAC105 Frequency Modulation

POWER GROUP:

Three Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Normal

Frequency Modulation

1. <u>Scope</u>.

PARAMETER:

1.1. <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to frequency modulation as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when supplied input power having frequency modulation as specified in the applicable edition(s) of MIL-STD-704 and as noted in table TAC105-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when provided power having frequency modulation. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE TAC105-I. MIL-STD-704 limits for frequency modulation.

Limit	704A	704B	704C	704D	704E	704F
Frequency Modulation	±4Hz	± 5 Hz Figure 3 MIL-STD- 704B	± 5 Hz Figure 4 MIL-STD- 704C	± 5 Hz Figure 4 MIL-STD- 704D	4 Hz	4 Hz

3. <u>Apparatus</u>. The test equipment should be as follows:

a. Programmable AC power supply

- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure TAC105-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TAC105-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient

time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

5.1 <u>Compliance test for MIL-STD-704A</u>. For each test condition A through D noted in table TAC105-II, set the amplitude of frequency modulation and rate of change for frequency modulation. The UUT must remain at the test condition for a length of time that confirms the utilization equipment can continuously operate, and should be at least ten (10) minutes at an average steady state frequency of 400 Hz, at least ten (10) minutes at an average steady state frequency of 384 Hz, and at least ten (10) minutes at an average steady state frequency of 416 Hz. During the test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record voltage, average frequency, amplitude of frequency modulation, rate of change for frequency modulation, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table TAC105-III. Repeat for each mode of operation of the UUT.

5.2 Compliance test for MIL-STD-704B, C, & D. For each test condition A through E noted in table TAC105-II, set the amplitude of frequency modulation and rate of change for frequency modulation. The UUT must remain at the test condition for a length of time that confirms the utilization equipment can continuously operate. For test condition A, the UUT must remain at the test condition for a length of time that confirms the utilization equipment can continuously operate, and should be at an average steady state frequency of 400 Hz for at least thirty (30) minutes. For test condition B through E, the UUT must remain at the test condition for a length of time that confirms the utilization equipment can continuously operate and should be at least ten (10) minutes at an average steady state frequency of 400 Hz, at least ten (10) minutes at an average steady state frequency of 395 Hz, and at least ten (10) minutes at an average steady state frequency of 405 Hz. At each test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record voltages, average frequency, amplitude of frequency modulation, rate of change for frequency modulation, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table TAC105-III. Repeat for each mode of operation of the UUT.

5.3 <u>Compliance test for MIL-STD-704E & F</u>. For each test condition A through E noted in table TAC105-II, set the amplitude of frequency modulation and rate of change for frequency modulation. The UUT must remain at the test condition for a length of time that confirms the utilization equipment can continuously operate, and should be at least ten (10) minutes at an average steady state frequency of 400 Hz, at least ten (10) minutes at an average steady state frequency of 395 Hz, and at least ten (10) minutes at an average steady state frequency of 405 Hz. During the test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record voltages, average frequency, amplitude of frequency modulation, rate of change for frequency modulation, time duration at

test condition, and the performance of the UUT for each test condition in the data sheet shown in table TAC105-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test	Rate of change for	MIL-STD-704	MIL-STD-704	MIL-STD-704
Condition	frequency modulation	А	B, C, & D	E &F
		Amplitude of	Amplitude of	Amplitude of
		Frequency	Frequency	Frequency
		Modulation	Modulation	Modulation
А	1 Hz/sec	±4 Hz	± 5.00 Hz	4 Hz (± 2 Hz)
В	5 Hz/sec	±4 Hz	± 1.75 Hz	4 Hz (± 2 Hz)
C	10 Hz/sec	±4 Hz	± 1.20 Hz	4 Hz (± 2 Hz)
D	25 Hz/sec	±4 Hz	± 0.85 Hz	4 Hz (± 2 Hz)
E	100 Hz/sec	N/A	± 0.58 Hz	4 Hz (± 2 Hz)

TABLE TAC105-II. <u>Test conditions for frequency modulation</u>.

appropriate attenuation.

29

 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

Test			l	Parameters			Performance
Condition	Phase	Voltage	Average	Amplitude of	Rate of change	Time Duration	Pass/Fail
		-	Frequency	Frequency	for frequency	at Test	
			1 2	Modulation	modulation	Condition	
	Α	V _{rms}	Hz	± Hz	Hz/sec	min	
A-1	В	V _{rms}	·				
	С	V _{rms}					
	A	V _{rms}	Hz	± Hz	Hz/sec	min	
A-2	В	V _{rms}					
	С	V _{rms}					
	А	V _{rms}	Hz	± Hz	Hz/sec	min	
A-3	В	V _{rms}					
	С	V _{rms}					
	А	V _{rms}	Hz	± Hz	Hz/sec	min	
B-1	В	V _{rms}					
	С	V _{rms}					
	Α	V _{rms}	Hz	± Hz	Hz/sec	min	
B-2	В	V _{rms}					
	С	V _{rms}					
	A	V _{rms}	Hz	±Hz	Hz/sec	min	
B-3	В	V _{rms}	·			i	
	С	V _{rms}					

TABLE TAC105-III. Sample data sheet for TAC105 frequency modulation.

Test			I	Parameters			Performance
Condition	Phase	Voltage	Average	Amplitude of	Rate of change	Time Duration	Pass/Fail
		-	Frequency	Frequency	for frequency	at Test	
			1 2	Modulation	modulation	Condition	
	Α	V _{rms}	Hz	± Hz	Hz/sec	min	
C-1	В	V _{rms}					
	C	V _{rms}					
	A	V _{rms}	Hz	± Hz	Hz/sec	min	
C-2	В	V _{rms}					
	С	V _{rms}					
	A	V _{rms}	Hz	± Hz	Hz/sec	min	
C-3	В	V _{rms}					
	C	V _{rms}					
	A	V _{rms}	Hz	± Hz	Hz/sec	min	
D-1	В	V _{rms}					
	С	V _{rms}					
	A	V _{rms}	Hz	± Hz	Hz/sec	min	
D-2	В	V _{rms}					
	C	V _{rms}					
	A	V _{rms}	Hz	±Hz	Hz/sec	min	
D-3	В	V _{rms}				i	
	С	V _{rms}					

TABLE TAC105-III. Sample data sheet for TAC105 frequency modulation. - Continued

Test					I	Parameter	S					Performance
Condition	Phase	Vol	tage	Average Amplitude of I		Rate of change		Time D	Ouration	Pass/Fail		
			-		iency	Frequ	uency	for fre	quency	at 🛛	ſest	
					Modulation		modulation		Condition			
	А		V _{rms}		Hz		± Hz		Hz/sec		min	
E-1	В		V _{rms}									
	С		V _{rms}									
	А		V _{rms}		Hz		± Hz		Hz/sec		min	
E-2	В		V _{rms}									
	С		V _{rms}									
	А		V _{rms}		Hz		± Hz		Hz/sec		min	
E-3	В		V _{rms}									
	С		V _{rms}									

TABLE TAC105-III. Sample data sheet for TAC105 frequency modulation. - Continued

METHOD TAC106 Voltage Distortion Spectrum

POWER GROUP:

Three Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Normal

Voltage Distortion Spectrum

1. <u>Scope</u>.

PARAMETER:

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to voltage distortion of frequencies and amplitudes as specified by the voltage distortion spectrum in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to voltage distortions as specified by the voltage distortion spectrum in the applicable edition(s) of MIL-STD-704 and as noted in table TAC106-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when provided power having voltage distortion. The utilization equipment must not suffer damage or cause an unsafe condition.

Note: This test method subjects the UUT to voltage distortion having frequencies components from 50 Hz to 10 kHz. These voltage distortions simulate voltage distortions within aircraft due to the cumulative effects of generators, electrical distribution systems equipments, and aircraft loads. MIL-STD-461, (Requirements For The Control of Electromagnetic Interference Characteristics of Subsystems and Equipment), Test Method CS101, (Conducted Susceptibility, Power Leads, 30 Hz to 150 kHz) is a complimentary test. Power levels of the voltage distortions differ for the two test methods. Performance of Test Method TAC106 of this handbook does not relinquish the requirement to perform Test Method CS101 of MIL-STD-461, and performance of Method CS101 of MIL-STD-461 does not relinquish the requirement to perform Test Method CS101 of MIL-STD-461, and performance of TAC106 of this handbook.

TABLE TAC106-I. MIL-STD-704 limits for voltage distortion spectrum.

Limit	704A ^{1/}	704B	704C	704D	704E	704F
Voltage	Individual	Figure 2	Figure 3	Figure 3	Figure 3	Figure 7
Distortion	Harmonic	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-
Spectrum	< 5%	704B	704C	704D	704E	704F

 $\underline{1}$ / For utilization equipment being tested to MIL-STD-704 edition A, use MIL-STD-704B limits.

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. Variable frequency power source
- c. Coupling transformer
- d. True RMS voltmeter
- e. Frequency counter
- f. Spectrum analyzer
- g. (3) Inductors, 50 μ H
- h. (3) Capacitors, $10 \ \mu F$
- i. Resistor, calibrated load

4. <u>Test setup</u>. Configure the test setup as shown in figure TAC106-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

4.1 <u>Calibration (50 Hz to 10 kHz)</u>. Install a calibrated resistive load in the test setup shown in figure TAC106-1 in place of the UUT. The calibrated resistive load should be sized to draw the same current as the UUT. Turn on the adjustable AC power supply and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Set the variable frequency power source to output a sine wave and adjust the frequency and amplitude so that the voltage distortion measured at the input to the calibrated resistive load conforms to each test condition A through H in table TAC106-II. Record the settings of the variable frequency power source for each test condition.

5. <u>Compliance test</u>. With the adjustable AC power supply off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TAC106-1. Figure TAC106-1 shows the coupling transformer installed in phase A. The test will be repeated with the coupling transformer installed in Phase B and Phase C. Turn on the adjustable AC power supply and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

Set the variable frequency power source to the settings recorded for test condition A of the calibration procedure. For each test condition, remain for a length of time that confirms the utilization equipment can continuously operate with the voltage distortion and should be, not less than five (5) minutes. At each test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. After each test condition, monitor the voltage distortion frequency and amplitude while slowly increasing the variable frequency power source frequency and adjusting the amplitude until the next test condition is reached. Do not exceed the voltage distortion spectrum limits. Repeat for each test condition A through H noted in table TAC106-II. For each test condition, record the phase tested, voltage, frequency, frequency of voltage distortion, amplitude of voltage distortion, time duration at test

condition, and the performance of the UUT in the data sheet shown in table TAC106-III. Repeat for each mode of operation of the UUT. Turn the adjustable AC power supply off, install the coupling transformer in phase B, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and the frequency to the nominal steady state frequency of 400 Hz and repeat the testing for phase B. Turn the adjustable AC power supply off, install the coupling transformer in phase C, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and the frequency to the nominal steady state voltage of 115 Vrms (line-to-neutral) and the frequency to the nominal steady state voltage of 115 Vrms (line-to-neutral) and the frequency to the nominal steady state voltage of 115 Vrms (line-to-neutral) and the frequency to the nominal steady state frequency of 400 Hz and repeat the testing for Phase C.

After all test conditions are complete for Phase A, Phase B, and Phase C, turn the adjustable AC power supply off and remove the coupling transformer from the circuit. Turn on the adjustable AC power supply. Adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Frequency of Voltage	MIL-STD-704B
	Distortion	C, D, E & $F^{1/2}$
		Amplitude of Voltage Distortion
		Voltage rms
А	50 Hz	0.316 Vrms
В	100 Hz	0.316 Vrms
С	500 Hz	1.580 Vrms
D	1 kHz	3.160 Vrms
E	2 kHz	3.160 Vrms
F	3 kHz	3.160 Vrms
G	5 kHz	1.900 Vrms
Н	10 kHz	0.950 Vrms

TABLE TAC106-II. Test conditions for voltage distortion spectrum.

 $\underline{1}$ / For utilization equipment being tested to MIL-STD-704 edition A, use MIL-STD-704B limits.

- 2. For 3 phase 4 wire equipment, neutral connection to also be made within 10 cm of UUT input power terminals. For 3 phase 3 wire equipment, line-to-neutral measurements to be made with neutral connection made to power supply neutral.
- 3. CAUTION: Verify suitability of power supply NEUTRAL and GROUND connections.

36

- 4. CAUTION: Verify suitability of instrumentation inputs and/or use appropriate attenuation.
- 5. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)
- 6. CAUTION: Verify suitability of variable frequency power source and coupling transformer for distortion spectrum testing.
- 7. Coupling Transformer shown is connected in series on Phase A. Testing is repeated with Coupling Transformer connected in series on Phase B and Phase C.

FIGURE TAC106-1. Normal operation - voltage distortion spectrum (50 Hz to 10 kHz).

Stimulation & Monitoring

Equipment

(See Note 5)

Test			I	Parameter			Performance
Condition	Phase	Voltage	Frequency	Frequency of	Amplitude of	Time Duration	Pass/Fail
		_		Voltage	Voltage	at Test	
				Distortion	Distortion	Condition	
	Α						
А		V _{rms}	Hz	Hz	V _{rms}	min	
В		V _{rms}	Hz	Hz	V _{rms}	min	
С		V _{rms}	Hz	Hz	V _{rms}	min	
D		V _{rms}	Hz	kHz	V _{rms}	min	
Е		V _{rms}	Hz	kHz	V _{rms}	min	
F		V _{rms}	Hz	kHz	V _{rms}	min	
G		V _{rms}	Hz	kHz	V _{rms}	min	
Н		V _{rms}	Hz	kHz	V _{rms}	min	
	В						
А		V _{rms}	Hz	Hz	V _{rms}	min	
В		V _{rms}	Hz	Hz	V _{rms}	min	
С		V _{rms}	Hz	Hz	V _{rms}	min	
D		V _{rms}	Hz	kHz	V _{rms}	min	
E		V _{rms}	Hz	kHz	V _{rms}	min	
F		V _{rms}	Hz	kHz	V _{rms}	min	
G		V _{rms}	Hz	kHz	V _{rms}	min	
Н		V _{rms}	Hz	kHz	V _{rms}	min	

TABLE TAC106-III. Sample data sheet for TAC106 voltage distortion spectrum.

1							
Test]	Parameter			Performance
Condition	Phase	Voltage	Frequency	Frequency of	Amplitude of	Time Duration	Pass/Fail
		-		Voltage	Voltage	at Test	
				Distortion	Distortion	Condition	
	С						
А		V _{rms}	Hz	Hz	V _{rms}	min	
В		V _{rms}	Hz	Hz	V _{rms}	min	
С		V _{rms}	Hz	Hz	V _{rms}	min	
D		V _{rms}	Hz	kHz	V _{rms}	min	
Е		V _{rms}	Hz	kHz	V _{rms}	min	
F		V _{rms}	Hz	kHz	V _{rms}	min	
G		V _{rms}	Hz	kHz	V _{rms}	min	
Н		V _{rms}	Hz	kHz	V _{rms}	min	

TABLE TAC106-III. Sample data sheet for TAC106 voltage distortion spectrum. - Continued

METHOD TAC107 Total Voltage Distortion

POWER GROUP:

Three Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Normal

Total Voltage Distortion

1. <u>Scope</u>.

PARAMETER:

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to voltage waveforms having a distortion factor as specified by the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to voltage waveforms having a distortion factor as specified by the applicable edition(s) of MIL-STD-704 and as noted in table TAC107-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when subjected to distorted voltage waveforms and should be, not less than thirty (30) minutes. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE TAC107-I. MIL-STD-704 limits for total voltage distortion.

Limit	704A	704B	704C	704D	704E	704F
Voltage Distortion Factor	0.08	0.05	0.05	0.05	0.05	0.05

3. Apparatus. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Spectrum analyzer
- e. Distortion meter

4. <u>Test setup</u>. Configure the test setup as shown in figure TAC107-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

4.1 <u>Calibration</u>. Install a resistive load in the test setup shown in figure TAC107-1 in place of the UUT. The resistive load should be sized to draw the same current as the UUT. Set

the programmable power supply to produce a voltage waveform having harmonic contents listed in table TAC107-I. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Confirm that the programmable power supply is producing a voltage waveform having harmonic content listed in table TAC107-II. Record the settings of the programmable power supply.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TAC107-1. Set the programmable power supply to the settings recorded during the calibration procedure. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. The UUT must remain for a length of time that confirms the utilization equipment can continuously operate with the total voltage distortion and should be, not less than thirty (30) minutes. Conduct a performance test or verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the voltage, frequency, voltage distortion factor, voltage harmonics, time duration at test condition, and the performance of the UUT in the data sheet shown in table TAC107-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, set the programmable power supply to produce sine waves for each of the three phases. Adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Harmonic	MIL-STD-704A	MIL-STD-704B, C, D, E,
	Percent of	& F
	Fundamental	Percent of
		Fundamental
Fundamental	100%	100%
2nd	0%	0%
3rd	5.00%	2.75%
4th	0%	0%
5th	4.12%	2.75%
6th	0%	0%
7th	2.94%	1.97%
8th	0%	0%
9th	2.29%	1.53%
10th	0%	0%
11th	1.87%	1.25%
12th	0%	0%
13th	1.58%	1.06%
14th	0%	0%
15th	1.37%	0.92%

TABLE TAC107-II. Voltage harmonics as percent of fundamental for total voltage distortion test.

inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

42

FIGURE TAC107-1. Total voltage distortion.

					Paran	neter	s						Perfor	mance
Phase	V	oltag	ge	Fr	equency	y	V	Volta	age		Time D	uration	Pass	s/Fail
							D	istor	stortion		at Test			
								Fact	or		Conc	lition		
Α			V _{rms}		Н	z			No un	its		min		
В			V _{rms}						No un	its				
С			V _{rms}						No un	its				_
_														_
	Volta	ge H	Iarmon	nics	Volt	age l	Harm	onics	s		Voltage	e Harmo	nics	
_		Phas	se A		Ph						P	hase C		_
_	Fund			%	Fund			%	6	Fu	nd		%	_
_	2^{nd}			%	2 nd			%	6	2 ¹	nd		%	_
_	3^{rd}			%	3 rd			%	6	3	rd		%	_
	4^{th}			%	4^{th}			%	6	4	th		%	
	5^{th}			%	5 th			%	6	5	th		%	
	6^{th}			%	6 th			%	6	6	th		%	
	7^{th}			%	7 th			%	6	7	th		%	
	8^{th}			%	8 th			%	6	8	th		%	
	9^{th}			%	9^{th}			%	6	9	th		%	
	10^{th}			%	10^{th}			%	6	1() th		%	
	11 th			%	11^{th}			%	6	11	th		%	
	12^{th}			%	12^{th}			%	6	12	2 th		%	
	13 th			%	13 th			%	6	13	3 th		%	
	14^{th}			%	14 th			%	6	14	1 th		%	
	15^{th}			%	15^{th}			%	6	15	5 th		%	

TABLE TAC107-III. Sample data sheet for TAC107 total voltage distortion.

METHOD TAC108 DC Voltage Component

POWER GROUP:

Three Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: N

Normal

PARAMETER: DC Voltage Component

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to a direct current component of AC voltage as specified by the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to a direct current component of AC voltage as specified by the applicable edition(s) of MIL-STD-704 and as noted in table TAC108-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when subjected to a direct current component of AC voltage and should be not less than thirty (30) minutes. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE TAC108-I. MIL-STD-704 limits for direct current component of AC voltage.

Limit	704A	704B	704C	704D	704E	704F
DC Voltage Component of the AC Voltage	± 0.10 V					

- 3. <u>Apparatus</u>. The test equipment should be as follows:
 - a. Programmable AC power supply
 - b. True RMS voltmeter (with capability to measure DC component of AC waveform)
 - c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure TAC108-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TAC108-1. Set the programmable power supply to produce voltage waveforms having a DC component on each of the three phases for

test condition A as noted in table TAC108-II. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. The UUT must remain for a length of time that confirms the utilization equipment can continuously operate with the direct current component of the AC voltage and should be, not less than thirty (30) minutes. Repeat the test for test condition B as noted in table TAC108-II. Record the voltages, frequency, DC voltage component, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table TAC108-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, set the programmable power supply to produce voltage sine waves without a DC component. Adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

TABLE TAC108-II.	Test conditions for	direct current con	nponent of AC y	oltage.
			· •	

Test Condition	MIL-STD-704A, B
	C, D, E & F
	Direct Current Component
	of AC Voltage
А	+ 0.10 V
В	– 0.10 V

5. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

46

FIGURE TAC108-1. DC voltage component.

Test				Р	arameter	S				Performance
Condition	Phase	Voltage		Frequency		DC Voltage		Time Duration		Pass/Fail
						Component		at Test		
								Condition		
	Α		V _{rms}		Hz		V _{dc}		min	
А	В		V _{rms}				V _{dc}			
	С		V _{rms}				V _{dc}			
	Α		V _{rms}		Hz		V _{dc}		min	
В	В		V _{rms}				V _{dc}			
	C		V _{rms}				V _{dc}			

TABLE TAC108-III. Sample data sheet for TAC108 DC voltage component.

METHOD TAC109 Normal Voltage Transients

POWER GROUP: Three Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: N

Normal

PARAMETER: Normal Voltage Transients

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to normal voltage transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to voltage transients within the normal limits of the applicable edition(s) of MIL-STD-704 and as noted in table TAC109-I. The utilization equipment must maintain specified performance during and after the voltage transients. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE TAC109-I. MIL-STD-704 limits for normal voltage transients.

Limit	704A	704B	704C	704D	704E	704F
Normal	Figure 3	Figure 4	Figure 5	Figure 5	Figure 4	Figure 3
Voltage	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-
Transients	704A	704B	704C	704D	704E	704F
	Locus of					
	Equivalent					
	Step					
	Function					
	Curves 2					
	and 3					

3. <u>Apparatus</u>: The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure TAC109-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TAC109-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

5.1 Compliance test for MIL-STD-704A. The UUT must be subjected to the voltage transients for each test condition A through O noted in table TAC109-II. The voltage must increase or decrease from steady state voltage to the voltage transient level within $\frac{1}{2}$ cycle (1.25 milliseconds). The voltage must remain at the voltage transient level for the duration noted in table TAC109-II. The voltage must return to steady state over the time duration noted in table TAC109-II. For test condition G, three over-voltage transients of 160 Vrms for 25 milliseconds are performed, separated by 0.5 seconds. For test condition N, three under-voltage transients of 58 Vrms for 25 milliseconds are performed, separated by 0.5 seconds. For test condition O, an under-voltage transient of 58 Vrms for 25 milliseconds is immediately followed by an overvoltage transient of 160 Vrms for 25 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal steady state limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltages, steady state frequency, voltage transient level, time duration at voltage transient, oscilloscope trace, and the performance of the UUT for each test condition in the data sheet shown in table TAC109-IV. Repeat for each mode of operation of the UUT. In addition, for MIL-STD-704A test compliance perform the repetitive normal voltage transient test described later.

5.2 Compliance test for MIL-STD-704B, C, D, E, & F. The UUT must be subjected to the voltage transients for each test condition AA through MM noted in table TAC109-III. The voltage must increase or decrease from steady state voltage to the voltage transient level within $\frac{1}{2}$ cycle (1.25 milliseconds). The voltage must remain at the voltage transient level for the duration noted in table TAC109-III. The voltage must return to steady state over the time duration noted in table TAC109-III. For test condition GG, three overvoltage transients of 180 Vrms for 10 milliseconds are performed, separated by 0.5 seconds. For test condition LL, three undervoltage transients of 80 Vrms for 10 milliseconds are performed, separated by 0.5 seconds. For test condition MM, an undervoltage transient of 80 Vrms for 10 milliseconds is immediately followed by an overvoltage transient of 180 Vrms for 10 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal steady state limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft

electrical conditions. Record the steady state voltages, steady state frequency, voltage transient level, time duration at voltage transient, oscilloscope trace, and the performance of the UUT for each test condition in the data sheet shown in table TAC109-V. Repeat for each mode of operation of the UUT. In addition, for MIL-STD-704B, C, D, E, & F test compliance perform the repetitive normal voltage transient test as described in 5.3.

5.3 <u>Repetitive normal voltage transients test</u>. Program the power supply to provide a continually repeating voltage transient that decreases from 115 Vrms to 90 Vrms in 2.5 msec, then increases to 140 Vrms over 50 msec, then decreases to 115 Vrms over 5.0 msec. The voltage transient is repeated every 0.5 seconds, see figure TAC109-2. The UUT must be subjected to the repetitive voltage transient for a length of time that confirms the utilization equipment can continuously operate and should be not less than thirty (30) minutes. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltages, steady state frequency, high voltage transient level, low voltage transient level, oscilloscope trace, time duration at test condition, and the performance of the UUT in the data sheet shown in table TAC109-IV or table TAC109-V. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Time From	Voltage	Duration at	Time From
	Steady State	Transient Level	Voltage	Voltage
	Voltage to	Vrms	Transient Level	Transient Level
	Voltage		milliseconds	to Steady State
	Transient Level			Voltage
	milliseconds			milliseconds
Overvoltage Transients				
А	< 1.25 msec	135 Vrms	210 msec	< 1.25 msec
В	< 1.25 msec	135 Vrms	145 msec	130 msec
С	< 1.25 msec	145 Vrms	130 msec	< 1.25 msec
D	< 1.25 msec	145 Vrms	90 msec	80 msec
Е	< 1.25 msec	160 Vrms	48 msec	< 1.25 msec
F	< 1.25 msec	160 Vrms	30 msec	40 msec
G	< 1.25 msec	160 Vrms	25 msec	< 1.25 msec
0		(3 times)	every 0.5 sec	
Undervoltage Transients				
Н	< 1.25 msec	90 Vrms	300 msec	< 1.25 msec
Ι	< 1.25 msec	90 Vrms	210 msec	180 msec
J	< 1.25 msec	70 Vrms	140 msec	< 1.25 msec
K	< 1.25 msec	70 Vrms	95 msec	85 msec
L	< 1.25 msec	58 Vrms	48 msec	< 1.25 msec
М	< 1.25 msec	58 Vrms	30 msec	40 msec
N	< 1.25 msec	58 Vrms	25 msec	< 1.25 msec
1		(3 times)	every 0.5 sec	
Combined Transient				
0	< 1.25 msec	58 Vrms	25 msec	< 1.25 msec
U	then < 1.25 msec	160 Vrms	25 msec	50 msec

TABLE TAC109-II. Test conditions for MIL-STD-704A normal voltage transients.

TABLE TAC109-III. Test conditions for MIL-STD-704B, C, D, E, and F normal voltage transients.

Test Condition	Time From Steady State Voltage to Voltage Transient Level milliseconds	Voltage Transient Level Vrms	Duration at Voltage Transient Level milliseconds	Time From Voltage Transient Level to Steady State Voltage milliseconds
Overvoltage Transients	minisceonas			minisceonas
AA	< 1.25 msec	140 Vrms	60 msec	< 1.25 msec
BB	< 1.25 msec	140 Vrms	60 msec	25 msec
CC	< 1.25 msec	160 Vrms	34 msec	< 1.25 msec
DD	< 1.25 msec	160 Vrms	34 msec	52 msec
EE	< 1.25 msec	180 Vrms	10 msec	< 1.25 msec
FF	< 1.25 msec	180 Vrms	10 msec	77 msec
GG	< 1.25 msec	180 Vrms (3 times)	10 msec every 0.5 sec	< 1.25 msec
Undervoltage Transients				
НН	< 1.25 msec	90 Vrms	35 msec	< 1.25 msec
II	< 1.25 msec	90 Vrms	35 msec	45 msec
JJ	< 1.25 msec	80 Vrms	10 msec	< 1.25 msec
KK	< 1.25 msec	80 Vrms	10 msec	70 msec
LL	< 1.25 msec	80 Vrms (3 times)	10 msec every 0.5 sec	< 1.25 msec
Combined Transient				
MM	< 1.25 msec then < 1.25 msec	80 Vrms 180 Vrms	10 msec 10 msec	< 1.25 msec 77 msec

 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

53

FIGURE TAC109-1. Normal voltage transients.

FIGURE TAC109-2. Repetitive normal voltage transients.

Test				Parameters			Performance
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscilloscope Trace	Pass/Fail
		Voltage	Frequency	Transient	Voltage	_	
					Transient		
					Level		
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V_{rms} vs. Time	
А	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
В	В	V _{rms}		V _{rms}	msec		
	C	V _{rms}		V _{rms}	msec		
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V_{rms} vs. Time	
С	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
D	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
E	В	V _{rms}		V _{rms}	msec		
	C	V _{rms}		V _{rms}	msec		
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
F	В	V _{rms}		V _{rms}	msec		
	C	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V_{rms} vs. Time	
G	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		

TABLE TAC109-IV. Sample data sheet for TAC109 normal voltage transients for MIL-STD-704A.

Test				Parameters			Performance
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscilloscope Trace	e Pass/Fail
		Voltage	Frequency	Transient	Voltage		
					Transient		
					Level		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Ti	me
Н	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Ti	me
Ι	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Ti	me
J	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Ti	me
K	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Ti	me
L	В	V _{rms}		V _{rms}	msec		
	C	V _{rms}		V _{rms}	msec		
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Ti	me
М	В	V _{rms}		V _{rms}	msec		
	C	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Ti	me
N	В	V _{rms}		V _{rms}	msec		
	C	V _{rms}		V _{rms}	msec		

TABLE TAC109-IV. Sample data sheet for TAC109 normal voltage transients for MIL-STD-704A. - Continued

Test				Parameters				Performance
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscilloscope Trace		Pass/Fail
		Voltage	Frequency	Transient	Voltage	-		
					Transient			
					Level			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
	В	V _{rms}		V _{rms}	msec			
0	С	V _{rms}		V _{rms}	msec			
	Α			V _{rms}	msec			
	В			V _{rms}	msec			
	С			V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
	В	V _{rms}		V _{rms}	msec			
Popotitivo	С	V _{rms}		V _{rms}	msec			
Transient	Α			V _{rms}	msec			
	В			V _{rms}	msec			
	C			V _{rms}	msec			
				Time duration	at test condition		min	

57

TABLE TAC109-IV. Sample data sheet for TAC109 normal voltage transients for MIL-STD-704A. - Continued

Test	Parameters							
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscilloscope Trace	Pass/Fail	
		Voltage	Frequency	Transient	Voltage	_		
					Transient			
					Level			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	_	
AA	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	-	
BB	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	_	
CC	В	V _{rms}		V _{rms}	msec			
	C	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	_	
DD	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	-	
EE	В	V _{rms}		V _{rms}	msec			
	C	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	-	
FF	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time		
GG	В	V _{rms}		V _{rms}	msec	1		
	C	V _{rms}		V _{rms}	msec			

TABLE TAC109-V. Sample data sheet for TAC109 normal voltage transients for MIL-STD-704B, C, D, E, & F.

Test	Parameters							
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscilloscope Trace	Pass/Fail	
		Voltage	Frequency	Transient	Voltage			
					Transient			
					Level			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V_{rms} vs. Tim	e	
HH	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Tim	e	
II	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V_{rms} vs. Tim	e	
JJ	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
KK	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V_{rms} vs. Tim	e	
	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V_{rms} vs. Tim	e	
LL	В	V _{rms}		V _{rms}	msec			
	C	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V_{rms} vs. Tim	e	
	В	V _{rms}		V _{rms}	msec			
MM	С	V _{rms}		V _{rms}	msec			
	A			V _{rms}	msec			
	В			V _{rms}	msec			
	C			V _{rms}	msec			

TABLE TAC109-V. Sample data sheet for TAC109 normal voltage transients for MIL-STD-704B, C, D, E, & F. - Continued
Test		Parameters										Performance
Condition	Phase	Steady Volt	/ State tage	Steady Frequ	Steady StateVoltageFrequencyTransient		Time at Voltage Transient Level		Oscillo	scope Trace	Pass/Fail	
	А		V _{rms}		Hz		V _{rms}		msec	Attach Trace	V _{rms} vs. Time	
Repetitive Transient	В		V _{rms}				V _{rms}		msec			
	С		V _{rms}				V _{rms}		msec			
	Α						V _{rms}		msec			
	В						V _{rms}		msec			
	С						V _{rms}		msec			
	Time duration at test condition min						min					

TABLE TAC109-V. Sample data sheet for TAC109 normal voltage transients for MIL-STD-704B, C, D, E, & F. - Continued

METHOD TAC110 Normal Frequency Transients

POWER GROUP: Three Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: No

Normal

PARAMETER: Normal Frequency Transients

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to normal frequency transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to frequency transients within the normal limits of the applicable edition(s) of MIL-STD-704 and as noted in table TAC110-I. The utilization equipment must maintain specified performance during and after the frequency transients. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE TAC110-I. MIL-STD-704 limits for normal frequency transients.

Limit	704A	704B	704C	704D	704E	704F
Normal	Figure 5	¶ 5.1.3	Figure 6	Figure 6	Figure 5	Figure 5
Frequency	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-
Transients	704A	704B	704C	704D	704E	704F
	Locus of					
	Equivalent					
	Step					
	Function					
	Curves 2					
	and 3					
Normal	250 Hz/sec	N/A	N/A	N/A	N/A	N/A
Maximum						
Rate of						
Change of						
Frequency						

3. <u>Apparatus</u>. The test equipment should be as follows:

a. Programmable AC power supply

- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure TAC110-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TAC110-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

5.1 <u>Compliance test for MIL-STD-704A</u>. The UUT must be subjected to the frequency transients for each test condition A through I noted in table TAC110-II. The frequency must increase or decrease from steady state frequency to the frequency transient level over the duration noted; the frequency must remain at the frequency transient level for the duration noted; and the frequency must return from the frequency transient level over the duration noted. For test condition I, an underfrequency transient of 350 Hz is immediately followed by an overfrequency transient of 450 Hz. For each test condition, monitoring the performance of the UUT during the frequency transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal steady state limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltages, steady state frequency, frequency transient level, time at frequency transient, oscilloscope trace (Hz vs. time), and the performance of the UUT for each test condition in the data sheet shown in table TAC110-IV. Repeat for each mode of operation of the UUT.

5.2 Compliance test for MIL-STD-704B, C, D, E, & F. The UUT must be subjected to the frequency transients for each test condition AA through II noted in table TAC110-III. The frequency must increase or decrease from steady state frequency to the frequency transient level over the duration noted; the frequency must remain at the frequency transient level for the duration noted; and the frequency must return from the frequency transient level over the duration noted. For test condition II, an underfrequency transient of 375 Hz is immediately followed by an overfrequency transient of 425 Hz. For each test condition, monitoring the performance of the UUT during the frequency transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal steady state limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltages, steady state frequency, frequency transient level, time at frequency transient, oscilloscope trace (Hz vs. time), and the performance of the UUT for each test condition in the data sheet shown in table TAC110-V. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

|--|

Test Condition	Time From Steady State Frequency to Frequency Transient Level milliseconds	Frequency Transient Level Hz	Duration at Frequency Transient Level	Time From Frequency Transient Level to Steady State Frequency
Overfrequency Transients				
Â	120 msec	430 Hz	¹ / ₂ cycle	120 msec
В	300 msec	430 Hz	¹ / ₂ cycle	1.2 seconds
C	200 msec	450 Hz	¹ / ₂ cycle	200 msec
D	250 msec	450 Hz	¹ / ₂ cycle	3 seconds
Underfrequency Transients				
Е	120 msec	370 Hz	¹ / ₂ cycle	120 msec
F	300 msec	370 Hz	¹ / ₂ cycle	1.2 seconds
G	200 msec	350 Hz	¹ / ₂ cycle	200 msec
Н	250 msec	350 Hz	¹ / ₂ cycle	3 seconds
Combined Transient				
Ι	200 msec then 200 msec	350 Hz 450 Hz	¹ / ₂ cycle ¹ / ₂ cycle	200 msec 200 msec

TABLE TAC110-III. Test conditions for MIL-STD-704B, C, D, E, and F normal frequency transients.

r	1	1		1
Test Condition	Time From	Frequency	Duration at	Time From
	Steady State	Transient Level	Frequency	Frequency
	Frequency to	Hz	Transient Level	Transient Level
	Frequency			to Steady State
	Transient Level			Frequency
	milliseconds			milliseconds
Quarfraguanau Transianta	mmseconds			minisceonds
Overfrequency Transferits				
AA	40 msec	410 Hz	10 seconds	40 msec
BB	80 msec	420 Hz	5 seconds	80 msec
CC	100 msec	425 Hz	1 seconds	100 msec
	100 msec	425 Hz	1 seconds	10 msec
DD	then 10 msec	420 Hz	4 seconds	20 msec
	then 20 msec	410 Hz	5 seconds	40 msec
Underfrequency Transients				
EE	40 msec	390 Hz	10 seconds	40 msec
FF	80 msec	380 Hz	5 seconds	80 msec
GG	100 msec	375 Hz	1 seconds	100 msec
	100 msec	375 Hz	1 seconds	10 msec
HH	then 10 msec	380 Hz	4 seconds	20 msec
	then 20 msec	390 Hz	5 seconds	40 msec
Combined Transient				
п	100 msec	375 Hz	1 seconds	100 msec
11	then 100 msec	425 Hz	1 seconds	100 msec

5. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

65

FIGURE TAC110-1. Normal frequency transients.

Test				Parameters				Performance
Condition	Phase	Steady State	Steady State	ady State Frequency		Time at Oscilloscope Trace		Pass/Fail
		Voltage	Frequency	Transient	Frequency Transient Level		-	
	А	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs. Time	
А	В	V _{rms}						
	С	V _{rms}						
	Α	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs. Time	
В	В	V _{rms}						
	С	V _{rms}						
	Α	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs. Time	
С	В	V _{rms}						
	С	V _{rms}						
	Α	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs. Time	
D	В	V _{rms}						
	С	V _{rms}			I			
_	A	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs. Time	
E	В	V _{rms}						
	C	V _{rms}						
_	A	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs. Time	
F	В	V _{rms}						
L	C	V _{rms}						
	A	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs. Time	
G	В	V _{rms}						
	C	V _{rms}						

TABLE TAC110-IV. Sample data sheet for TAC110 normal frequency transients for MIL-STD-704A.

Test						Darar	neters					Performance
1050						1 ai ai	licicis					1 ci iomanec
Condition	Phase	Steady	State	Steady State		Frequ	iency	Tim	ne at	Oscilloscope Trace		Pass/Fail
		Volta	age	Frequ	iencv	Tran	sient	Frequ	iencv		-	
			-8-	11040	, en e	Transferre		Transient				
							11411	SICIII				
								Le	vel			
	Α		V _{rms}		Hz		Hz		msec	Attach Trace	Hz vs. Time	
Н	В		V _{rms}									
	С		V _{rms}									
	Α		V _{rms}		Hz		Hz		msec	Attach Trace	Hz vs. Time	
	В		V _{rms}									
I	C		V _{rms}									
							Hz		msec			

TABLE TAC110-IV. Sample data sheet for TAC110 normal frequency transients for MIL-STD-704A. - Continued

Test				Parameters				Performance
Condition	Phase	Voltage	Frequency	Frequency Transient	Time at Frequency Transient Level	Oscillos	cope Trace	Pass/Fail
	Α	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs. Time	
AA	В	V _{rms}						
	С	V _{rms}			Γ			
	A	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs. Time	
BB	В	V _{rms}						
	C	V _{rms}		I				
~~~	A	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs. Time	
CC	В	V _{rms}						
	С	V _{rms}						
	A	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs. Time	
DD	В	V _{rms}						
	С	V _{rms}						
	A	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs. Time	
EE	В	V _{rms}						
	С	V _{rms}			Γ			
	A	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs. Time	
FF	В	V _{rms}						
	С	V _{rms}			1			
	A	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs. Time	
GG	В	V _{rms}						
	C	$V_{rms}$						

TABLE TAC110-V. Sample data sheet for TAC110 normal frequency transients for MIL-STD-704B, C, D, E, & F.

	-											
Test						Parar	neters					Performance
Condition	Phase	Voltage	e	Frequency		Frequency		Time at		Oscilloscope Trace		Pass/Fail
		U		<u>1</u> ->J		Tran	sient	Freau	lencv		1	
								Tran	sient			
								Le	vel			
	Α	I	V _{rms}		Hz		Hz		sec	Attach Trace	Hz vs. Time	
HH	В	V	V _{rms}									
	С	V	V _{rms}									
	Α	V	V _{rms}		Hz		Hz		sec	Attach Trace	Hz vs. Time	
	В	V	V _{rms}									
II	С	V	V _{rms}									
							Hz		sec			

TABLE TAC110-V. Sample data sheet for TAC110 normal frequency transients for MIL-STD-704B, C, D, E, & F. - Continued

#### **METHOD TAC201 Power Interrupt**

POWER GROUP:

Three Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL **OPERATING CONDITION:** 

**Transfer Interrupt** 

**PARAMETER:** 

Power Interrupt

1. Scope.

1.1 Purpose. This test procedure is used to verify that three phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to power interrupts as specified in the applicable edition(s) of MIL-STD-704.

2. Validation criteria. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for transfer aircraft electrical conditions when subjected to power interrupts as specified by the applicable edition(s) of MIL-STD-704 and as noted in table TAC201-I. The utilization equipment must maintain the specified performance during power interrupts. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE TAC201-I.	MIL-STD-704	power transfer	limits.

Limit	704A	704B	704C	704D	704E	704F
Power	50 msec					
Interrupt						
Voltage	108 V					
NLSS						
Voltage	118 V					
NHSS						

3. Apparatus. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope
- e. Resistive dummy load

4. Test setup. Configure the test setup as shown in figure TAC201-1. The dummy resistive load placed in parallel to the UUT should be sized to draw three times the steady state current of the UUT up to a maximum of 25 kW dummy load. Note: This is done to ensure that the UUT test

does not lose stored energy to other aircraft loads during power interrupts. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TAC201-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through K noted in table TAC201-II, adjust the voltage to the steady state voltage listed. Perform a power interrupt (0 V) of the duration listed. The voltage must decrease from the steady state voltage to 0 Volts within ½ cycle (1.25 milliseconds), remain at 0 Volts for the duration listed for the test condition, and return from 0 Volts to the steady state voltage within ¹/₂ cycle (1.25 milliseconds). For test condition J, three 50 millisecond power interrupts are performed, separated by 0.5 seconds. For test condition K a normal overvoltage transient follows the power interrupt. The normal voltage transient is 160 Vrms for 30 milliseconds and returns to nominal voltage over the next 40 milliseconds. For test condition L a normal undervoltage transient follows the power interrupt. The normal voltage transient is 70 Vrms for 30 milliseconds and returns to nominal voltage over the next 40 milliseconds. For each test condition, monitor the performance of the UUT according to the utilization equipment performance test procedures for power transfer operation to verify that the UUT is providing specified performance for transfer aircraft electrical conditions. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing the performance specified for normal aircraft electrical conditions (if the UUT is allowed degraded performance during power interrupts, verify the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage). Record the steady state voltages, steady state frequency, time duration of power interrupts, and the performance of the UUT for each test condition in the data sheet shown in table TAC201-II. Repeat each test condition 5 times. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Steady State Voltage	Duration of Interrupt
А	Nominal Voltage	50 msec
В	NLSS Voltage	50 msec
С	NHSS Voltage	50 msec
D	Nominal Voltage	30 msec
Е	NLSS Voltage	30 msec
F	NHSS Voltage	30 msec
G	Nominal Voltage	10 msec
Н	NLSS Voltage	10 msec
Ι	NHSS Voltage	10 msec
J	Nominal Voltage	50 msec (repeated 3 times, separated by 0.5 sec )
К	Nominal Voltage	50 msec (followed by a normal voltage transient of 160 Vrms for 30 msec and return to steady state voltage in 40 msec)
L	Nominal Voltage	50 msec (followed by a normal voltage transient of 70 Vrms for 30 msec and return to steady state voltage in 40 msec)

## TABLE TAC201-II. Test conditions for transfer interrupt.



5. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

73

FIGURE TAC201-1. Power interrupt.

Test			Param	neter		Performance
Condition	Phase	Voltage	Fr	requency	Time Duration	Pass/Fail
					of Power	
					Interrupt	
	A	Vn	ns	Hz	msec	
A	В	Vn	ns		msec	
	C	Vn	ns		msec	
	A	Vn	ns	Hz	msec	
В	В	Vn	ns		msec	
	C	Vn	ns		msec	
	A	Vn	ns	Hz	msec	
С	В	Vn	ns		msec	
	С	Vn	ns		msec	
	Α	Vn	ns	Hz	msec	
D	В	Vn	ns		msec	
	С	Vn	ns		msec	
	A	Vn	ns	Hz	msec	
E	В	Vn	ns		msec	
	C	Vn	ns		msec	
	Α	Vn	ns	Hz	msec	
F	В	Vn	ns		msec	
	C	Vn	ns		msec	
	A	Vn	ns	Hz	msec	
G	В	Vn	ns		msec	
	C	Vn	ns		msec	

TABLE TAC201-III. Sample data sheet for TAC201 power interrupt.

Test				Paramete	r		Performance
Condition	Phase	Vol	tage	Frequ	iency	Time Duration	n Pass/Fail
						of Power	
						Interrupt	
	A		V _{rms}		Hz	msec	;
Н	В		V _{rms}			msec	;
	С		V _{rms}			msec	;
	Α		V _{rms}		Hz	msec	;
Ι	В		V _{rms}			msec	;
	С		V _{rms}			msec	;
	A		V _{rms}		Hz	msec	;
J	В		V _{rms}			msec	;
	С		V _{rms}			msec	;
	Α		V _{rms}		Hz	msec	;
	В		V _{rms}			msec	;
	С		V _{rms}			msec	;
K	Volt	age Tran	sient			Time at Voltag	e
K		Level				Transient Leve	el
	A		V _{rms}			msec	;
	В		V _{rms}			msec	;
	С		V _{rms}			msec	;

 TABLE TAC201-III.
 Sample data sheet for TAC201 power interrupt.
 - Continued

Test	Parameter						Performance	
Condition	Phase	Vol	tage	Frequ	iency	Time Duration		Pass/Fail
						of Power		
						Inte	rrupt	
	A		V _{rms}		Hz		msec	
	В		V _{rms}				msec	
	С		V _{rms}				msec	
т	Volt	age Tran	sient			Time at	Voltage	
L		Level				Transie	nt Level	
	Α		V _{rms}				msec	
	В		V _{rms}				msec	
	С		V _{rms}				msec	

 TABLE TAC201-III.
 Sample data sheet for TAC201 power interrupt. – Continued

#### METHOD TAC301 Abnormal Steady State Limits for Voltage and Frequency

POWER GROUP:	Three Phase, 400 Hz, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Abnormal
PARAMETER:	Abnormal Steady State Limits for Voltage and Frequency
1. Scope.	

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when provided power with voltage and frequency at the Abnormal Low Steady State (ALSS) limits and the Abnormal High Steady State (AHSS) limits as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for abnormal aircraft electrical conditions when supplied input power of voltage and frequency at the specified abnormal steady state limits of the applicable edition(s) of MIL-STD-704 and as noted in table TAC301-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the abnormal steady state voltage and frequency limits and should be not less than thirty (30) minutes for each of the test conditions. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must demonstrate re-start at the abnormal steady state voltage and frequency limits. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

Abnormal	704A	704B	704C	704D	704E	704F
LIIIII						
Voltage ALSS	102 V	100 V				
Voltage AHSS	124 V	125 V				
Frequency ALSS	370 Hz	375 Hz	380 Hz	375 Hz	380 Hz	380 Hz
Frequency AHSS	430 Hz	425 Hz	420 Hz	425 Hz	420 Hz	420 Hz

TABLE TAC301-I. MIL-STD-704 abnormal limits for steady state voltage and frequency.

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. True RMS voltmeter
- c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure TAC301-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TAC301-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through H noted in table TAC301-II, the UUT must remain for a length of time that confirms the utilization equipment can perform as specified at the abnormal steady state voltage and frequency limits and should be not less than thirty (30) minutes. At each test condition conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. For each test condition shut down the UUT and verify that the UUT can be re-started. After re-start, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Adjust the voltage to the nominal steady state voltage of 115 Vrms and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the voltages, frequency, time duration at test condition, successful/unsuccessful re-start and the performance of the UUT for each test condition in the data sheet shown in table TAC301-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Voltage	Frequency
A	Nominal Voltage	ALSS Frequency
В	Nominal Voltage	AHSS Frequency
С	ALSS Voltage	Nominal Frequency
D	ALSS Voltage	ALSS Frequency
Е	ALSS Voltage	AHSS Frequency
F	AHSS Voltage	Nominal Frequency
G	AHSS Voltage	ALSS Frequency
Н	AHSS Voltage	AHSS Frequency

## TABLE TAC301-II. <u>Test conditions for abnormal steady state limits for voltage and frequency</u>.



5. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

08

FIGURE TAC301-1. Abnormal steady state limits for voltage and frequency.

Test			Parameter		Performance
Condition	Phase	Voltage	Frequency	Time Duration	Pass/Fail
				at Test	
				Condition	
	А	V _{rms}	Hz	min	
A	В	V _{rms}			
	С	V _{rms}			
	А	V _{rms}	Hz	min	
В	В	V _{rms}			
	С	V _{rms}			
	А	V _{rms}	Hz	min	
C	В	V _{rms}			
	С	V _{rms}			
	А	V _{rms}	Hz	min	
D	В	V _{rms}			
	С	V _{rms}			
	Α	V _{rms}	Hz	min	
Е	В	V _{rms}			
	С	V _{rms}			
	Α	V _{rms}	Hz	min	
F	В	V _{rms}			
	C	V _{rms}			

TABLE TAC301-III. Sample data sheet for TAC301 abnormal steady state limits for voltage and frequency.

Test	Parameter							Performance
Condition	Phase	Voltage		Frequency		Time Duration		Pass/Fail
						at Test		
						Cond	lition	
	Α		V _{rms}		Hz		min	
G	В		V _{rms}					
	С		V _{rms}					
	Α		V _{rms}		Hz		min	
Н	В		V _{rms}					
	С		V _{rms}					

TABLE TAC301-III. Sample data sheet for TAC301 abnormal steady state limits for voltage and frequency. - Continued

#### METHOD TAC302 Abnormal Voltage Transients

POWER GROUP: Three Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: Abno

Abnormal

## PARAMETER: Abnormal Voltage Transients

1. <u>Scope</u>.

1.1. <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to abnormal voltage transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for abnormal aircraft electrical conditions when subjected to voltage transients within the abnormal limits of the applicable edition(s) of MIL-STD-704 and as noted in table TAC302-I. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE TAC302-I. MIL-STD-704 limits for abnormal voltage transients.

Limit	704A	704B	704C	704D	704E	704F
Abnormal Voltage Transients	Figure 3 MIL-STD- 704A Locus of Equivalent Step Function Curves 1 and 4	Figure 5 MIL-STD- 704B	Figure 7 MIL-STD- 704C	Figure 7 MIL-STD- 704D	Figure 6 MIL-STD- 704E	Figure 4 MIL-STD- 704F

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure TAC302-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TAC302-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

5.1 Compliance test for MIL-STD-704A. The UUT must be subjected to the voltage transients for each test condition A through O noted in table TAC302-II. The voltage must increase or decrease from steady state voltage to the voltage transient level within  $\frac{1}{2}$  cycle (1.25) milliseconds). The voltage must remain at the voltage transient level for the duration noted in table TAC302-II. The voltage must return to steady state over the time duration noted in table TAC302-II. For test condition G, three over-voltage transients of 180 Vrms for 20 milliseconds are performed, separated by 0.5 seconds. For test condition N, three under-voltage transients of 45 Vrms for 20 milliseconds are performed, separated by 0.5 seconds. For test condition O, an under-voltage transient of 45 Vrms for 20 milliseconds is immediately followed by an overvoltage transient of 180 Vrms for 75 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT automatically returns to specified performance for normal aircraft electrical conditions when the power returns to within normal limits, and has not suffered damage. Record the steady state voltages, steady state frequency, voltage transient level, time duration at voltage transient, oscilloscope trace, and the performance of the UUT for each test condition in the data sheet shown in table TAC302-IV. Repeat for each mode of operation of the UUT.

5.2 <u>Compliance test for MIL-STD-704B, C, D, E, & F</u>. The UUT must be subjected to the voltage transients for each test condition AA through OO noted in table TAC302-III. The voltage must increase or decrease from steady state voltage to the voltage transient level within ½ cycle (1.25 milliseconds)</u>. The voltage must remain at the voltage transient level for the duration noted in table TAC302-III. The voltage must return to steady state over the time duration noted in table TAC303-III. For test condition GG, three over-voltage transients of 180 Vrms for 20 milliseconds are performed, separated by 0.5 seconds. For test condition NN, three under-voltage transients of 45 Vrms for 20 milliseconds are performed, separated by 0.5 seconds. For test condition OO, an under-voltage transient of 45 Vrms for 20 milliseconds is immediately followed by an overvoltage transient of 180 Vrms for 50 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test

procedures to verify that the UUT automatically returns to specified performance for normal aircraft electrical conditions when the power returns to within normal limits, and has not suffered damage. Record the steady state voltages, steady state frequency, voltage transient level, time duration at voltage transient, oscilloscope trace, and the performance of the UUT for each test condition in the data sheet shown in table TAC302-V. Repeat for each mode of operation of the UUT.

TABLE TAC302-II. Test cor	nditions for MIL-STD-7044	<u>A abnormal voltage transients.</u>
---------------------------	---------------------------	---------------------------------------

Test Condition	Time From	Voltage	Duration at	Time From
	Steady State	Transient Level	Voltage	Voltage
	Voltage to	Vrms	Transient Level	Transient Level
	Voltage		milliseconds	to Steady State
	Transient Level			Voltage
	milliseconds			milliseconds
Overvoltage Transients				
А	< 1.25 msec	140 Vrms	1450 msec	< 1.25 msec
В	< 1.25 msec	140 Vrms	1025 msec	850 msec
С	< 1.25 msec	160 Vrms	520 msec	< 1.25 msec
D	< 1.25 msec	160 Vrms	390 msec	250 msec
E	< 1.25 msec	180 Vrms	98 msec	< 1.25 msec
F	< 1.25 msec	180 Vrms	75 msec	50 msec
G	< 1.25 msec	180 Vrms	20 msec	< 1.25 msec
U		(3 times)	every 0.5 sec	
Undervoltage Transients				
Н	< 1.25 msec	85 Vrms	1450 msec	< 1.25 msec
I	< 1.25 msec	85 Vrms	1025 msec	850 msec
J	< 1.25 msec	75 Vrms	520 msec	< 1.25 msec
K	< 1.25 msec	75 Vrms	390 msec	250 msec
L	< 1.25 msec	45 Vrms	98 msec	< 1.25 msec
М	< 1.25 msec	45 Vrms	75 msec	50 msec
N	< 1.25 msec	45 Vrms	20 msec	< 1.25 msec
11		(3 times)	every 0.5 sec	
Combined Transient				
0	< 1.25 msec	45 Vrms	20 msec	< 1.25 msec
U	then $< 1.25$ msec	180 Vrms	75 msec	50 msec

## TABLE TAC302-III. Test conditions for MIL-STD-704B, C, D, E, and F abnormal voltage transients.

Test Condition	Time From Steady State Voltage to Voltage Transient Level milliseconds	Voltage Transient Level Vrms	Duration at Voltage Transient Level milliseconds	Time From Voltage Transient Level to Steady State Voltage or Next Voltage Level
Overvoltage Transients				
AA	< 1.25 msec	140 Vrms	180 msec	< 1.25 msec
	< 1.25 msec	140 Vrms	180 msec	87 msec
	then	135 Vrms	decreasing	253 msec
BB	then	130 Vrms	decreasing	6.41 sec
	then	125 Vrms	decreasing	>10 sec
		115 Vrms		
CC	< 1.25 msec	160 Vrms	78 msec	< 1.25 msec
	< 1.25 msec	160 Vrms	78 msec	31 msec
	then	150 Vrms	decreasing	71 msec
	then	140 Vrms	decreasing	87 msec
DD	then	135 Vrms	decreasing	253 msec
	then	130 Vrms	decreasing	6.41 sec
	then	125 Vrms	decreasing	>10 sec
		115 Vrms		
EE	< 1.25 msec	180 Vrms	50 msec	< 1.25 msec
	< 1.25 msec	180 Vrms	50 msec	11 msec
	then	170 Vrms	decreasing	17 msec
	then	160 Vrms	decreasing	31 msec
	then	150 Vrms	decreasing	71 msec
FF	then	140 Vrms	decreasing	87 msec
	then	135 Vrms	decreasing	253 msec
	then	130 Vrms	decreasing	6.41 sec
	then	125 Vrms	decreasing	>10 sec
		115 Vrms		
GG	< 1.25 msec	180 Vrms	20 msec	< 1.25 msec
		(3 times)	every 0.5 sec	

# TABLE TAC302-III. Test conditions for MIL-STD-704B, C, D, E, and F abnormal voltage transients. transients. - Continued

Test Condition	Time From Steady State Voltage to Voltage Transient Level	Voltage Transient Level Vrms	Duration at Voltage Transient Level milliseconds	Time From Voltage Transient Level to Steady State Voltage
	milliseconds			or Next Voltage Level
Undervoltage Transients				
HH	< 1.25 msec	85 Vrms	180 msec	< 1.25 msec
	< 1.25 msec	85 Vrms	180 msec	87 msec
	then	90 Vrms	increasing	253 msec
II	then	95 Vrms	increasing	6.41 sec
	then	100 Vrms	increasing	>10 sec
		115 Vrms		
JJ	< 1.25 msec	66 Vrms	78 msec	< 1.25 msec
	< 1.25 msec	65 Vrms	78 msec	31 msec
	then	75 Vrms	increasing	71 msec
	then	85 Vrms	increasing	87 msec
КК	then	90 Vrms	increasing	253 msec
	then	95 Vrms	increasing	6.41 sec
	then	100 Vrms	increasing	>10 sec
		115 Vrms		
LL	< 1.25 msec	45 Vrms	50 msec	< 1.25 msec
	< 1.25 msec	45 Vrms	50 msec	11 msec
	then	55 Vrms	increasing	17 msec
	then	65 Vrms	increasing	31 msec
	then	75 Vrms	increasing	71 msec
MM	then	85 Vrms	increasing	87 msec
	then	90 Vrms	increasing	253 msec
	then	95 Vrms	increasing	6.41 sec
	then	100 Vrms	increasing	>10 sec
		115 Vrms		
NN	< 1.25 msec	45 Vrms	20 msec	< 1.25 msec
		(3 times)	every 0.5 sec	
Combined Transient			i i i i i i i i i i i i i i i i i i i	
	< 1.25 msec	45 Vrms then	20 msec	< 1.25 msec
	< 1.25 msec	180 Vrms	50 msec	11 msec
	then	170 Vrms	decreasing	17 msec
	then	160 Vrms	decreasing	31 msec
OO	then	150 Vrms	decreasing	71 msec
	then	140 Vrms	decreasing	87 msec
	then	135 Vrms	decreasing	253 msec
	then	130 Vrms	decreasing	6.41 sec
	then	125 Vrms	decreasing	>10 sec
		115 Vrms		



88

Test	Parameters										
Condition	Phase	Steady State	Steady State	Voltage	Voltage Time at		Oscilloscope Trace				
		Voltage	Frequency	Transient	Voltage		-				
					Transient						
					Level						
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time				
A	В	V _{rms}		V _{rms}	msec	_					
	C	V _{rms}		V _{rms}	msec						
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time				
В	В	V _{rms}		V _{rms}	msec	_					
	C	V _{rms}		V _{rms}	msec						
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time				
C	В	V _{rms}		V _{rms}	msec	_					
	C	V _{rms}		V _{rms}	msec						
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time				
D	В	V _{rms}		V _{rms}	msec	_					
	C	V _{rms}		V _{rms}	msec						
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time				
E	В	V _{rms}		V _{rms}	msec	_					
	C	V _{rms}		V _{rms}	msec						
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time				
F	В	V _{rms}		V _{rms}	msec	-					
	C	V _{rms}		V _{rms}	msec						
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time				
G	В	V _{rms}		V _{rms}	msec	-					
	C	V _{rms}		V _{rms}	msec						

TABLE TAC302-IV. Sample data sheet for TAC302 abnormal voltage transients for MIL-STD-704A.

Test	Parameters										
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscilloscope Trace	Pass/Fail				
		Voltage	Frequency	Transient	Voltage						
					Transient						
					Level						
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs. Time					
Н	В	V _{rms}		V _{rms}	msec						
	С	V _{rms}		V _{rms}	msec						
	А	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs. Time					
Ι	В	V _{rms}		V _{rms}	msec						
	С	V _{rms}		V _{rms}	msec						
	А	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs. Time					
J	В	V _{rms}		V _{rms}	msec						
	С	V _{rms}		V _{rms}	msec						
	А	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs. Time					
K	В	V _{rms}		V _{rms}	msec						
	С	V _{rms}		V _{rms}	msec						
	А	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs. Time					
L	В	V _{rms}		V _{rms}	msec						
	С	V _{rms}		V _{rms}	msec						
	А	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time					
М	В	V _{rms}		V _{rms}	msec						
	С	V _{rms}		V _{rms}	msec	]					

TABLE TAC302-IV. Sample data sheet for TAC302 abnormal voltage transients for MIL-STD-704A. - Continued

Test	Parameters											
Condition	Phase	Steady	y State	Steady	v State	Vol	tage	Time at		Oscilloscope Trace		Pass/Fail
		Vol	tage	Frequ	iencv	Tran	sient	Vol	tage		1	
			0	1	2			Transient				
								Level				
	Α		V _{rms}		Hz		V _{rms}		msec	Attach Trace	V _{rms} vs. Time	
Ν	В		V _{rms}				V _{rms}		msec			
	С		V _{rms}				V _{rms}		msec	-		
	Α		V _{rms}		Hz		V _{rms}		msec	Attach Trace	$V_{rms}$ vs. Time	
	В		V _{rms}				V _{rms}		msec			
0	C		V _{rms}				V _{rms}		msec			
	Α						V _{rms}		msec			
	В						V _{rms}		msec			
	C						V _{rms}		msec			

TABLE TAC302-IV. Sample data sheet for TAC302 abnormal voltage transients for MIL-STD-704A. - Continued

Test	Parameters											
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscilloscope Trace	Pass/Fail					
		Voltage	Frequency	Transient	Voltage							
					Transient							
					Level							
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs. Time						
AA	В	V _{rms}		V _{rms}	msec							
	С	V _{rms}		V _{rms}	msec							
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{\rm rms}$ vs. Time						
BB	В	V _{rms}		V _{rms}	msec	_						
	С	V _{rms}		V _{rms}	msec							
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs. Time						
CC	В	V _{rms}		V _{rms}	msec	_						
	C	V _{rms}		V _{rms}	msec							
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{\rm rms}$ vs. Time						
DD	В	V _{rms}		V _{rms}	msec	_						
	C	V _{rms}		V _{rms}	msec							
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{\rm rms}$ vs. Time						
EE	В	V _{rms}		V _{rms}	msec	_						
	C	V _{rms}		V _{rms}	msec							
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{\rm rms}$ vs. Time						
FF	В	V _{rms}		V _{rms}	msec	_						
	C	V _{rms}		V _{rms}	msec							
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time						
GG	В	V _{rms}		V _{rms}	msec							
	С	V _{rms}		V _{rms}	msec							

TABLE TAC302-V. Sample data sheet for TAC302 abnormal voltage transients for MIL-STD-704B, C, D, E, & F.

Test	Parameters									
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscilloscope Trace	Pass/Fail			
		Voltage	Frequency	Transient	Voltage					
					Transient					
					Level					
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs. Time				
HH	В	V _{rms}		V _{rms}	msec					
	С	V _{rms}		V _{rms}	msec					
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs. Time				
II	В	V _{rms}		V _{rms}	msec					
	С	V _{rms}		V _{rms}	msec					
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs. Time				
JJ	В	V _{rms}		V _{rms}	msec					
	С	V _{rms}		V _{rms}	msec					
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time				
KK	В	V _{rms}		V _{rms}	msec					
	С	V _{rms}		V _{rms}	msec					
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time				
LL	В	V _{rms}		V _{rms}	msec					
	С	V _{rms}		V _{rms}	msec	1				
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time				
MM	В	V _{rms}		V _{rms}	msec		1			
	С	V _{rms}	1	V _{rms}	msec	1				

TABLE TAC302-V. Sample data sheet for TAC302 abnormal voltage transients for MIL-STD-704B, C, D, E, & F. - Continued

	1											
Test	Parameters											
Condition	Phase	Steady	y State	Steady	v State	Vol	tage	Time at		Oscilloscope Trace		Pass/Fail
		Vol	tage	Frequ	ency	Tran	sient	Vol	tage		-	
			e	1	5			Transient				
								Level				
	A		V _{rms}		Hz		V _{rms}		msec	Attach Trace	V _{rms} vs. Time	
NN	В		V _{rms}				V _{rms}		msec			
	C		V _{rms}				V _{rms}		msec			
	Α		V _{rms}		Hz		V _{rms}		msec	Attach Trace	V _{rms} vs. Time	
	В		V _{rms}				V _{rms}		msec			
OO	С		V _{rms}				V _{rms}		msec			
	Α						V _{rms}		msec			
	В						V _{rms}		msec			
	C						V _{rms}		msec			

TABLE TAC302-V. Sample data sheet for TAC302 abnormal voltage transients for MIL-STD-704B, C, D, E, & F. - Continued

#### METHOD TAC303 Abnormal Frequency Transients

POWER GROUP:	Three Phase, 400 Hz, 115 V
AIRCRAFT ELECTRICAL	

OPERATING CONDITION: Abnormal

## PARAMETER: Abnormal Frequency Transients

1. <u>Scope</u>.

1.1. <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to abnormal frequency transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for abnormal aircraft electrical conditions when subjected to frequency transients within the abnormal limits of the applicable edition(s) of MIL-STD-704 and as noted in table TAC303-I. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE TAC303-I. MIL-STD-704 limits for abnormal frequency transients.

Limit	704A	704B	704C	704D	704E	704F
Abnormal	Figure 5	¶ 5.1.5	Figure 8	Figure 8	Figure 7	Figure 6
Frequency	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-
Transients	704A	704B	704C	704D	704E	704F
	Locus of					
	Equivalent					
	Step					
	Function					
	Curves 1					
	and 4					
Abnormal	500 Hz/sec	500 Hz/sec	500 Hz/sec	N/A	N/A	N/A
Maximum						
Rate of						
Change of						
Frequency						

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope
4. <u>Test setup</u>. Configure the test setup as shown in figure TAC303-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TAC303-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions.

5.1 Compliance test for MIL-STD-704A. The UUT must be subjected to the frequency transients for each test condition A through E noted in table TAC303-II. The frequency must increase or decrease from steady state frequency to the frequency transient level over the duration noted; the frequency must remain at the frequency transient level for the duration noted; and the frequency must return from the frequency transient level over the duration noted. For test condition E, an underfrequency transient of 320 Hz is immediately followed by an overfrequency transient of 480 Hz. For each test condition, monitor the performance of the UUT during the frequency transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions, and has not suffered damage. Record the steady state voltages, steady state frequency, frequency transient level, time at frequency transient, oscilloscope trace (Hz vs. time), and the performance of the UUT for each test condition in the data sheet shown in table TAC302-IV. Repeat for each mode of operation of the UUT.

5.2 Compliance test for MIL-STD-704B, C, D, E, & F. The UUT must be subjected to the frequency transients for each test condition AA through EE noted in table TAC302-III. The frequency must increase or decrease from steady state frequency to the frequency transient level over the duration noted; the frequency must remain at the frequency transient level for the duration noted; and the frequency must return from the frequency transient level over the duration noted. For test condition EE, an underfrequency transient of 320 Hz is immediately followed by an overfrequency transient of 480 Hz. For each test condition, monitor the performance of the UUT during the frequency transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal limits. conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions, and has not suffered damage. Record the steady state voltages, steady state frequency, frequency transient level, time at frequency transient, oscilloscope trace (Hz vs. time), and the performance of the UUT for each test condition in the data sheet shown in table TAC303-V. Repeat for each mode of operation of the UUT.

	TABLE TAC303-II.	Test conditions for MIL-STD-704A abnormal freq	uency	y transients
--	------------------	------------------------------------------------	-------	--------------

Test Condition	Time From	Frequency	Duration at	Time From
	Steady State	Transient Level	Frequency	Frequency
	Frequency to	Hz	Transient Level	Transient Level
	Frequency			to Steady State
	Transient Level			Frequency
	milliseconds			milliseconds
Overfrequency Transients				
А	333 msec	480 Hz	¹ / ₂ cycle	60 msec
В	333 msec	480 Hz	6.69 seconds	60 msec
Underfrequency Transients				
С	333 msec	320 Hz	¹ / ₂ cycle	60 msec
D	333 msec	320 Hz	6.69 seconds	60 msec
Combined Transient				
E	333 msec	320 Hz then	¹ / ₂ cycle	333 msec
E	333 msec	480 Hz	¹ / ₂ cycle	333 msec

# TABLE TAC303-III. Test conditions for MIL-STD-704B, C, D, E and F abnormal frequency transients.

Test Condition	Time From	Frequency	Duration at	Time From
	Steady State	Transient Level	Frequency	Frequency
	Frequency to	Hz	Transient Level	Transient Level
	Frequency			to Steady State
	Transient Level			Frequency
	milliseconds			milliseconds
Overfrequency Transients				
AA	160 msec	480 Hz	¹ / ₂ cycle	160 msec
BB	160 msec	480 Hz	4.78 seconds	160 msec
Underfrequency Transients				
CC	160 msec	320 Hz	¹ / ₂ cycle	160 msec
DD	160 msec	320 Hz	4.78 seconds	160 msec
Combined Transient				
EE	160 msec	320 Hz then	¹ / ₂ cycle	160 msec
EE	160 msec	480 Hz	¹ / ₂ cycle	160 msec



5. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

86

FIGURE TAC303-1. Abnormal frequency transients.

Test	Parameters								
Condition	Phase	Steady State	Steady State	Frequ	lency	Time at	Oscillos	Oscilloscope Trace	
		Voltage	Frequency	Trans	sient	Frequency			
						Transient			
						Level			
	Α	V _{rms}	Hz		Hz	msec	Attach Trace	Hz vs. Time	
Α	В	V _{rms}							
	С	V _{rms}							
	A	V _{rms}	Hz		Hz	sec	Attach Trace	Hz vs. Time	
В	В	V _{rms}							
	С	V _{rms}							
	Α	V _{rms}	Hz		Hz	msec	Attach Trace	Hz vs. Time	
C	В	V _{rms}							
	С	V _{rms}							
	A	V _{rms}	Hz		Hz	sec	Attach Trace	Hz vs. Time	
D	В	V _{rms}							
	С	V _{rms}							
	A	V _{rms}	Hz		Hz	msec	Attach Trace	Hz vs. Time	
	В	V _{rms}							
E	С	V _{rms}							
					Hz	msec			

TABLE TAC303-IV. Sample data sheet for TAC303 abnormal frequency transients for MIL-STD-704A.

Test	Parameters								
Condition	Phase	Steady State	Steady State	Frequency	Time at	Oscilloscope Trace	Pass/Fail		
		Voltage	Frequency	Transient	Frequency				
					Transient				
					Level				
	Α	V _{rms}	Hz	Hz	msec	Attach Trace Hz vs. Time			
AA	В	V _{rms}							
	С	V _{rms}							
	Α	V _{rms}	Hz	Hz	sec	Attach Trace Hz vs. Time			
BB	В	V _{rms}							
	С	V _{rms}							
	Α	V _{rms}	Hz	Hz	msec	Attach Trace Hz vs. Time			
CC	В	V _{rms}							
	С	V _{rms}							
	Α	V _{rms}	Hz	Hz	sec	Attach Trace Hz vs. Time			
DD	В	V _{rms}							
	С	V _{rms}							
	Α	V _{rms}	Hz	Hz	msec	Attach Trace Hz vs. Time			
	В	V _{rms}							
EE	С	V _{rms}							
				Hz	msec				

TABLE TAC303-V. Sample data sheet for TAC303 abnormal frequency transients for MIL-STD-704B, C, D, E, & F.

#### METHOD TAC401 Emergency Steady State Limits for Voltage and Frequency

POWER GROUP:	Three Phase, 400 Hz, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Emergency
PARAMETER:	Emergency Steady State Limits for Voltage and Frequency
1. <u>Scope</u> .	

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when provided power with voltage and frequency at that the Emergency Low Steady State (ELSS) limits and the Emergency High Steady State (EHSS) limits as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment performance specification document for emergency aircraft electrical conditions when supplied input power of voltage and frequency at the specified emergency steady state limits of the applicable edition(s) of MIL-STD-704 and as noted in table TAC401-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the emergency steady state voltage and frequency limits and should be, not less than thirty (30) minutes for each of the test conditions. Unless otherwise specified in the utilization equipment must demonstrate re-start at the emergency steady state voltage and frequency limits. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

Emergency Limit	704A	704B	704C	704D	704E ^{1/}	704F ^{1/}
Voltage ELSS	104 V	102 V	104 V	104 V	108 V	108 V
Voltage EHSS	122 V	124 V	122 V	122 V	118 V	118 V
Frequency ELSS	360 Hz	360 Hz	360 Hz	360 Hz	393 Hz	393 Hz
Frequency EHSS	440 Hz	440 Hz	440 Hz	440 Hz	407 Hz	407 Hz

TABLE TAC401-I. MIL-STD-704 emergency limits for steady state voltage and frequency.

 $\underline{1}$ / For MIL-STD-704E and F, performance of test method TAC102 will constitute performance of test method TAC401.

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. True RMS voltmeter
- c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure TAC401-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through H noted in table TAC401-II, the UUT must remain for a length of time that confirms the utilization equipment can perform as specified at the emergency steady state voltage and frequency limits and should be, not less than thirty (30) minutes. At each test condition conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for emergency aircraft electrical conditions. Adjust the voltage to the nominal steady state voltage of 115 Vrms and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the voltages, frequency, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table TAC401-III. Repeat for each mode of operation of the UUT.

Test Condition	Voltage	Frequency
А	Nominal Voltage	ELSS Frequency
В	Nominal Voltage	EHSS Frequency
С	ELSS Voltage	Nominal Frequency
D	ELSS Voltage	ELSS Frequency
Е	ELSS Voltage	EHSS Frequency
F	EHSS Voltage	Nominal Frequency
G	EHSS Voltage	ELSS Frequency
Н	EHSS Voltage	EHSS Frequency

 TABLE TAC401-II.
 Test conditions for emergency steady state limits for voltage and frequency.



5. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

103

FIGURE TAC401-1. Emergency steady state limits for voltage and frequency.

Test	Parameter							Performance
Condition	Phase	Vol	tage	Frequ	lency	Time D	uration	Pass/Fail
						at T	Test	
						Cond	lition	
	Α		V _{rms}		Hz		min	
Α	В		V _{rms}					
	С		V _{rms}					
	A		V _{rms}		Hz		min	
В	В		V _{rms}					
	С		V _{rms}					
	A		V _{rms}		Hz		min	
С	В		V _{rms}					
	С		V _{rms}					
	Α		V _{rms}		Hz		min	
D	В		V _{rms}					
	С		V _{rms}					
	A		V _{rms}		Hz		min	
E	В		V _{rms}					
	С		V _{rms}					
	A		V _{rms}		Hz		min	
F	В		V _{rms}					
	С		V _{rms}					

TABLE TAC401-III. Sample data sheet for TAC401 emergency steady state limits for voltage and frequency.

Test	Parameter							Performance
Condition	Phase	Vol	tage	Frequ	iency	Time D	uration	Pass/Fail
						at T	Test	
						Cond	lition	
	Α		V _{rms}		Hz		min	
G	В		V _{rms}					
	С		V _{rms}					
	Α		V _{rms}		Hz		min	
Н	В		V _{rms}					
	С		V _{rms}					

TABLE TAC401-III. Sample data sheet for TAC401 emergency steady state limits for voltage and frequency. - Continued

## METHOD TAC501 (No Test Required)

POWER GROUP: Three Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Starting

PARAMETER: No Tests

Starting operations are usually not applicable to AC utilization equipment.

#### METHOD TAC601 Power Failure (Three Phase)

POWER GROUP: Three Phase, 400 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: Pow

Power Failure

PARAMETER: Power Failure (Three Phase)

1. Scope

1.1. <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to three phase power failures as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for power failure aircraft electrical conditions when subjected to three phase power failures as specified by the applicable edition(s) of MIL-STD-704 and as noted in table TAC601-I. The utilization equipment must maintain the specified performance during the three phase power failures. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE TAC601-I. MIL-STD-704 power failure limits.

Limit	704A	704B	704C	704D	704E	704F
Power	7 sec					
Failure	Figure 3	Figure 5	Figure 7	Figure 7	Figure 6	Figure 4
	Curve 4	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-
	MIL-STD-	704B	704C	704D	704E	704F
	704A					

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure TAC601-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TAC601-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through D noted in table TAC601-II, perform a three phase power failure (0 V) of the duration listed. The voltage must decrease from the steady state voltage to 0 Volts within ½ cycle (1.25 milliseconds), remain at 0 Volts for the duration listed for the test condition, and return from 0 Volts to the steady state voltage within ½ cycle (1.25 milliseconds). For each test condition, monitor the performance of the UUT according to the utilization equipment performance test procedures for power failure operation to verify that the UUT is providing specified performance for power failure aircraft electrical conditions. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the steady state voltages, steady state frequency, time duration of power failure, and the performance of the UUT for each test condition in the data sheet shown in table TAC601-III. Repeat each test condition 5 times. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Duration of Power Failure
А	100 msec
В	500 msec
С	3 seconds
D	7 seconds

TABLE TAC601-II. <u>Test conditions for three phase power failures</u>.



5. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

109

FIGURE TAC601-1. Power failure (three phase).

Test	Parameters					Performance
Condition	Phase	Steady State	Steady State	Voltage during	Time Duration	Pass/Fail
		Voltage	Frequency	Power Failure	of Power	
		-	1		Failure	
	Α	V _{rms}	Hz	V _{rms}	msec	
А	В	V _{rms}		V _{rms}	msec	
	С	V _{rms}		V _{rms}	msec	
	Α	V _{rms}	Hz	V _{rms}	msec	
В	В	V _{rms}		V _{rms}	msec	
	С	V _{rms}		V _{rms}	msec	
	Α	V _{rms}	Hz	V _{rms}	sec	
С	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	А	V _{rms}	Hz	V _{rms}	sec	
D	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	

 TABLE TAC601-III.
 Sample data sheet for TAC601 power failure (three phase).

#### METHOD TAC602 One and Two Phase Power Failures

POWER GROUP:	Three Phase, 400 Hz, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Power Failure

PARAMETER: One and Two Phase Power Failures

1. <u>Scope</u>.

1.1. <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, 400 Hz power utilization equipment operates and maintains specified performance when subjected to one and two phase power failures (7 seconds and indefinitely) as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for power failure aircraft electrical conditions when subjected to power failures as specified by the applicable edition(s) of MIL-STD-704 and as noted in table TAC602-I. The utilization equipment must maintain the specified performance during one and two phase power failures. The utilization equipment can continuously operate with one and two phase power failures and should be not less than thirty (30) minutes for each of the test conditions. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE TAC602-I.	MIL-STD-704	power failure limits.
		-

Limit	704A	704B	704C	704D	704E	704F
Single Phase	7 sec and					
and	indefinitely	indefinitely	indefinitely	indefinitely	indefinitely	indefinitely
Two Phase	Figure 3	Figure 5	Figure 7	Figure 7	Figure 6	Figure 4
Power	Curve 4	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-
Failure	MIL-STD-	704B	704C	704D	704E	704F
	704B					

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure TAC602-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TAC602-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through J noted in table TAC062-II, perform a power failure (0 V) on the phase(s) noted and of the duration listed. The voltage must decrease from the steady state voltage to 0 Volts within ¹/₂ cycle (1.25 milliseconds), remain at 0 Volts for the duration listed for the test condition, and return from 0 Volts to the steady state voltage within  $\frac{1}{2}$  cycle (1.25) milliseconds). For each test condition, monitor the performance of the UUT according to the utilization equipment performance test procedures for power failure operation to verify that the UUT is providing specified performance for power failure aircraft electrical conditions. For the indefinite time duration, the utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage and frequency limits and should be not less than thirty (30) minutes for each of the test conditions. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the steady state voltages, steady state frequency, time duration of power failure, and the performance of the UUT for each test condition in the data sheet shown in table TAC602-III. Repeat test conditions A, B, C, G, and H 5 times. Test conditions D, E, F, I, and J are required to be performed once each. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Phases	Duration of Power Failure
One Phase Power		
Failure		
А	Phase A	7 seconds
В	Phase B	7 seconds
С	Phase C	7 seconds
D	Phase A	Indefinitely
Е	Phase B	Indefinitely
F	Phase C	Indefinitely
Two Phase Power		
Failures		
G	Phase A & B	7 seconds
Н	Phase B & C	7 seconds
Ι	Phase A & B	Indefinitely
J	Phase B & C	Indefinitely

# TABLE TAC602-II. Test conditions for one and two phase power failures.

 $\bigcirc$ 



5. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

114

FIGURE TAC602-1. One and two phase power failures.

# TABLE TAC602-III. Sample data sheet for TAC602 one and two phase power failures.

Test			Parameter	rs		Performance
Condition	Phase	Steady State	Steady State	Voltage during	Time Duration	Pass/Fail
		Voltage	Frequency	Power Failure	of Power	
		0	1 0		Failure	
	Α	V _{rms}	Hz	V _{rms}	sec	
А	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
В	В	V _{rms}	i	V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
С	В	V _{rms}	i	V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	А	V _{rms}	Hz	V _{rms}	sec	
D	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
Е	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
F	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
G	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
Н	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
Ι	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
J	В	V _{rms}	·	V _{rms}	sec	
	C	V _{rms}		V _{rms}	sec	

#### METHOD TAC603 Phase Reversal (Three Phase)

POWER GROUP:	Three Phase, 400 Hz, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Power Failure
PARAMETER:	Phase Reversal (Three Phase)

1. Scope.

1.1. <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, 400 Hz power utilization equipment is not damaged by phase reversal or a positive physical means is employed to prevent phase reversal.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment is not damaged and does not cause an unsafe condition when the input phase sequence is reversed for the applicable edition(s) of MIL-STD-704 and as noted in table TAC603-I. A positive physical means to prevent phase sequence reversal may be used to fulfill this requirement.

TABLE TAC603-I. MIL-STD-704 phase sequence reversal requirement.

Limit	704A	704B	704C	704D	704E	704F
Phase Reversal	N/A	N/A	N/A	N/A	N/A	Phase Sequence Reversal Does not Cause Damage

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. True RMS voltmeter
- c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure TAC603-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. If a positive physical means is employed to prevent phase sequence reversal, confirm that the phase conductors cannot be reversed.

If the phase sequence can be reversed, with the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TAC603-1 (reversed phase sequence of C-B-A). Turn on the power source and adjust the voltage to the nominal steady state

voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. The UUT must remain for a length of time that confirms the utilization equipment is not damaged and does not cause an unsafe condition due to phase sequence reversal and should be not less than thirty (30) minutes. Record the steady state voltages, steady state frequency, time duration at phase sequence reversal test condition, and the performance of the UUT in the data sheet shown in table TAC603-II.

With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TAC603-2 (correct phase sequence of A-B-C). Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. The UUT must remain for a length of time that confirms the utilization equipment was not damaged and does not cause an unsafe condition after the phase sequence reversal and should be not less than thirty (30) minutes. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has returned to the performance specified for normal aircraft electrical conditions and has not suffered damage. Record the steady state voltages, steady state frequency, time duration at test condition, and the performance of the UUT in the data sheet shown in table TAC603-II. Repeat for each mode of operation of the UUT.



inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

6. Phase Rotation is reversed.

118

FIGURE TAC603-1. Phase reversal.



 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

FIGURE TAC603-2. Correct phase connection.

Test		Parameters					Performance
Condition							Yes/No
Phase Sequence Reve	Phase Sequence Reversal Prevented by Positive Physical Means						
		Ι	f No				
	Phase	Phase Voltage Frequency Time Duration			Pass/Fail		
				at 🛛	ſest		
					Conc	lition	
Phase Sequence	Α	V _{rms}		Hz		min	
Reversed	В	V _{rms}					
(C-B-A)	С	V _{rms}					
Correct Phase	Α	V _{rms}		Hz		min	
Sequence	В	V _{rms}					
(A-B-C)	C	V _{rms}					

# TABLE TAC603-II. Sample data sheet for TAC603 phase sequence reversal.

#### 6. NOTES

6.1 <u>Intended use</u>. This handbook should be used as guidance when establishing test requirements, for inclusion in performance specifications developed for the procurement of utilization equipment, to ensure compliance with the aircraft electrical power characteristics as specified by MIL-STD-704.

#### 6.2 Subject term (keyword) listing.

Aircraft, electrical power Aircraft, electrical test Electrical operating areas Equipment, utilization Power groups Specification, utilization equipment

#### CONCLUDING MATERIAL

Custodians: Army - AV

Navy - AS Air Force - 11 Preparing Activity: Navy - AS

(Project No. SESS-0049)

Review Activities: Army - CR, MI, TE Navy - EC, MC, SA, SH, YD

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at <u>www.dodssp.daps.mil</u>.

NOT MEASUREMENT SENSITIVE

> MIL-HDBK-704-4 9 April 2004

# DEPARTMENT OF DEFENSE HANDBOOK

GUIDANCE FOR TEST PROCEDURES FOR DEMONSTRATION OF UTILIZATION EQUIPMENT COMPLIANCE TO AIRCRAFT ELECTRICAL POWER CHARACTERISTICS SINGLE PHASE, VARIABLE FREQUENCY, 115 VOLT (PART 4 OF 8 PARTS)



This Handbook is for guidance only. Do not cite this document as a requirement.

AMSC N/A

**AREA SESS** 

#### FOREWORD

1. This handbook is approved for use by all Departments and Agencies of the Department of Defense.

2. This handbook provides guidance on test procedures for demonstration of single phase, variable frequency, 115 volt utilization equipment to determine compliance with the applicable edition of MIL-STD-704.

3. MIL-HDBK-704-4 is Part 4 in a series of 8 Parts. Part 4 describes the test methods and procedures to demonstrate that single phase, variable frequency, 115 volt utilization equipment is compatible with the electric power characteristics of MIL-STD-704. These series of handbooks and MIL-STD-704 are companion documents.

4. Comments, suggestions, or questions on this document should be addressed to Commander, Naval Air Systems Command, 4.1.4, Highway 547, Lakehurst, NJ 08733-5100 or email to <u>thomas.omara@navy.mil</u>. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at <u>www.dodssp.daps.mil</u>.

# CONTENTS

PARA	AGRAPH PAG	<u>JE</u>
	FOREWORD	ii
1. 1.1	SCOPE	1 1
2. 2.1 2.2 2.2.1	APPLICABLE DOCUMENTS General Government documents Specifications, standards and handbooks	1 1 1 1
3. 3.1	DEFINITIONS Acronyms and definitions	1 1
4. 4.1 4.1.1 4.2 4.3	TEST METHODS INFORMATION Demonstration of compatibility Recording performance Calibration of test equipment Test methods	1 1 1 1 2
5.	<ul> <li>TEST METHODS</li> <li>METHOD SVF101 Load Measurements</li> <li>METHOD SVF102 Steady State Limits for Voltage and Frequency</li> <li>METHOD SVF103 (No Test Required)</li> <li>METHOD SVF104 Voltage Modulation</li> <li>METHOD SVF105 Frequency Modulation</li> <li>METHOD SVF106 Voltage Distortion Spectrum</li> <li>METHOD SVF107 Total Voltage Distortion</li> <li>METHOD SVF108 DC Voltage Component</li> <li>METHOD SVF109 Normal Voltage Transients</li> <li>METHOD SVF110 Normal Frequency Transients</li> <li>METHOD SVF301 Abnormal Steady State Limits for Voltage</li> <li>and Frequency</li> <li>METHOD SVF303 Abnormal Frequency Transients</li> <li>METHOD SVF401 Emergency Steady State Limits for Voltage</li> <li>and Frequency</li> <li>METHOD SVF301 (No Tests)</li> <li>METHOD SVF501 (No Tests)</li> <li>METHOD SVF601 Power Failure</li> <li>METHOD SVF602 (No Test Required)</li> </ul>	4 5 . 10 . 16 . 17 . 24 . 29 . 37 . 45 . 48 . 57 . 62  . 70 . 75 . 84  . 89 . 90 . 91 . 95
	METHOD SVF603 Phase Reversal	. 96

PARA	GRAPH	PAGE
6.	NOTES	
6.1	Intended use	
6.2	Single phase test numbers	
6.3	Subject term (keyword) listing	
TABL	Ξ	
SVF-I.	Summary of single phase, variable frequency, 115 volt utilization	on equipment
	MIL-STD-704 compliance tests	
	CONCLUDING MATERIAL	

## 1. SCOPE

1.1 <u>Scope</u>. This handbook provides, as guidance, test methods used to demonstrate that single phase, variable frequency, 115 volt utilization equipment is compatible with the electric power characteristics of the applicable edition(s) of MIL-STD-704. This handbook is for guidance only and cannot be cited as a requirement.

## 2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed below are not necessarily all of the documents referenced herein, but are those needed to understand the information provided by this handbook.

## 2.2 Government documents.

2.2.1 <u>Specifications, standards, and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein.

## DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-704

DoD Interface Standard for Aircraft Electric Power Characteristics

(A copy of this document is available online at <u>http://assist. daps.dla.mil/quicksearch</u> or <u>www.dodssp.daps.mil/</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

# 3. DEFINITIONS

3.1 <u>Acronyms and definitions</u>. The acronyms and definitions of MIL-STD-704 are applicable to this handbook.

# 4. TEST METHODS INFORMATION

4.1 <u>Demonstration of compatibility</u>. This section contains the test methods which will ensure that single phase, variable frequency, 115 volt utilization equipment is compatible with the electric power characteristics of the applicable edition(s) of MIL-STD-704, by testing the Unit Under Test (UUT) in accordance with the test procedures as described in test methods SVF 101 through SVF 603.

4.1.1 <u>Recording performance</u>. In table SVF1, record the edition(s) of MIL-STD-704 that defined the aircraft electric power characteristics used for testing and the performance of the UUT for each of the test methods.

4.2 <u>Calibration of test equipment.</u> Test equipment and accessories required for measurement in accordance with this handbook should be calibrated in accordance with an approved calibration program traceable to the National Institute for Standards and Technology.

The serial numbers, model, and calibration date of all test equipment should be included with the test data.

4.3 <u>Test methods</u>. The test methods listed in table SVF-I are provided in section 5 of this handbook.

# TABLE SVF-I. Summary of single phase, variable frequency, 115 volt utilization equipment MIL-STD-704 compliance tests.

UUT:			
Complia	nce to MIL-STD-704 Edition(s):		
Test Date	28:		
Test	Description	Performance	Comments
Method		(Pass/Fail)	
Normal,	Aircraft Electrical Operation		
SVF101	Load and Current Harmonic		
	Measurements		
SVF102	Steady State Limits for Voltage		
	and Frequency		
SVF103	No Test, See Note #1	N/A	N/A
SVF104	Voltage Modulation		
SVF105	Frequency Modulation		
SVF106	Voltage Distortion Spectrum		
SVF107	Total Voltage Distortion		
SVF108	DC Voltage Component		
SVF109	Normal Voltage Transients		
SVF110	Normal Frequency Transients		
Transfer	Aircraft Electrical Operation		
SVF201	Power Interrupt		
Abnorma	al, Aircraft Electrical Operation		
SVF301	Abnormal Limits for Voltage and		
	Frequency		
SVF302	Abnormal Voltage Transients		
	(Overvoltage/Undervoltage)		
SVF303	Abnormal Frequency Transients		
	(Overfrequency/Underfrequency)		
Emergen	cy, Aircraft Electrical Operation		
SVF401	Emergency Limits for Voltage		
	and Frequency		
Starting,	Aircraft Electrical Operation		
SVF501	See Note #2		
Power Fa	ulure, Aircraft Electrical Operati	on	
SVF601	Power Failure (Single Phase)		
SVF602	No Test, See Note #1	N/A	N/A
SVF603	Phase Reversal		

Note 1: There are no tests required for SVF103 and SVF602. This is done so that the single phase test numbers coincide with the three phase test numbers.

Note 2: Starting operation conditions are usually not applicable to AC utilization equipment. No test is required for SVF501 unless specified by the equipment performance specification.

5. TEST METHODS

#### METHOD SVF101 Load Measurements

POWER GROUP:

Single Phase, Variable Frequency, 115 V

AIRCRAFT ELECRICAL OPERATING CONDITION:

I: Normal

PARAMETER:

Load Measurements

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, variable frequency power utilization equipment utilizes only 115 Volt line-to-neutral power, does not require more power than allowed, the power factor is within limits, and does not use half-wave rectification for the applicable edition(s) of MIL-STD-704. Additionally, when the utilization equipment performance specification document imposes current waveform requirements, this test procedure is used to verify that the utilization equipment current waveform is within total current distortion and current spectrum (current distortion vs. frequency) limits defined in the utilization equipment performance specification document.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment requires less than or equal to the power limit for single phase equipment, is within the power factor limits, and does not use half-wave rectification for the applicable edition(s) of MIL-STD-704 and as noted in table SVF101-I. If required by the utilization equipment performance specification document, the utilization equipment current waveform must be within the total current distortion and current spectrum limits defined in the utilization equipment performance specification document. The utilization equipment must not suffer damage or cause an unsafe condition.

Limit	704A	704B	704C	704D	704E	704F
Single Phase kVA	N/A	N/A	N/A	N/A	N/A	0.5 kVA
Power Factor	N/A	N/A	N/A	N/A	N/A	No Leading Power Factor for >100 VA
Rectification Restriction	N/A	N/A	N/A	N/A	N/A	No Half-Wave Rectification
Current Distortion	N/A	N/A	N/A	N/A	N/A	See Note <u>1</u> /
Current Spectrum	N/A	N/A	N/A	N/A	N/A	See Note <u>1</u> /

TABLE SVF101-I. <u>MIL-STD-704 limits for single phase power, power factor, rectification</u> restriction, current distortion, and current spectrum for single phase, variable frequency <u>utilization equipment</u>.

1/. The utilization equipment performance specification document should include requirements that reduce the likelihood of the equipment having an adverse effect on the electrical power characteristics of the aircraft. Current distortion and current spectrum limits may be imposed to minimize undesirable effects to the electrical power characteristics. These limits should take into account the utilization equipment power draw, aircraft electrical system capacity and distribution characteristics, trade-offs with weight, volume, cost, and reliability that are specific to each type of equipment and aircraft.

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply (rotating AC source for current waveform limits)
- b. True RMS voltmeter
- c. Frequency counter
- d. Power meter
- e. Spectrum Analyzer
- f. Distortion meter
- g. Current transformer
- h. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SVF101-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT. Current measurements must be taken from the 115 Volt conductors. If the utilization equipment performance specification document imposes current waveform limits, the AC power source must be a rotating machine.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SVF101-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz.

Close the circuit breaker, energizing the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the voltage, frequency, kVA, and power factor in table SVF101-2. Compare the kVA, power factor, and rectification with the required limits/restriction of the applicable edition(s) of MIL-STD-704. Confirm that the utilization equipment does not use half-wave rectification and record in table SVF101-II. Repeat for each mode of operation of the UUT. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

If the utilization equipment performance specification document imposes current waveform limits, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Record the total current distortion and current spectrum in the data sheet shown in table SVF101-II and compare to the limits defined in the utilization equipment performance specification document. Repeat for each mode of operation of the UUT.


5. If current waveform limits are imposed by the detail performance specification, the AC power source shall be a rotating machine.

-

FIGURE SVF101-1. Load and current distortion measurement.

Test performe	Test performed at <b>400 Hz</b> steady state frequency							
Load and Pow	ver Factor							
Voltage	Frequency	Volt-Amp	Power Factor	Pass/Fail	Comments			
V _{rms}	Hz	VA	pf					
Rectification Type								
				Pass/Fail				
Does not use l	nalf-wave rectific	ation.						
Current Wave	form Measureme	ents						
Total Curre	ent Distortion	Current	Spectrum	Pass/Fail	Comments			
		Attach	Amplitude					
	% Distortion Spectrum Plot		Vs.					
			Frequency					
	1	1						
Test performe	d at 360 Hz stead	ly state frequency	у					
Load and Pow	ver Factor		I I					
Voltage	Frequency	Volt-Amp	Power Factor	Pass/Fail	Comments			
V _{rms}	Hz	VA	pf					
Test performe	d at 600 Hz stead	ly state frequency	У					
Load and Pow	ver Factor	I	1					
Voltage	Frequency	Volt-Amp	Power Factor	Pass/Fail	Comments			
V _{rms}	Hz	VA	pf					
		Attach	Amplitude					
	% Distortion	Spectrum Plot	Vs.					
			Frequency					

### TABLE SVF101-II. Sample data sheet for SVF101 load measurement.

Test p	Test performed at 800 Hz steady state frequency								
Load	Load and Power Factor								
Vo	ltage	Frequ	iency	Volt-	Amp	Power	Factor	Pass/Fail	Comments
	V _{rms}		Hz		VA		pf		

### TABLE SVF101-II. Sample data sheet for SVF101 load measurement. - Continued

#### METHOD SVF102 Steady State Limits for Voltage and Frequency

POWER GROUP:	Single Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Normal

PARAMETER: Steady State Limits for Voltage and Frequency

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when provided power with voltage and frequency at the Normal Low Steady State (NLSS) limits and the Normal High Steady State (NHSS) limits as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when supplied input power of voltage and frequency at the specified normal steady state limits of the applicable edition(s) of MIL-STD-704 and as noted in table SVF102-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage and frequency limits and should be, not less than the time duration noted for the test conditions. The utilization equipment must demonstrate restart at the steady state voltage and frequency limits. The utilization equipment must not suffer damage or cause an unsafe condition.

Normal Limit	704A	704B	704C	704D	704E	704F
Voltage NLSS	N/A	N/A	N/A	N/A	N/A	108 V
Voltage NHSS	N/A	N/A	N/A	N/A	N/A	118 V
Frequency NLSS	N/A	N/A	N/A	N/A	N/A	360 Hz
Frequency NHSS	N/A	N/A	N/A	N/A	N/A	800 Hz

 TABLE SVF102-I.
 MIL-STD-704 normal limits for steady state voltage and frequency for single phase, variable frequency utilization equipment.

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. True RMS voltmeter
- c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure SVF102-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SVF102-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through NN noted in table SVF102-II, the UUT must remain for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage and frequency limits and should be, not less than the time duration noted. For test conditions E through NN, after each test condition slowly adjust the frequency until the next test condition is reached. This subjects the UUT to all frequency between 360 Hz and 800 Hz at the low steady state voltage limit and the high steady state voltage limit. At each test condition A through NN conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. For each test condition shutdown the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. For each test condition shutdown the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the voltage, frequency, time duration at test condition, successful/unsuccessful re-start and the performance of the UUT for each test condition in the data sheet shown in table SVF102-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

# TABLE SVF102-II. Test conditions for steady state limits of voltage and frequency for single phase, variable frequency utilization equipment.

Test Condition	Voltage	Frequency	Minimum Time
			Duration At test
			Condition
Nominal Voltages			
A	115 V	360 Hz	30 min
В	115 V	400 Hz	30 min
С	115 V	600 Hz	30 min
D	115 V	800 Hz	30 min
Normal Low Steady State	e Voltages	-	
E	108 V	360 Hz	30 min
F	108 V	400 Hz	30 min
G	108 V	440 Hz	5 min
Н	108 V	480 Hz	5 min
Ι	108 V	520 Hz	5 min
J	108 V	560 Hz	5 min
K	108 V	600 Hz	30 min
L	108 V	520 Hz	5 min
М	108 V	540 Hz	5 min
Ν	108 V	560 Hz	5 min
0	108 V	570 Hz	5 min
Р	108 V	580 Hz	5 min
Q	108 V	600 Hz	30 min
R	108 V	640 Hz	5 min
S	108 V	680 Hz	5 min
Т	108 V	720 Hz	5 min
U	108 V	760 Hz	5 min
V	108 V	800 Hz	30 min
Normal High Steady Stat	e Voltages		
W	118 V	360 Hz	30 min
Х	118 V	400 Hz	30 min
Y	118 V	440 Hz	5 min
Z	118 V	480 Hz	5 min
AA	118 V	520 Hz	5 min
BB	118 V	560 Hz	5 min
CC	118 V	600 Hz	30 min
DD	118 V	520 Hz	5 min
EE	118 V	540 Hz	5 min
FF	118 V	560 Hz	5 min
GG	118 V	570 Hz	5 min
HH	118 V	580 Hz	5 min
II	118 V	600 Hz	30 min
JJ	118 V	640 Hz	5 min
КК	118 V	680 Hz	5 min
LL	118 V	720 Hz	5 min
MM	118 V	760 Hz	5 min
NN	118 V	800 Hz	30 min



 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

FIGURE SVF102-1. Steady state limits for voltage and frequency.

Test	Voltage	Frequency	Time Duration	Re-Start	Pass/Fail
Condition			at Test	(Yes/No)	
			Condition	, , ,	
Α	V _{rms}	Hz	min		
В	V _{rms}	Hz	min		
С	V _{rms}	Hz	min		
D	V _{rms}	Hz	min		
Е	V _{rms}	Hz	min		
F	V _{rms}	Hz	min		
G	V _{rms}	Hz	min		
Н	V _{rms}	Hz	min		
Ι	V _{rms}	Hz	min		
J	V _{rms}	Hz	min		
K	V _{rms}	Hz	min		
L	V _{rms}	Hz	min		
М	V _{rms}	Hz	min		
Ν	V _{rms}	Hz	min		
0	V _{rms}	Hz	min		
Р	V _{rms}	Hz	min		
Q	V _{rms}	Hz	min		
R	V _{rms}	Hz	min		
S	V _{rms}	Hz	min		
Т	V _{rms}	Hz	min		
U	V _{rms}	Hz	min		
V	V _{rms}	Hz	min		
W	V _{rms}	Hz	min		

 TABLE SVF102-III. Sample data sheet for SVF102 steady state limits of voltage and frequency for single phase, variable frequency utilization equipment.

Test	Voltage	Frequency	Time Duration	Re-Start	Pass/Fail
Condition			at Test	(Yes/No)	
			Condition		
X	V _{rms}	Hz	min		
Y	V _{rms}	Hz	min		
Z	V _{rms}	Hz	min		
AA	V _{rms}	Hz	min		
BB	V _{rms}	Hz	min		
CC	V _{rms}	Hz	min		
DD	V _{rms}	Hz	min		
EE	V _{rms}	Hz	min		
FF	V _{rms}	Hz	min		
GG	V _{rms}	Hz	min		
HH	V _{rms}	Hz	min		
II	V _{rms}	Hz	min		
JJ	V _{rms}	Hz	min		
KK	V _{rms}	Hz	min		
LL	V _{rms}	Hz	min		
MM	V _{rms}	Hz	min		
NN	V _{rms}	Hz	min		

 TABLE SVF102-III. Sample data sheet for SVF102 steady state limits of voltage and frequency for single phase, variable frequency utilization equipment.

 variable frequency utilization equipment.

### METHOD SVF103 (No Test Required)

POWER GROUP:	Single Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Normal
PARAMETER:	No test required. Test number SVF103 is not used so that the Single Phase, Variable Frequency, 115 V (SVF) test numbers coincide with the Three Phase, Variable Frequency, 115 V (TVF) test sequence numbers.

#### METHOD SVF104 Voltage Modulation

POWER GROUP: Single Phase, Variable Frequency, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: N

Normal

PARAMETER:

Voltage Modulation

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to voltage modulation as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when supplied input power having voltage modulation as specified in the applicable edition(s) of MIL-STD-704 and as noted in table SVF104-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when provided power having voltage modulation. The utilization equipment must not suffer damage or cause an unsafe condition.

 TABLE SVF104-I.
 MIL-STD-704 limits for voltage modulation for single phase, variable

 frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Voltage	N/A	N/A	N/A	N/A	N/A	2.5 Vrms
Modulation						max

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SVF104-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SVF104-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization

equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through G noted in table SVF104-II, set the voltage modulation amplitude and frequency of voltage modulation. The UUT must remain at the test condition for a length of time that confirms the utilization equipment can continuously operate, and should be at least ten (10) minutes at an average steady state voltage of 115 Vrms, at least ten (10) minutes at an average steady state voltage of 115 Vrms, at least ten (10) minutes at an average steady state voltage of 116.75 Vrms. During the test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record average voltage, frequency, amplitude of voltage modulation, frequency of voltage modulation, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table SVF104-III. Repeat for each mode of operation of the UUT. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Frequency of Voltage	MIL-STD-704F	
	Modulation	Amplitude of Voltage	
		Modulation	
		Vrms	
A	1.0 Hz	0.375 Vrms	
В	1.7 Hz	0.375 Vrms	
С	10 Hz	2.5 Vrms	
D	25 Hz	2.5 Vrms	
E	70 Hz	0.375 Vrms	
F	100 Hz	0.375 Vrms	
G	200 Hz	0.375 Vrms	

#### TABLE SVF104-II. Test conditions for voltage modulation for single phase, variable frequency utilization equipment.



19

FIGURE SVF104-1. Voltage modulation.

Test	Parameters					
Condition	Average	Frequency	Amplitude of	Frequency of	Time Duration	
	Voltage		Voltage	Voltage	at Test	
			Modulation	Modulation	Condition	
Test performed	at 400 Hz steady	state frequency				
	V _{rms}	Hz	V _{rms}	Hz	min	
А	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
В	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
С	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
D	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
E	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
F	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
G	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	

20

TABLE SVF104-III. Sample data sheet for SVF104 voltage modulation for single phase, variable frequency utilization equipment.

Test	Parameters					
Condition	Average	Frequency	Amplitude of	Frequency of	Time Duration	
	Voltage		Voltage	Voltage	at Test	
			Modulation	Modulation	Condition	
Test performed	at 360 Hz steady	state frequency				
	V _{rms}	Hz	V _{rms}	Hz	min	
A	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
В	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
С	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
D	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
Е	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
F	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
G	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	

### TABLE SVF104-III. Sample data sheet for SVF104 voltage modulation for single phase, variable frequency utilization equipment. Continued

Test			Parameters			Performance
Condition	Average	Frequency	Amplitude of	Frequency of	Time Duration	
	Voltage		Voltage	Voltage	at Test	
			Modulation	Modulation	Condition	
Test performed	at 600 Hz steady	state frequency				
	V _{rms}	Hz	V _{rms}	Hz	min	
A	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
В	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
C	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
D	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
E	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
F	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
G	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	

## TABLE SVF104-III. Sample data sheet for SVF104 voltage modulation for single phase, variable frequency utilization equipment. - Continued

Test			Parameters			Performance
Condition	Average	Frequency	Amplitude of	Frequency of	Time Duration	
	Voltage		Voltage	Voltage	at Test	
			Modulation	Modulation	Condition	
Test performed	at 800 Hz steady	state frequency				
	V _{rms}	Hz	V _{rms}	Hz	min	
А	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
В	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
C	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
D	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
E	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
F	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	
G	V _{rms}	Hz	V _{rms}	Hz	min	
	V _{rms}	Hz	V _{rms}	Hz	min	

### TABLE SVF104-III. Sample data sheet for SVF104 voltage modulation for single phase, variable frequency utilization equipment. - Continued

#### METHOD SVF105 Frequency Modulation

POWER GROUP:	Single Phase, Variable Frequency, 115 V $$

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Normal

PARAMETER:

Frequency Modulation

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to frequency modulation as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when supplied input power having frequency modulation as specified in the applicable edition(s) of MIL-STD-704 and as noted in table SVF105-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when provided power having frequency modulation and should be, not less than thirty (30) minutes. The utilization equipment must maintain specified performance.

 TABLE SVF105-I.
 MIL-STD-704 limits for frequency modulation for single phase, variable

 frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Frequency Modulation	N/A	N/A	N/A	N/A	N/A	4 Hz

#### 3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SVF105-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SVF105-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization

equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through E noted in table SVF105-II, set the amplitude of frequency modulation and rate of change for frequency modulation. The UUT must remain at the test condition for a length of time that confirms the utilization equipment can continuously operate, and should be at least thirty (30) minutes. At each test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record voltages, average frequency, amplitude of frequency modulation, rate of change for frequency modulation, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table SVF105-III. Repeat for each mode of operation of the UUT. Repeat the testing at an average frequency of 362 Hz, 600 Hz, and 798 Hz.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

TABLE SVF105-II.	Test conditions	for freq	uency	modulation	ı for	single	phase,	variable
	frequency	<u>y utiliza</u>	tion e	<u>quipment</u> .		-		

Test	Rate of change for	MIL-STD-704F
Condition	frequency modulation	Amplitude of
		Frequency
		Modulation
А	1 Hz/sec	4 Hz (± 2 Hz)
В	5 Hz/sec	4 Hz (± 2 Hz)
С	10 Hz/sec	4 Hz (± 2 Hz)
D	25 Hz/sec	4 Hz (± 2 Hz)
Е	100 Hz/sec	4 Hz (± 2 Hz)



26

FIGURE SVF105-1. Frequency modulation.

Test		Parameters Performance							
Condition	Voltage	Average	Amplitude of	Rate of change	Time Duration	Pass/Fail			
	C C	Frequency	Frequency	for frequency	at Test				
			Modulation	modulation	Condition				
Testing perform	ned at an average f	frequency of 400 I	Hz						
А	V _{rms}	Hz	± Hz	Hz/sec	min				
В	V _{rms}	Hz	± Hz	Hz/sec	min				
С	V _{rms}	Hz	± Hz	Hz/sec	min				
D	V _{rms}	Hz	± Hz	Hz/sec	min				
Е	V _{rms}	Hz	± Hz	Hz/sec	min				
Testing perform	ned at an average f	frequency of 362 I	Hz	· · ·					
А	V _{rms}	Hz	± Hz	Hz/sec	min				
В	V _{rms}	Hz	± Hz	Hz/sec	min				
С	V _{rms}	Hz	± Hz	Hz/sec	min				
D	V _{rms}	Hz	± Hz	Hz/sec	min				
Е	V _{rms}	Hz	± Hz	Hz/sec	min				
Testing perform	ned at an average f	frequency of 600 l	Hz	· · ·					
А	V _{rms}	Hz	± Hz	Hz/sec	min				
В	V _{rms}	Hz	± Hz	Hz/sec	min				
C	V _{rms}	Hz	± Hz	Hz/sec	min				
D	V _{rms}	Hz	±Hz	Hz/sec	min				
E	V _{rms}	Hz	± Hz	Hz/sec	min				

TABLE SVF105-III. Sample data sheet for SVF105 frequency modulation for single phase, variable frequency utilization equipment.

TABLE SVF105-III.	Sample data sheet for SVF105	frequenc	y modulation for	single	phase,	variable frequency	utilization	equipment.
	-	-	Continued	•				

Test					Paran	neters					Performance	
Condition	Volt	tage	Aver	age	Ampli	tude of	Rate of	change	Time D	uration	Pass/Fail	
			Frequ	ency	Frequ	iency	for free	quency	at T	lest		
					Modu	lation	modu	lation	Cond	lition		
Testing perform	ned at an	average f	frequency	of <b>798 I</b>	Hz							
Α		V _{rms}		Hz		± Hz		Hz/sec		min		
В		V _{rms}		Hz		± Hz		Hz/sec		min		
С		V _{rms}		Hz		± Hz		Hz/sec		min		
D		V _{rms}		Hz		± Hz		Hz/sec		min		
Е		V _{rms}		Hz		± Hz		Hz/sec		min		

#### METHOD SVF106 Voltage Distortion Spectrum

POWER GROUP:

SVF106

AIRCRAFT ELECTRICAL OPERATING CONDITION: Normal

Voltage Distortion Spectrum

1. Scope.

PARAMETER:

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to voltage distortion of frequencies and amplitudes as specified by the voltage distortion spectrum in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to voltage distortions as specified by the voltage distortion spectrum in the applicable edition(s) of MIL-STD-704 and as noted in table SVF106-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when provided power having voltage distortion. The utilization equipment must not suffer damage or cause an unsafe condition.

Note: This test method subjects the UUT to voltage distortion having frequencies components from 50 Hz to 10 kHz. These voltage distortions simulate voltage distortions within aircraft due to the cumulative effects of generators, electrical distribution systems equipments, and aircraft loads. MIL-STD-461, (Requirements For The Control of Electromagnetic Interference Characteristics of Subsystems and Equipment), Test Method CS101, (Conducted Susceptibility, Power Leads, 30 Hz to 150 kHz) is a complimentary test. Power levels of the voltage distortions differ for the two test methods. Performance of Test Method SVF106 of this handbook does not relinquish the requirement to perform test Method CS101 of MIL-STD-461, and performance of Method CS101 of MIL-STD-461 does not relinquish the requirement to perform Test Method SVF106 of this handbook.

 

 TABLE SVF106-I.
 MIL-STD-704 limits for voltage distortion spectrum for single phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Voltage Distortion Spectrum	N/A	N/A	N/A	N/A	N/A	figure 7 MIL-STD- 704F

#### 3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. Variable frequency power source
- c. Coupling transformer
- d. True RMS voltmeter
- e. Frequency counter
- f. Spectrum analyzer
- g. (2) Inductors, 50  $\mu$ F
- h. Capacitor, 10  $\mu F$
- i. Resistor, calibrated load

4. <u>Test setup</u>. Configure the test setup as shown in figure SVF106-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

4.1 <u>Calibration (50 Hz to 10 kHz)</u>. Install a calibrated resistive load in the test setup shown in figure SVF106-1 in place of the UUT. The calibrated resistive load must be sized to draw the same current as the UUT. Turn on the adjustable AC power supply and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Set the variable frequency power source to output a sine wave and adjust the frequency and amplitude so that the voltage distortion measured at the input to the calibrated resistive load conforms to each test condition A through H in table SVF106-II of the applicable edition(s) of MIL-STD-704. Record the settings of the variable frequency power source for each test condition. Repeat the calibration with the adjustable AC power supply output at steady state frequencies of 360 Hz, 600 Hz, and 800 Hz.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SVF106-1. Turn on the adjustable AC power supply and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

Set the variable frequency power source to the settings recorded for test condition A of the calibration procedure. For each test condition, remain for a length of time that confirms the utilization equipment can continuously operate with the voltage distortion and should be, not less than five (5) minutes. At each test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. After each test condition, monitor the voltage distortion frequency and amplitude while slowly increasing the variable frequency power source frequency and adjusting the amplitude until the next test condition is reached. Do not exceed the voltage distortion spectrum limits. Repeat for each test condition A through H noted in table SVF106-II. For each test condition, record voltage, frequency, frequency of voltage distortion, amplitude of voltage distortion, time duration at test condition, and the performance of the UUT in the data sheet shown in table SVF106-III. Repeat for each

mode of operation of the UUT. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

After all test conditions are complete, turn the adjustable AC power supply off and remove the coupling transformer from the circuit. Turn on the adjustable AC power supply. Adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

TABLE SVF106-II.	Test conditions for voltage distortion spectrum for single phase, va	ariable
	frequency utilization equipment.	

Test Condition	Frequency of Voltage	MIL-STD-704F
	Distortion	Amplitude of Voltage Distortion
		Voltage rms
А	50 Hz	0.316 Vrms
В	100 Hz	0.316 Vrms
С	500 Hz	1.580 Vrms
D	1 kHz	3.160 Vrms
Е	2 kHz	3.160 Vrms
F	3 kHz	3.160 Vrms
G	5 kHz	3.160 Vrms
Н	10 kHz	1.900 Vrms



5. CAUTION: Verify suitability of variable frequency power source and coupling transformer for distortion spectrum testing.

32

FIGURE SVF106-1. Normal operations - voltage distortion spectrum (50 Hz to 10 kHz).

Test			Performance							
Condition	Voltage	Frequ	uency	Freque	uency of Ampli		tude of Time D		uration	Pass/Fail
				Vol	tage	Vol	tage	at T	Test	
				Disto	ortion	Disto	ortion	Cond	lition	
Testing perfo	ormed at 400 Hz									
А	V _{rms}		Hz		Hz		V _{rms}		min	
В	V _{rms}		Hz		Hz		V _{rms}		min	
С	V _{rms}		Hz		Hz		V _{rms}		min	
D	V _{rms}		Hz		kHz		V _{rms}		min	
E	V _{rms}		Hz		kHz		V _{rms}		min	
F	V _{rms}		Hz		kHz		V _{rms}		min	
G	V _{rms}		Hz		kHz		V _{rms}		min	
Н	V _{rms}		Hz		kHz		V _{rms}		min	

 TABLE. SVF106-III.
 Sample data sheet for SVF106 voltage distortion spectrum for single phase, variable frequency

 utilization equipment.

Test		Parameter								
Condition	Voltage	Freq	uency	Frequency of		Amplitude of		Time Duration		Pass/Fail
	_		-	Vol	tage	Vol	tage	at Te	est	
				Disto	ortion	Disto	ortion	Condi	ition	
Testing perfo	ormed at 360 Hz									
А	V _{rms}		Hz		Hz		V _{rms}		min	
В	V _{rms}		Hz		Hz		V _{rms}		min	
С	V _{rms}		Hz		Hz		V _{rms}		min	
D	V _{rms}		Hz		kHz		V _{rms}		min	
E	V _{rms}		Hz		kHz		V _{rms}		min	
F	V _{rms}		Hz		kHz		V _{rms}		min	
G	V _{rms}		Hz		kHz		V _{rms}		min	
Н	V _{rms}		Hz		kHz		V _{rms}		min	
Ι	V _{rms}		Hz		kHz		V _{rms}		min	
J	V _{rms}		Hz		kHz		V _{rms}		min	
K	V _{rms}		Hz		kHz		V _{rms}		min	

# TABLE. SVF106-III. Sample data sheet for SVF106 voltage distortion spectrum for single phase, variable frequency utilization equipment. Continued

Test		Parameter								
Condition	Voltage	Freq	uency	Frequency of		Amplitude of		Time Duration		Pass/Fail
	_		-	Vol	tage	Vol	tage	at T	est	
				Disto	ortion	Disto	ortion	Cond	ition	
Testing perfo	ormed at 600 Hz									
А	V _{rms}		Hz		Hz		V _{rms}		min	
В	V _{rms}		Hz		Hz		V _{rms}		min	
С	V _{rms}		Hz		kHz		V _{rms}		min	
D	V _{rms}		Hz		kHz		V _{rms}		min	
Е	V _{rms}		Hz		kHz		V _{rms}		min	
F	V _{rms}		Hz		kHz		V _{rms}		min	
G	V _{rms}		Hz		kHz		V _{rms}		min	
Н	V _{rms}		Hz		kHz		V _{rms}		min	
Ι	V _{rms}		Hz		kHz		V _{rms}		min	
J	V _{rms}		Hz		kHz		V _{rms}		min	
K	V _{rms}		Hz		kHz		V _{rms}		min	

# TABLE. SVF106-III. Sample data sheet for SVF106 voltage distortion spectrum for single phase, variable frequency utilization equipment. Continued

Test		Parameter								
Condition	Voltage	Freq	uency	Frequency of		Amplitude of		Time Duration		Pass/Fail
	_		-	Vol	tage	Vol	tage	at Te	est	
				Disto	ortion	Disto	ortion	Condi	ition	
Testing perfo	ormed at 800 Hz									
А	V _{rms}		Hz		Hz		V _{rms}		min	
В	V _{rms}		Hz		Hz		V _{rms}		min	
С	V _{rms}		Hz		Hz		V _{rms}		min	
D	V _{rms}		Hz		kHz		V _{rms}		min	
Е	V _{rms}		Hz		kHz		V _{rms}		min	
F	V _{rms}		Hz		kHz		V _{rms}		min	
G	V _{rms}		Hz		kHz		V _{rms}		min	
Н	V _{rms}		Hz		kHz		V _{rms}		min	
Ι	V _{rms}		Hz		kHz		V _{rms}		min	
J	V _{rms}		Hz		kHz		V _{rms}		min	
K	V _{rms}		Hz		kHz		V _{rms}		min	

# TABLE. SVF106-III. Sample data sheet for SVF106 voltage distortion spectrum for single phase, variable frequency utilization equipment. Continued

#### METHOD SVF107 Total Voltage Distortion

POWER GROUP:	Single Phase, Variable Frequency, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Normal

Total Voltage Distortion

1. <u>Scope</u>.

PARAMETER:

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to voltage waveforms having a distortion factor as specified by the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to voltage waveforms having a distortion factor as specified by the applicable edition(s) of MIL-STD-704 and as noted in table SVF107-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when subjected to distorted voltage waveforms and should be not less than thirty (30) minutes. The utilization equipment must not suffer damage or cause an unsafe condition.

 TABLE SVF107-I.
 MIL-STD-704 limits for total voltage distortion for single phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Voltage Distortion Factor	N/A	N/A	N/A	N/A	N/A	0.05

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Spectrum analyzer
- e. Distortion meter

4. <u>Test setup</u>. Configure the test setup as shown in figure SVF107-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

4.1 <u>Calibration</u>. Install a resistive load in the test setup shown in figure SVF107-1 in place of the UUT. The resistive load must be sized to draw the same current as the UUT. Set

the programmable power supply to produce a voltage waveform having harmonic contents listed in table SVF107-II. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Confirm that the programmable power supply is producing a voltage waveform having harmonic content listed in table SVF107-2. Record the settings of the programmable power supply.

5. Compliance test. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SVF107-1. Set the programmable power supply to the settings recorded during the calibration procedure. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. The UUT must remain for a length of time that confirms the utilization equipment can continuously operate with the total voltage distortion and should be not less than thirty (30) minutes. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the voltage, frequency, voltage distortion factor, voltage harmonics, time duration at test condition, and the performance of the UUT in the data sheet shown in table SVF107-III. Repeat for each mode of operation of the UUT. Repeat the testing at a fundamental frequency of 360 Hz, 600 Hz, and 800 Hz.

After all test conditions are complete, set the programmable power supply to produce a sine wave for each of the three phases. Adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

# TABLE SVF107-II. Voltage harmonics as percent of fundamental for total voltage distortion test for single phase, variable frequency utilization equipment.

Harmonic	MIL-STD-704F
	Percent of
	Fundamental
Fundamental	100%
2nd	0%
3rd	2.75%
4th	0%
5th	2.75%
6th	0%
7th	1.97%
8th	0%
9th	1.53%
10th	0%
11th	1.25%
12th	0%
13th	1.06%
14th	0%
15th	0.92%



c. CAUTION: Verify suitability of variable frequency power source and coupling transf spectrum testing.

FIGURE SVF107-1. Normal operation - voltage distortion spectrum (50 Hz to 10 kHz).

#### MIL-STD704 704

### TABLE SVF107-III. Sample data sheet for SVF107 total voltage distortion for single phase, variable frequency utilization equipment.

								_		
	Parameters									
Voltag	Voltage Frequ		iency	Voltage		Time Duration		Pass/Fail		
C		1	5	Disto	ortion		ſest			
				Fac	tor	Cond	lition			
Testing ne	erforme	d at a fiu	ndamenta	1 frequen	$\frac{1}{2}$	) H7				
resting pe	x _z	a at a ful	TT	i nequen	No unite	) 11 <u>2</u>	•			
	V _{rms}		HZ		no units		min			
			Volta	ige Harm	onics					
			Fund		%					
			$2^{nd}$		%					
			3 rd		%					
			4 th		%					
			5 th		%					
			6 th		%					
			7 th		%					
			$8^{\text{th}}$		%					
			9 th		%					
			$10^{\text{th}}$		%					
			$11^{\text{th}}$		%					
			$12^{\text{th}}$		%					
			$13^{\text{th}}$		%					
			$14^{\text{th}}$		%					
			$15^{\text{th}}$		%					

41

### MIL-STD704 704

# TABLE SVF107-III. Sample data sheet for SVF107 total voltage distortion for single phase, variable frequency utilization equipment. Continued

					Performance			
Vol	tage	Frequ	Frequency		tage	Time Duration		Pass/Fail
	-		-	Disto	ortion	at Test		
				Fac	etor	Conc	lition	
Testing	performe	ed at a fui	ndamenta	l frequen	cy of 36	) Hz		
	V _{rms}		Hz		No units		min	
			Volta	ige Harm	onics			
			Fund		%			
			$2^{nd}$		%			
			3 rd		%			
			$4^{\text{th}}$		%			
			$5^{\text{th}}$		%			
			$6^{\text{th}}$		%			
			$7^{\text{th}}$		%			
			$8^{\text{th}}$		%			
			9 th		%			
			$10^{\text{th}}$		%			
			11 th		%			
			$12^{\text{th}}$		%			
			13 th		%			
			$14^{\text{th}}$		%			
			$15^{\text{th}}$		%			
### MIL-STD704 704

# TABLE SVF107-III. Sample data sheet for SVF107 total voltage distortion for single phase, variable frequency utilization equipment. variable frequency utilization equipment. - Continued

Parameters								Performance
Voltage Fr		Frequ	uency Voltage		tage	Time Duration		Pass/Fail
				Disto	ortion	at 7	ſest	
				Fac	etor	Conc	lition	
Testing	performe	ed at a fui	ndamenta	l frequen	cy of 600	) Hz		
	V _{rms}		Hz		No units		min	
			Volta	ige Harm	onics			
			Fund		%			
			$2^{nd}$		%			
			$3^{rd}$		%			
			$4^{\text{th}}$		%			
			$5^{\text{th}}$		%			
			6 th		%			
			$7^{\text{th}}$		%			
			$8^{\text{th}}$		%			
			9 th		%			
			$10^{\text{th}}$		%			
			11 th		%			
			$12^{\text{th}}$		%			
			13 th		%			
			14 th		%			
			$15^{\text{th}}$		%			

### MIL-STD704 704

# TABLE SVF107-III. Sample data sheet for SVF107 total voltage distortion for single phase, variable frequency utilization equipment. variable frequency utilization equipment. - Continued

Parameters								Performance
Voltage F		Frequ	Frequency		Voltage		uration	Pass/Fail
	-		-	Disto	ortion	at 7	ſest	
				Fac	ctor	Conc	lition	
Testing	performe	ed at a fui	ndamenta	l frequen	cy of 800	) Hz		
	V _{rms}		Hz		No units		min	
			Volta	ige Harm	onics			
			Fund		%			
			$2^{nd}$		%			
			$3^{rd}$		%			
			$4^{\text{th}}$		%			
			$5^{\text{th}}$		%			
			6 th		%			
			$7^{\text{th}}$		%			
			$8^{\text{th}}$		%			
			9 th		%			
			$10^{\text{th}}$		%			
			11 th		%			
			$12^{\text{th}}$		%			
			13 th		%			
			$14^{\text{th}}$		%			
			$15^{\text{th}}$		%			

44

#### METHOD SVF108 DC Voltage Component

POWER GROUP:	Single Phase, Variable Frequency, $115 \text{ V}$

AIRCRAFT ELECTRICAL OPERATING CONDITION: No

Normal

PARAMETER: DC Voltage Component

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to a direct current component of AC voltage as specified by the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to a direct current component of AC voltage as specified by the applicable edition(s) of MIL-STD-704 and as noted in table SVF108-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when subjected to a direct current component of AC voltage and should be not less than thirty (30) minutes. The utilization equipment must not suffer damage or cause an unsafe condition.

 MIL-STD-704 limits for direct current component of AC voltage for single phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
DC Voltage Component of the AC Voltage	N/A	N/A	N/A	N/A	N/A	± 0.10 V

- 3. <u>Apparatus</u>. The test set equipment should be as follows:
  - a. Programmable AC power supply
  - b. True RMS voltmeter (with capability to measure DC component of AC waveform)
  - c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure SVF108-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SVF108-1. Set the programmable power

supply to produce a voltage waveform having a DC component for test condition A as noted in table SVF108-II. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. The UUT must remain for a length of time that confirms the utilization equipment can continuously operate with the direct current component of the AC voltage and should be not less than thirty (30) minutes. Repeat the test for test condition B as noted in table SVF108-II. Record the voltage, frequency, DC voltage component, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table SVF108-III. Repeat for each mode of operation of the UUT. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

After all test conditions are complete, set the programmable power supply to produce a voltage sine wave without a DC component. Adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

## TABLE SVF108-II. Test conditions for direct current component of the AC voltage for single phase, variable frequency utilization equipment.

Test Condition	MIL-STD-704F Direct Current Component of AC Voltage
А	+ 0.10V
В	– 0.10 V



47

FIGURE SVF108-1. DC voltage component.

## TABLE SVF108-III. Sample data sheet for SVF108 DC voltage component for single phase, variable frequency utilization equipment.

Test		Performance			
Condition	Voltage	tage Frequency I		Time Duration	Pass/Fail
			Component	at Test	
				Condition	
Testing Perform	ned at 400 Hz				
А	V _{rms}	Hz	V _{dc}	min	
В	V _{rms}	Hz	V _{dc}	min	
Testing Performed at <b>360 Hz</b>					
А	V _{rms}	Hz	V _{dc}	min	
В	V _{rms}	Hz	V _{dc}	min	
Testing Perform	ned at 600 Hz				
А	V _{rms}	Hz	V _{dc}	min	
В	V _{rms}	Hz	V _{dc}	min	
Testing Performed at 800 Hz					
A	V _{rms}	Hz	V _{dc}	min	
В	V _{rms}	Hz	V _{dc}	min	

#### METHOD SVF109 Normal Voltage Transients

POWER GROUP:	Single Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Normal

PARAMETER: Normal Voltage Transients

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to normal voltage transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to voltage transients within the normal limits of the applicable edition(s) of MIL-STD-704 and as noted in table SVF109-I. The utilization equipment must maintain specified performance during and after the voltage transients. The utilization equipment must not suffer damage or cause an unsafe condition.

 TABLE SVF109-I.
 MIL-STD-704 limits for normal voltage transients for single phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Normal Voltage Transients	N/A	N/A	N/A	N/A	N/A	figure 3 MIL-STD- 704F

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SVF109-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SVF109-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization

equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

The UUT must be subjected to the voltage transients for each test condition A through M noted in table SVF109-II. The voltage must increase or decrease from steady state voltage to the voltage transient level within  $\frac{1}{2}$  cycle. The voltage must remain at the voltage transient level for the duration noted in table SVF109-II. The voltage must return to steady state over the time duration noted in table SVF109-II. For test condition G, three overvoltage transients of 180 Vrms for 10 milliseconds are performed, separated by 0.5 seconds. For test condition L, three undervoltage transients of 80 Vrms for 10 milliseconds are performed, separated by 0.5 seconds. For test condition M, an undervoltage transient of 80 Vrms for 10 milliseconds is immediately followed by an overvoltage transient of 180 Vrms for 10 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal steady state limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltage, steady state frequency, voltage transient level, time duration at voltage transient, oscilloscope trace, and the performance of the UUT for each test condition in the data sheet shown in table SVF109-III. Repeat for each mode of operation of the UUT. In addition perform the repetitive normal voltage transient test described below. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

5.1 <u>Repetitive normal voltage transients test</u>. Program the power supply to provide a continually repeating voltage transient that decreases from 115 Vrms to 90 Vrms in ½ cycle, then increases to 140 Vrms over 50 msec, then decreases to 115 Vrms over ½ cycle. The voltage transient is repeated every 0.5 seconds, see figure2. The UUT must be subjected to the repetitive voltage transient for a length of time that confirms the utilization equipment can continuously operate and should be not less than thirty (30) minutes. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltage, steady state frequency, high voltage transient level, low voltage transient level, oscilloscope trace, time duration at test condition, and the performance of the UUT in the data sheet shown in table SVF109-III. Repeat for each mode of operation of the UUT. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Time From	Voltage	Duration at	Time From
	Steady State	Transient Level	Voltage	Voltage
	Voltage to	Vrms	Transient Level	Transient Level
	Voltage		milliseconds	to Steady State
	Transient Level			Voltage
	milliseconds			milliseconds
Overvoltage Transients				
А	< ½ cycle	140 Vrms	60 msec	< ½ cycle
В	< ½ cycle	140 Vrms	60 msec	25 msec
С	< ½ cycle	160 Vrms	34 msec	< ½ cycle
D	< ½ cycle	160 Vrms	34 msec	52 msec
E	< ½ cycle	180 Vrms	10 msec	< ½ cycle
F	< ½ cycle	180 Vrms	10 msec	77 msec
G	$< \frac{1}{2}$ cycle	180 Vrms	10 msec	< ½ cycle
U		(3 times)	every 0.5 sec	
Undervoltage Transients				
Н	< ½ cycle	90 Vrms	35 msec	< ½ cycle
Ι	< ½ cycle	90 Vrms	35 msec	45 msec
J	< ½ cycle	80 Vrms	10 msec	< ½ cycle
K	< ½ cycle	80 Vrms	10 msec	70 msec
Т	< ½ cycle	80 Vrms	10 msec	< ½ cycle
L		(3 times)	every 0.5 sec	
Combined Transient				
М	$< \frac{1}{2}$ cycle	80 Vrms	10 msec	$< \frac{1}{2}$ cycle
1 <b>VI</b>	then $< \frac{1}{2}$ cycle	180 Vrms	10 msec	77 msec

# TABLE SVF109-II. Test conditions for normal voltage transients for single phase, variable frequency utilization equipment.



FIGURE SVF109-1. Normal voltage transients.



52

FIGURE SVF109-2. Repetitive normal voltage transient.

Test			Paramete	ers			Performance
Condition	Steady State	Steady State	Voltage	Time at	Oscilloso	Oscilloscope Trace	
	Voltage	Frequency	Transient	Voltage		-	
				Transient			
				Level			
Testing perf	formed at 400 Hz						
A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
В	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
С	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
D	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
E	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
F	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
G	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
Н	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
Ι	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
J	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
K	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
L	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
М	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
IVI			V _{rms}	msec			
Popotitivo	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
Transient			V _{rms}	msec			
Tansient			Time duration	at test condition		min	

# TABLE SVF109-III. Sample data sheet for SVF109 normal voltage transients for single phase, variable frequency utilization equipment.

Test			Paramete	ers			Performance
Condition	Steady State	Steady State	Voltage	Time at	Oscillosc	Oscilloscope Trace	
	Voltage	Frequency	Transient	Voltage		-	
				Transient			
				Level			
Testing perf	formed at 360 Hz						
А	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
В	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
С	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
D	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
E	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
F	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
G	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
Н	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
Ι	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
J	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
K	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
L	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
М	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
IVI			V _{rms}	msec			
Popotitivo	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
Transient			V _{rms}	msec			
Tansient			Time duration	at test condition		min	

# TABLE SVF109-III. Sample data sheet for SVF109 normal voltage transients for single phase, variable frequency utilization equipment. - Continued

Test			Paramete	ers			Performance
Condition	Steady State	Steady State	Voltage	Time at	Oscillosc	cope Trace	Pass/Fail
	Voltage	Frequency	Transient	Voltage			
				Transient			
				Level			
Testing perf	formed at 600 Hz						
A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
В	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
С	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
D	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
E	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
F	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
G	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
Н	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
Ι	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
J	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
K	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
L	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
м	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
IVI			V _{rms}	msec			
Donatitiva	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
Transiont			V _{rms}	msec			
Tansient			Time duration	at test condition		min	

# TABLE SVF109-III. Sample data sheet for SVF109 normal voltage transients for single phase, variable frequency utilization equipment. - Continued

Test	Parameters						
Condition	Steady State	Steady State	Voltage	Voltage Time at		Oscilloscope Trace	
	Voltage	Frequency	Transient	Voltage		1	
	C	1 2		Transient			
				Level			
Testing perf	formed at 800 Hz						
А	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
В	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
С	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
D	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
Е	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
F	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
G	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
Н	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
Ι	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
J	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
K	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
L	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
М	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
1 <b>V1</b>			V _{rms}	msec			
Donotitivo	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
Transiont			V _{rms}	msec			
Tansıcılı		Time duration at test condition					

# TABLE SVF109-III. Sample data sheet for SVF109 normal voltage transients for single phase, variable frequency utilization equipment. - Continued

#### METHOD SVF110 Normal Frequency Transients

POWER GROUP:	Single Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Normal

PARAMETER:

Normal Frequency Transients

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to normal frequency transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to frequency transients within the normal limits of the applicable edition(s) of MIL-STD-704 and as noted in table SVF110-I. The utilization equipment must maintain specified performance during and after the frequency transients. The utilization equipment must not suffer damage or cause an unsafe condition.

 

 MIL-STD-704 limits for normal frequency transients for single phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Normal Frequency Transients	N/A	N/A	N/A	N/A	N/A	360 Hz to 800 Hz
						Maximum Rate of
						Change of
						Frequency
						250 Hz/sec

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SVF110-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SVF110-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

The UUT must be subjected to the frequency transients for each test condition A through I noted in table SVF110-II. The frequency must increase or decrease from the start frequency to the frequency transient level over the duration noted; the frequency must remain at the frequency transient level for the duration noted; and the frequency must return from the frequency transient level over the duration noted; and the frequency must return from the frequency transient level over the duration noted. For test condition I, an underfrequency transient is immediately followed by an overfrequency transient. For each test condition, monitor the performance of the UUT during the frequency transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Repeat each test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltage, start frequency, frequency transient level, time at frequency transient, oscilloscope trace (Hz vs. time), and the performance of the UUT for each test condition in the data sheet shown in table SVF110-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

TABLE SVF110-II.	Test conditions for MIL-STD-704 normal frequency transients for single
	phase, variable frequency utilization equipment.

Test Condition	Start Frequency	Time From Start Frequency to Frequency Transient Level	Frequency Transient Level	Duration at Frequency Transient Level	Time From Frequency Transient Level to Start Frequency
Overfrequency T	ransients				
А	360 Hz	1.76 seconds	800 Hz	¹ / ₂ cycle	1.76 seconds
В	360 Hz	1.76 seconds	800 Hz	1 second	1.76 seconds
С	360 Hz	0.96 seconds	600 Hz	¹ / ₂ cycle	0.96 seconds
D	360 Hz	0.96 seconds	600 Hz	1 second	0.96 seconds
Underfrequency	Transients				
Е	800 Hz	1.76 seconds	360 Hz	¹ / ₂ cycle	1.76 seconds
F	800 Hz	1.76 seconds	360 Hz	1 second	1.76 seconds
G	800 Hz	0.80 seconds	600 Hz	¹ / ₂ cycle	0.80 seconds
Н	800 Hz	0.80 seconds	600 Hz	1 second	0.80 seconds
Combined Trans	ient				
I	600 Hz	0.96 seconds	360 Hz	¹ / ₂ cycle	0.96 seconds
1		then 0.80 seconds	800 Hz	¹ / ₂ cycle	0.80 seconds



60

FIGURE SVF110-1. Normal frequency transients.

Test		Parameters								Performance
Condition	Steady	State	Start	Free	quency	Time	e at	Oscillos	Oscilloscope Trace	
	Volta	age	Frequency	Tra	insient	Freque	ency		-	
						Transi	ient			
						Leve	el			
A		V _{rms}	Н	Z	Hz		msec	Attach Trace	Hz vs. Time	
В		V _{rms}	Н	Z	Hz		msec	Attach Trace	Hz vs. Time	
С		V _{rms}	Н	Z	Hz		msec	Attach Trace	Hz vs. Time	
D		V _{rms}	Н	Z	Hz		msec	Attach Trace	Hz vs. Time	
E		V _{rms}	Н	Z	Hz		msec	Attach Trace	Hz vs. Time	
F		V _{rms}	Н	Z	Hz		msec	Attach Trace	Hz vs. Time	
G		V _{rms}	Н	Z	Hz		msec	Attach Trace	Hz vs. Time	
Н		V _{rms}	Н	Z	Hz		msec	Attach Trace	Hz vs. Time	
Т		V _{rms}	Н	Z	Hz		msec	Attach Trace	Hz vs. Time	
1					Hz		msec			

## TABLE SVF110-III. Sample data sheet for SVF110 normal frequency transients for single phase, variable frequency utilization equipment.

#### METHOD SVF201 **Power Interrupt**

**POWER GROUP:** Single Phase, Variable Frequency, 115 V

AIRCRAFT ELECTRICAL **OPERATING CONDITION: Transfer Interrupt** 

PARAMETER:

Power Interrupt

1. Scope.

1.1 Purpose. This test procedure is used to verify that single phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to power interrupts as specified in the applicable edition(s) of MIL-STD-704.

2. Validation criteria. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for transfer aircraft electrical conditions when subjected to power interrupts as specified by the applicable edition(s) of MIL-STD-704 and as noted in table SVF201-I. The utilization equipment must maintain the specified performance during power interrupts. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

#### TABLE SVF201-I. MIL-STD-704 power transfer limits for single phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Power	N/A	N/A	N/A	N/A	N/A	50 msec
Interrupt						
Voltage	N/A	N/A	N/A	N/A	N/A	108 V
NLSS						
Voltage	N/A	N/A	N/A	N/A	N/A	118 V
NHSS						

3. Apparatus. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope
- e. Resistive dummy load

4. Test setup. Configure the test setup as shown in figure SVF201-1. The dummy resistive load placed in parallel to the UUT should be sized to draw three times the steady state current of the

UUT. Note: This is done to ensure that the UUT test does not lose stored energy to other aircraft loads during power interrupts. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SVF201-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through K noted in table SVF201-II, adjust the voltage to the steady state voltage listed. Perform a power interrupt (0 V) of the duration listed. The voltage must decrease from the steady state voltage to 0 Volts within 1/2 cycle, remain at 0 Volts for the duration listed for the test condition, and return from 0 Volts to the Steady State voltage within 1/2 cycle. For test condition J, three 50 milliseconds power interrupts are performed, separated by 0.5 seconds. For test condition K a normal overvoltage transient follows the power interrupt. The normal voltage transient is 160 Vrms for 30 milliseconds and returns to nominal voltage over the next 40 milliseconds. For test condition L a normal undervoltage transient follows the power interrupt. The normal voltage transient is 70 Vrms for 30 milliseconds and returns to nominal voltage over the next 40 milliseconds. For each test condition, monitoring the performance of the UUT according to the utilization equipment performance test procedures for power transfer operation to verify that the UUT is providing specified performance for transfer aircraft electrical conditions. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing the performance specified for normal aircraft electrical conditions (if the UUT is allowed degraded performance during power interrupts, verify the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage). Record the steady state voltage, steady state frequency, time duration of power interrupts, and the performance of the UUT for each test condition in the data sheet shown in table SVF201-III. Repeat each test condition 5 times. Repeat for each mode of operation of the UUT. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Steady State Voltage	Duration of Interrupt
А	Nominal Voltage	50 msec
В	NLSS Voltage	50 msec
С	NHSS Voltage	50 msec
D	Nominal Voltage	30 msec
Е	NLSS Voltage	30 msec
F	NHSS Voltage	30 msec
G	Nominal Voltage	10 msec
Н	NLSS Voltage	10 msec
Ι	NHSS Voltage	10 msec
J	Nominal Voltage	50 msec (repeated 3 times, separated by 0.5 sec )
К	Nominal Voltage	50 msec (followed by a normal voltage transient of 160 Vrms for 30 msec and return to steady state voltage in 40 msec)
L	Nominal Voltage	50 msec (followed by a normal voltage transient of 70 Vrms for 30 msec and return to steady state voltage in 40 msec)

# TABLE SVF201-II. Test conditions for transfer interrupt for single phase, variable frequency utilization equipment.



FIGURE SVF201-1. Power interrupt.

Test		Parameter		Performance
Condition	Voltage	Frequency	Time Duration	Pass/Fail
			of Power	
			Interrupt	
Testing perform	ned at <b>400 Hz</b>			
А	V _{rms}	Hz	msec	
В	V _{rms}	Hz	msec	
С	V _{rms}	Hz	msec	
D	V _{rms}	Hz	msec	
E	V _{rms}	Hz	msec	
F	V _{rms}	Hz	msec	
G	V _{rms}	Hz	msec	
Н	V _{rms}	Hz	msec	
Ι	V _{rms}	Hz	msec	
J	V _{rms}	Hz	msec	
	V _{rms}	Hz	msec	
	Voltage		Time at Voltage	
K	Transient		Transient Level	
	Level			
	V _{rms}		msec	
	V _{rms}	Hz	msec	
т	Voltage		Time at Voltage	
	Transient		Transient Level	
	Level			
	V _{rms}		msec	

TABLE SVF201-III. Sample data sheet for SVF201 power interrupt for single phase, variable frequency utilization equipment.

## TABLE SVF201-III. Sample data sheet for SVF201 power interrupt for single phase, variable frequency utilization equipment. - Continued

Test		Parameter		Performance
Condition	Voltage	Frequency	Time Duration	Pass/Fail
			of Power	
			Interrupt	
Testing perform	ned at 360 Hz			
А	V _{rms}	Hz	msec	
В	V _{rms}	Hz	msec	
С	V _{rms}	Hz	msec	
D	V _{rms}	Hz	msec	
E	V _{rms}	Hz	msec	
F	V _{rms}	Hz	msec	
G	V _{rms}	Hz	msec	
Н	V _{rms}	Hz	msec	
Ι	V _{rms}	Hz	msec	
J	V _{rms}	Hz	msec	
	V _{rms}	Hz	msec	
	Voltage		Time at Voltage	
K	Transient		Transient Level	
	Level			
	V _{rms}		msec	
	V _{rms}	Hz	msec	
	Voltage		Time at Voltage	
L	Transient		Transient Level	
	Level			
	V _{rms}		msec	

## TABLE SVF201-III. Sample data sheet for SVF201 power interrupt for single phase, variable frequency utilization equipment. - Continued

Test		Parameter		Performance
Condition	Voltage	Frequency	Time Duration	Pass/Fail
			of Power	
			Interrupt	
Testing perform	ned at 600 Hz			
А	V _{rms}	Hz	msec	
В	V _{rms}	Hz	msec	
С	V _{rms}	Hz	msec	
D	V _{rms}	Hz	msec	
Е	V _{rms}	Hz	msec	
F	V _{rms}	Hz	msec	
G	V _{rms}	Hz	msec	
Н	V _{rms}	Hz	msec	
Ι	V _{rms}	Hz	msec	
J	V _{rms}	Hz	msec	
	V _{rms}	Hz	msec	
	Voltage		Time at Voltage	
K	Transient		Transient Level	
	Level			
	V _{rms}		msec	
	V _{rms}	Hz	msec	
	Voltage		Time at Voltage	
L	Transient		Transient Level	
	Level			
	V _{rms}		msec	

## TABLE SVF201-III. Sample data sheet for SVF201 power interrupt for single phase, variable frequency utilization equipment. - Continued

Test		Parameter		Performance
Condition	Voltage	Frequency	Time Duration	Pass/Fail
			of Power	
			Interrupt	
Testing perform	ned at 800 Hz			
А	V _{rms}	Hz	msec	
В	V _{rms}	Hz	msec	
С	V _{rms}	Hz	msec	
D	V _{rms}	Hz	msec	
Е	V _{rms}	Hz	msec	
F	V _{rms}	Hz	msec	
G	V _{rms}	Hz	msec	
Н	V _{rms}	Hz	msec	
Ι	V _{rms}	Hz	msec	
J	V _{rms}	Hz	msec	
	V _{rms}	Hz	msec	
	Voltage		Time at Voltage	
K	Transient		Transient Level	
	Level			
	V _{rms}		msec	
	V _{rms}	Hz	msec	
	Voltage		Time at Voltage	
L	Transient		Transient Level	
	Level			
	V _{rms}		msec	

#### METHOD SVF301 Abnormal Steady State Limits for Voltage and Frequency

POWER GROUP:	Single Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Abnormal

PARAMETER:

Abnormal Steady State Limits for Voltage and Frequency

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when provided power with voltage and frequency at the Abnormal Low Steady State (ALSS) limits and the Abnormal High Steady State (AHSS) limits as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment performance specification document for abnormal aircraft electrical conditions when supplied input power of voltage and frequency at the specified abnormal steady state limits of the applicable edition(s) of MIL-STD-704 and as noted in table SVF301-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the abnormal steady state voltage and frequency limits and should be, not less than thirty (30) minutes for each of the test conditions. Unless otherwise specified in the utilization equipment must demonstrate re-start at the abnormal steady state voltage and frequency limits. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

 MIL-STD-704 abnormal limits for steady state voltage and frequency for single phase, variable frequency utilization equipment.

Abnormal Limit	704A	704B	704C	704D	704E	704F
Voltage ALSS	N/A	N/A	N/A	N/A	N/A	100 V
Voltage AHSS	N/A	N/A	N/A	N/A	N/A	125 V
Frequency ALSS	N/A	N/A	N/A	N/A	N/A	360 Hz
Frequency AHSS	N/A	N/A	N/A	N/A	N/A	800 Hz

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. True RMS voltmeter
- c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure SVF301-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SVF301-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through H noted in table SVF301-II, the UUT must remain for a length of time that confirms the utilization equipment can perform as specified at the abnormal steady state voltage and frequency limits and should be, not less than thirty (30) minutes. At each test condition conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. For each test condition shut down the UUT and verify that the UUT can be re-started. After re-start conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Adjust the voltage to the nominal steady state voltage of 115 Vrms and adjust the frequency to the steady state frequency of the test condition. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the voltage, frequency, time duration at test condition, successful/unsuccessful re-start and the performance of the UUT for each test condition in the data sheet shown in table SVF301-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Voltage	Frequency
Balanced Voltages		
А	100 V	400 Hz
В	100 V	360 Hz
С	100 V	600 Hz
D	100 V	800 Hz
E	125 V	400 Hz
F	125 V	360 Hz
G	125 V	600 Hz
Н	125 V	800 Hz

## TABLE SVF301-II. Test conditions for abnormal steady state limits of voltage and frequency for single phase, variable frequency utilization equipment.



 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

FIGURE SVF301-1. Abnormal steady state limits for voltage and frequency.

# TABLE SVF301-III. Sample data sheet for SVF301 abnormal steady state limits for voltage and frequency for single phase, variable frequency utilization equipment.

Test	Parameter				Performance	
Condition	Voltage	Frequency		Time Duration		Pass/Fail
				at 🛛	ſest	
				Conc	lition	
А	V _{rms}		Hz		min	
В	V _{rms}		Hz		min	
С	V _{rms}		Hz		min	
D	V _{rms}		Hz		min	
E	V _{rms}		Hz		min	
F	V _{rms}		Hz		min	
G	V _{rms}		Hz		min	
Н	V _{rms}		Hz		min	

#### METHOD SVF302 Abnormal Voltage Transients

POWER GROUP:	Single Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Abnormal

PARAMETER:

Abnormal Voltage Transients

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to abnormal voltage transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for abnormal aircraft electrical conditions when subjected to voltage transients within the abnormal limits of the applicable edition(s) of MIL-STD-704 and as noted in table SVF302-I. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

 

 MIL-STD-704 limits for abnormal voltage transients for single phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Abnormal Voltage Transients	N/A	N/A	N/A	N/A	N/A	figure 4 MIL-STD- 704F

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SVF302-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SVF302-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the

frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

The UUT must be subjected to the voltage transients for each test condition A through O noted in table SVF302-II. The voltage must increase or decrease from steady state voltage to the voltage transient level within ¹/₂ cycle. The voltage must remain at the voltage transient level for the duration noted in table SVF302-II. The voltage must return to steady state over the time duration noted in table SVF302-II. For test condition G, three over-voltage transients of 180 Vrms for 20 milliseconds are performed, separated by 0.5 seconds. For test condition N, three under-voltage transients of 45 Vrms for 20 milliseconds are performed, separated by 0.5 seconds. For test condition O, an under-voltage transient of 45 Vrms for 20 milliseconds is immediately followed by an overvoltage transient of 180 Vrms for 50 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT automatically returns to specified performance for normal aircraft electrical conditions when the power returns to within normal limits, and has not suffered damage. Record the steady state voltage, steady state frequency, voltage transient level, time duration at voltage transient, oscilloscope trace, and the performance of the UUT for each test condition in the data sheet shown in table SVF302-III. Repeat for each mode of operation of the UUT. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

TABLE SVF302-II.	Test conditions for abnormal voltage transients for single phase, var	riable
	frequency utilization equipment.	

Test Condition	Time From	Voltage	Duration at	Time From
	Steady State	Transient Level	Voltage	Voltage
	Voltage to	Vrms	Transient Level	Transient Level
	Voltage		milliseconds	to Steady State
	Transient Level			Voltage
	milliseconds			or
				Next Voltage
				Level
Overvoltage Transients			1	
A	< ½ cycle	140 Vrms	180 msec	< ¹ / ₂ cycle
	< ½ cycle	140 Vrms	180 msec	87 msec
	then	135 Vrms	decreasing	253 msec
В	then	130 Vrms	decreasing	6.41 sec
	then	125 Vrms	decreasing	30 sec
		115 Vrms		
С	< ½ cycle	160 Vrms	78 msec	< ½ cycle
	< ½ cycle	160 Vrms	78 msec	31 msec
	then	150 Vrms	decreasing	71 msec
	then	140 Vrms	decreasing	87 msec
D	then	135 Vrms	decreasing	253 msec
	then	130 Vrms	decreasing	6.41 sec
	then	125 Vrms	decreasing	30 sec
		115 Vrms		
Е	< ½ cycle	180 Vrms	50 msec	< ½ cycle
	< ½ cycle	180 Vrms	50 msec	11 msec
	then	170 Vrms	decreasing	17 msec
	then	160 Vrms	decreasing	31 msec
	then	150 Vrms	decreasing	71 msec
F	then	140 Vrms	decreasing	87 msec
	then	135 Vrms	decreasing	253 msec
	then	130 Vrms	decreasing	6.41 sec
	then	125 Vrms	decreasing	30 sec
		115 Vrms		
C	$< \frac{1}{2}$ cycle	180 Vrms	20 msec	$< \frac{1}{2}$ cycle
U U	-	(3 times)	every 0.5 sec	, i i i i i i i i i i i i i i i i i i i
TABLE SVF302-II.	Test conditions for abnormal voltage transients for single phase, variable			
------------------	----------------------------------------------------------------------------			
	frequency utilization equipment Continued			

Test Condition	Time From Steady State Voltage to Voltage	Voltage Transient Level Vrms	Duration at Voltage Transient Level milliseconds	Time From Voltage Transient Level to Steady State
	Transient Level			Voltage
	milliseconds			0r Navt Valtaga
				Level
Undervoltage Transients				
Н	< ½ cycle	85 Vrms	180 msec	< ½ cycle
	< ½ cycle	85 Vrms	180 msec	87 msec
	then	90 Vrms	increasing	253 msec
Ι	then	95 Vrms	increasing	6.41 sec
	then	100 Vrms	increasing	30 sec
		115 Vrms		
J	< ½ cycle	66 Vrms	78 msec	< ½ cycle
	< ½ cycle	65 Vrms	78 msec	31 msec
	then	75 Vrms	increasing	71 msec
	then	85 Vrms	increasing	87 msec
К	then	90 Vrms	increasing	253 msec
	then	95 Vrms	increasing	6.41 sec
	then	100 Vrms	increasing	30 sec
		115 Vrms		
L	< ½ cycle	45 Vrms	50 msec	< ½ cycle
	< ½ cycle	45 Vrms	50 msec	11 msec
	then	55 Vrms	increasing	17 msec
	then	65 Vrms	increasing	31 msec
	then	75 Vrms	increasing	71 msec
М	then	85 Vrms	increasing	87 msec
	then	90 Vrms	increasing	253 msec
	then	95 Vrms	increasing	6.41 sec
	then	100 Vrms	increasing	30 sec
		115 Vrms		
Ν	$< \frac{1}{2}$ cycle	45 Vrms	20 msec	< ½ cycle
		(3 times)	every 0.5 sec	
Combined Transient			•	
	$< \frac{1}{2}$ cycle	45 Vrms then	20 msec	< ¹ / ₂ cycle
	$< \frac{1}{2}$ cycle	180 Vrms	50 msec	11 msec
	then	170 Vrms	decreasing	17 msec
	then	160 Vrms	decreasing	31 msec
0	then	150 Vrms	decreasing	/1 msec
	then	140 Vrms	decreasing	8 / msec
	then	135 Vrms	decreasing	253 msec
	then	130 Vrms	decreasing	6.41 sec
	then	125 Vrms	decreasing	30 sec
		115 Vrms		



79

FIGURE SVF302-1. Abnormal voltage transients.

Test				]	Parameter	rs				Performance
Condition	Steady	y State	Steady State	Vol	Voltage		Time at Os		cope Trace	Pass/Fail
	Vol	tage	Frequency	Tran	sient	Vol	tage		-	
		-				Tran	sient			
						Le	vel			
Testing Perf	formed at	t 400 Hz						·		
А		V _{rms}	Hz		V _{rms}		msec	Attach Trace	V _{rms} vs. Time	
В		V _{rms}	Hz		V _{rms}		msec	Attach Trace	V _{rms} vs. Time	
С		V _{rms}	Hz		V _{rms}		msec	Attach Trace	V _{rms} vs. Time	
D		V _{rms}	Hz		V _{rms}		msec	Attach Trace	V _{rms} vs. Time	
Е		V _{rms}	Hz		V _{rms}		msec	Attach Trace	V _{rms} vs. Time	
F		V _{rms}	Hz		V _{rms}		msec	Attach Trace	V _{rms} vs. Time	
G		V _{rms}	Hz		V _{rms}		msec	Attach Trace	V _{rms} vs. Time	
Н		V _{rms}	Hz		V _{rms}		msec	Attach Trace	$V_{rms}$ vs. Time	
Ι		V _{rms}	Hz		V _{rms}		msec	Attach Trace	$V_{rms}$ vs. Time	
J		V _{rms}	Hz		V _{rms}		msec	Attach Trace	$V_{rms}$ vs. Time	
K		V _{rms}	Hz		V _{rms}		msec	Attach Trace	V _{rms} vs. Time	
L		V _{rms}	Hz		V _{rms}		msec	Attach Trace	V _{rms} vs. Time	
М		V _{rms}	Hz		V _{rms}		msec	Attach Trace	V _{rms} vs. Time	
N		V _{rms}	Hz		V _{rms}		msec	Attach Trace	V _{rms} vs. Time	
0		V _{rms}	Hz		V _{rms}		msec	Attach Trace	V _{rms} vs. Time	
U					V _{rms}		msec			

## TABLE SVF302-III. Sample data sheet for SVF302 abnormal voltage transients for single phase, variable frequency utilization equipment.

08

Test	Parameters Performan						
Condition	Steady State	Steady State Voltage		Time at Oscillos		cope Trace	Pass/Fail
	Voltage	Frequency	Transient	Voltage		-	
				Transient			
				Level			
Testing Perf	formed at 360 H	Z					
A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
В	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
C	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
D	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
E	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
F	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
G	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
Н	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
Ι	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs. Time	
J	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs. Time	
K	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
L	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
М	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
N	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
0	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
0			V _{rms}	msec			

# TABLE SVF302-III. Sample data sheet for SVF302 abnormal voltage transients for single phase, variable frequency utilization equipment. - Continued

Test	Parameters Performance						
Condition	Steady State	Steady State Voltage		Time at Oscillos		cope Trace	Pass/Fail
	Voltage	Frequency	Transient	Voltage			
				Transient			
				Level			
Testing Perf	formed at 600 Hz						
A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
В	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
С	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
D	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs. Time	
E	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs. Time	
F	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs. Time	
G	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs. Time	
Н	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs. Time	
Ι	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs. Time	
J	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs. Time	
K	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs. Time	
L	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs. Time	
М	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs. Time	
N	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
0	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
U			V _{rms}	msec			

# TABLE SVF302-III. Sample data sheet for SVF302 abnormal voltage transients for single phase, variable frequency utilization equipment. - Continued

Test	Parameters Performan						
Condition	Steady State	Steady State Voltage		Time at Oscillos		cope Trace	Pass/Fail
	Voltage	Frequency	Transient	Voltage		-	
	_			Transient			
				Level			
Testing Perf	formed at 800 Hz						
A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs. Time	
В	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
С	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs. Time	
D	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
Е	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs. Time	
F	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs. Time	
G	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs. Time	
Н	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
Ι	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs. Time	
J	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs. Time	
K	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
L	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
М	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
N	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
0	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs. Time	
U			V _{rms}	msec			

# TABLE SVF302-III. Sample data sheet for SVF302 abnormal voltage transients for single phase, variable frequency utilization equipment. - Continued

#### METHOD SVF303 Abnormal Frequency Transients

POWER GROUP:	Single Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Abnormal

PARAMETER:

Abnormal Frequency Transients

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to abnormal frequency transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for abnormal aircraft electrical conditions when subjected to frequency transients within the abnormal limits of the applicable edition(s) of MIL-STD-704 and as noted in table SVF303-I. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

 TABLE SVF303-I.
 MIL-STD-704 limits for abnormal frequency transients for single phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Abnormal Frequency Transients	N/A	N/A	N/A	N/A	N/A	360 Hz to 800 Hz Maximum Rate of Change of Frequency
						500 Hz/sec

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SVF303-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SVF303-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions.

The UUT must be subjected to the frequency transients for each test condition A through I noted in table SVF303-II. The frequency must increase or decrease from the start frequency to the frequency transient level over the duration noted; the frequency must remain at the frequency transient level for the duration noted; and the frequency must return from the frequency transient level over the duration noted; and the frequency must return from the frequency transient level over the duration noted. For test condition E, an underfrequency transient is immediately followed by an overfrequency transient. For each test condition, monitor the performance of the UUT during the frequency transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Repeat each test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions, and has not suffered damage. Record the steady state voltage, start frequency, frequency transient level, time at frequency transient, oscilloscope trace (Hz vs.. time), and the performance of the UUT for each test condition in the data sheet shown in table SVF303-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

TABLE SVF303-II.	Test conditions for MIL-STD-704 abnormal frequency transients for single
	phase, variable frequency utilization equipment.

Test Condition	Start Frequency	Time From Start Frequency to Frequency Transient Level	Frequency Transient Level	Duration at Frequency Transient Level	Time From Frequency Transient Level to Start Frequency
Overfrequency T	ransients				
А	360 Hz	0.88 seconds	800 Hz	¹ / ₂ cycle	0.88 seconds
В	360 Hz	0.88 seconds	800 Hz	1 second	0.88 seconds
С	360 Hz	0.48 seconds	600 Hz	½ cycle	0.48 seconds
D	360 Hz	0.48 seconds	600 Hz	1 second	0.48 seconds
Underfrequency	Transients				
Е	800 Hz	0.88 seconds	360 Hz	¹ / ₂ cycle	0.88 seconds
F	800 Hz	0.88 seconds	360 Hz	1 second	0.88 seconds
G	800 Hz	0.40 seconds	600 Hz	¹ / ₂ cycle	0.40 seconds
Н	800 Hz	0.40 seconds	600 Hz	1 second	0.40 seconds
Combined Trans	ient				
T	600 Hz	0.48 seconds	360 Hz	¹ / ₂ cycle	0.48 seconds
1		then 0.40 seconds	800 Hz	¹ / ₂ cycle	0.40 seconds



FIGURE SVF303-1. Abnormal frequency transients.

Test			-	Paramete	ers				Performance
Condition	Steady State	Start	Freq	uency	Time at		Steady State		Pass/Fail
	Voltage	Frequency	Tran	nsient	Frequ	iency	Vo	oltage	
					Tran	sient			
					Le	vel			
А	V _{rm}	Hz		Hz		msec	Attach Trace	Hz vs. Time	
В	V _{rm}	Hz		Hz		msec	Attach Trace	Hz vs. Time	
С	V _{rm}	Hz		Hz		msec	Attach Trace	Hz vs. Time	
D	V _{rm}	Hz		Hz		msec	Attach Trace	Hz vs. Time	
Е	V _{rm}	Hz		Hz		msec	Attach Trace	Hz vs. Time	
F	V _{rm}	Hz		Hz		msec	Attach Trace	Hz vs. Time	
G	V _{rm}	Hz		Hz		msec	Attach Trace	Hz vs. Time	
Н	V _{rm}	Hz		Hz		msec	Attach Trace	Hz vs. Time	
T	V _{rm}	Hz		Hz		msec	Attach Trace	Hz vs. Time	
				Hz		msec			

## TABLE SVF303-III. Sample data sheet for SVF303 abnormal frequency transients for single phase, variable frequency utilization equipment.

#### METHOD SVF401 Emergency Steady State Limits for Voltage and Frequency

POWER GROUP:	Single Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Emergency

PARAMETER:

Emergency Steady State Limits for Voltage and Frequency

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when provided power with voltage and frequency at that the Emergency Low Steady State (ELSS) limits and the Emergency High Steady State (EHSS) limits as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. For MIL-STD-704F, the single phase, 115 Volt, variable frequency power utilization equipment normal steady state limits are the same as the emergency steady state limits. The emergency steady state limits for single phase, 115 Volt, variable frequency equipment are noted in table SVF401-I. Performance of test method SVF102 will constitute performance of test method SVF401,

 MIL-STD-704 emergency limits for steady state voltage and frequency for single phase, variable frequency utilization equipment.

Emergency Limit	704A	704B	704C	704D	704E	704F
Voltage ELSS	N/A	N/A	N/A	N/A	N/A	108 V
Voltage EHSS	N/A	N/A	N/A	N/A	N/A	118 V
Frequency ELSS	N/A	N/A	N/A	N/A	N/A	360 Hz
Frequency EHSS	N/A	N/A	N/A	N/A	N/A	800 Hz

### METHOD SVF501 (No Tests)

POWER GROUP: Single Phase, Variable Frequency, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Starting

PARAMETER: No Tests

Starting operations are usually not applicable to AC utilization equipment.

#### METHOD SVF601 Power Failure

POWER GROUP: Single Phase, Variable Frequency, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: Powe

Power Failure

PARAMETER:

Power Failure

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to power failures as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for power failure aircraft electrical conditions when subjected to power failures as specified by the applicable edition(s) of MIL-STD-704 and as noted in table SVF601-I. The utilization equipment must maintain the specified performance during the power failures. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

#### TABLE SVF601-I. MIL-STD-704 power failure limits for single phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Power Failure	N/A	N/A	N/A	N/A	N/A	7 sec figure 4 MIL-STD- 704F

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SVF601-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SVF601-1. Turn on the power source and

adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through D noted in table SVF601-II, perform a power failure (0 V) of the duration listed. The voltage must decrease from the steady state voltage to 0 Volts within ¹/₂ cycle, remain at 0 Volts for the duration listed for the test condition, and return form 0 Volts to the steady state voltage within ¹/₂ cycle. For each test condition, monitor the performance of the UUT according to the utilization equipment performance test procedures for power failure operation to verify that the UUT is providing specified performance for power failure aircraft electrical conditions. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the steady state voltage, steady state frequency, time duration of power failure, and the performance of the UUT for each test condition in the data sheet shown in table SVF601-III. Repeat each test condition 5 times. Repeat for each mode of operation of the UUT. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

TABLE SVF601-II.	Test conditions for	power failures	for single	phase,	variable	frequ	uency
	utiliza	tion equipment	<u>t</u> .	-		-	

Test Condition	Duration of Power Failure
А	100 msec
В	500 msec
С	3 seconds
D	7 seconds



93

FIGURE SVF601-1. Power failure.

## TABLE SVF601-III. Sample data sheet for SVF601 power failure (three phase) for single phase, variable frequency utilization equipment.

Test		Parar	neters		Performance
Condition	Steady State	Steady State	Voltage during	Time Duration	Pass/Fail
	Voltage	Frequency	Power Failure	of Power	
				Failure	
Testing Perform	ned at <b>400 Hz</b>				
А	V _{rms}	Hz	V _{rms}	msec	
В	V _{rms}	Hz	V _{rms}	msec	
С	V _{rms}	Hz	V _{rms}	msec	
D	V _{rms}	Hz	V _{rms}	msec	
Testing Perform	ned at 360 Hz				
А	V _{rms}	Hz	V _{rms}	msec	
В	V _{rms}	Hz	V _{rms}	msec	
С	V _{rms}	Hz	V _{rms}	msec	
D	V _{rms}	Hz	V _{rms}	msec	
Testing Perform	ned at 600 Hz				
А	V _{rms}	Hz	V _{rms}	msec	
В	V _{rms}	Hz	V _{rms}	msec	
С	V _{rms}	Hz	V _{rms}	msec	
D	V _{rms}	Hz	V _{rms}	msec	
Testing Perform	ned at 800 Hz				
А	V _{rms}	Hz	V _{rms}	msec	
В	V _{rms}	Hz	V _{rms}	msec	
С	V _{rms}	Hz	V _{rms}	msec	
D	V _{rms}	Hz	V _{rms}	msec	

## METHOD SVF602 (No Test Required)

POWER GROUP:	Single Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Power Failure
PARAMETER:	No Test Required. Test number SVF602 is not used so that the Single Phase, Variable Frequency, 115 V (SVF) test numbers coincide with the Three Phase, Variable Frequency, 115 V (TVF) test sequence numbers.

#### METHOD SVF603 Phase Reversal

POWER GROUP:Single Phase, Variable Frequency, 115 VAIRCRAFT ELECTRICAL<br/>OPERATING CONDITION:Power Failure

PARAMETER:

Phase Reversal

1. <u>Scope</u>.

1.1. <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, variable frequency power utilization equipment is not damaged by phase reversal or a positive physical means is employed to prevent phase reversal.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment is not damaged and does not cause an unsafe condition when the input phase sequence is reversed for the applicable edition(s) of MIL-STD-704 and as noted in table SVF603-I. A positive physical means to prevent phase sequence reversal may be used to fulfill this requirement.

 

 MIL-STD-704 phase sequence reversal requirement for single phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Phase Reversal	N/A	N/A	N/A	N/A	N/A	Phase Sequence Reversal Does not Cause Damage

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. True RMS voltmeter
- c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure SVF603-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. If a positive physical means is employed to prevent phase reversal, confirm that the line and neutral conductor cannot be reversed.

If the line and neutral conductor can be reversed, with the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SVF603-1 (line and

neutral conductors reversed). Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. The UUT must remain for a length of time that confirms the utilization equipment is not damaged and does not cause an unsafe condition due to phase reversal and should be, not less than thirty (30) minutes. Record the steady state voltage, steady state frequency, time duration at phase reversal test condition, and the performance of the UUT in the data sheet shown in table SVF603-II. Repeat for each mode of operation of the UUT. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SVF603-2 (line and neutral conductors connected properly). Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. The UUT must remain for a length of time that confirms the utilization equipment was not damaged and does not cause an unsafe condition after the phase reversal and should be not less than thirty (30) minutes. Conduct a performance test of the UUT has returned to the performance specified for normal aircraft electrical conditions and has not suffered damage. Record the steady state voltage, steady state frequency, time duration at test condition, and the performance of the UUT in the data sheet shown in table SVF603-II. Repeat for each mode of operation of the UUT.



FIGURE SVF603-1. Phase reversal.



99

FIGURE SVF603-2. Correct phase connection.

## TABLE SVF603-II. Sample data sheet for SVF603 phase sequence reversal for single phase, variable frequency utilization equipment.

Test Condition	Parameters			Performance
	Yes/No			
Phase Sequence Rev	ersal Prevented by	Positive Physica	l Means	
	Ι	f No		
	Voltage	Frequency	Time Duration	Pass/Fail
			at Test	
		Condition		
Testing Performed at 400 Hz				
Phase Reversal	V _{rms}	Hz	min	
Testing Performed at <b>360 Hz</b>				
Phase Reversal	V _{rms}	Hz	min	
Testing Performed at 600 Hz				
Phase Reversal	V _{rms}	Hz	min	
Testing Performed at 800 Hz				
Correct Phase Connection	V _{rms}	Hz	min	

#### 6. NOTES

6.1 <u>Intended use</u>. This handbook should be used as guidance when establishing test requirements, for inclusion in performance specifications developed for the procurement of utilization equipment, to ensure compliance with the aircraft electrical power characteristics as specified by MIL-STD-704.

6.2 <u>Single phase test numbers</u>. There are no tests required for SVF103 and SVF602. This is done so that the single phase test numbers coincide with the three phase test numbers.

6.3 Subject term (keyword) listing.

Aircraft, electrical power Aircraft, electrical test Electrical operating areas Equipment, utilization Power groups Specification, utilization equipment

#### CONCLUDING MATERIAL

Custodians:

Army - AV Navy - AS Air Force - 11 Preparing Activity: Navy - AS

(Project No. SESS-0050)

Review Activities: Army - CR, MI, TE Navy - EC, MC, SA, SH, YD

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at <u>www.dodssp.daps.mil</u>.

NOT MEASUREMENT SENSITIVE

MIL-HDBK-704-5 9 April 2004

## DEPARTMENT OF DEFENSE HANDBOOK

GUIDANCE FOR TEST PROCEDURES FOR DEMONSTRATION OF UTILIZATION EQUIPMENT COMPLIANCE TO AIRCRAFT ELECTRICAL POWER CHARACTERISTICS THREE PHASE, VARIABLE FREQUENCY, 115 VOLT (PART 5 OF 8 PARTS)



This Handbook is for guidance only. Do not cite this document as a requirement.

AMSC N/A

AREA SESS

#### FOREWORD

1. This handbook is approved for use by all Departments and Agencies of the Department of Defense.

2. This handbook provides guidance on test procedures for demonstration of three phase, variable frequency, 115 volt utilization equipment to determine compliance with the applicable edition of MIL-STD-704.

3. MIL-HDBK-704-5 is Part 5 in a series of 8 Parts. Part 5 describes the test methods and procedures to demonstrate that three phase, variable frequency, 115 volt utilization equipment is compatible with the electric power characteristics of MIL-STD-704. These series of handbooks and MIL-STD-704 are companion documents.

4. Comments, suggestions, or questions on this document should be addressed to Commander, Naval Air Systems Command, Code 4.1.4, Highway 547, Lakehurst, NJ 08733-5100 or email to <u>thomas.omara@navy.mil</u>. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at <u>www.dodssp.daps.mil</u>.

## CONTENTS

PAR/	AGRAPH	PAGE
	FOREWORD	ii
1. 1.1	SCOPE	1 1
2. 2.1 2.2 2.2.1	APPLICABLE DOCUMENTS General Government documents Specifications, standards and handbooks	
3. 3.1	DEFINITIONS Acronyms and definitions	1 1
4. 4.1 4.1.1 4.2 4.3	TEST METHODS INFORMATION Demonstration of compatibility Recording performance Calibration of test equipment Test methods	1 1 1 1 2
5.	TEST METHODS METHOD TVF101 Load Measurements METHOD TVF102 Steady State Limits for Voltage	
	(Including Unbalance) and Frequency METHOD TVF103 Voltage Phase Difference METHOD TVF104 Voltage Modulation	
	METHOD TVF104 Voltage Modulation METHOD TVF105 Frequency Modulation METHOD TVF106 Voltage Distortion Spectrum	
	METHOD TVF107 Total Voltage Distortion METHOD TVF108 DC Voltage Component METHOD TVF109 Normal Voltage Transients	
	METHOD TVF110 Normal Frequency Transients METHOD TVF201 Power Interrupt METHOD TVF301 Abnormal Steady State Limits for Voltage	
	and Frequency METHOD TVF302 Abnormal Voltage Transients METHOD TVF303 Abnormal Frequency Transients	115 121 136
	METHOD TVF401 Emergency Steady State Limits for Voltage and Frequency	
	METHOD TVF601 Power Failure (Three Phase) METHOD TVF602 One and Two Phase Power Failures METHOD TVF603 Phase Reversal (Three Phase)	

PARAG	RAPH	PAGE
6. N	NOTES	168
6.1	Intended use	168
6.3	Subject term (keyword) listing	168
TABLE		
TVF-I.	Summary of single phase, 400 Hz, 115 volt utilization equipment MIL-STD-704 compliance tests	
CONCL	UDING MATERIAL	168

### 1. SCOPE

1.1 <u>Scope</u>. This handbook provides, as guidance, test methods used to demonstrate that three phase, variable frequency, 115 volt utilization equipment is compatible with the electric power characteristics of the applicable edition(s) of MIL-STD-704. This handbook is for guidance only and cannot be cited as a requirement.

### 2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed below are not necessarily all of the documents referenced herein, but are those needed to understand the information provided by this handbook.

#### 2.2 Government documents.

2.2.1 <u>Specifications, standards, and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein.

### DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-704

DoD Interface Standard for Aircraft Electric Power Characteristics

(Copies of these documents are available online at <u>http://assist.daps.dla.mil/quicksearch</u> or <u>www.dodssp.daps.mil/</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadephia, PA 19111-5094.)

## 3. DEFINITIONS

3.1 <u>Acronyms and definitions</u>. The acronyms and definitions of MIL-STD-704 are applicable to this handbook.

## 4. TEST METHODS INFORMATION

4.1 <u>Demonstration of compatibility</u>. This section contains the test methods which will ensure that three phase, variable frequency, 115 volt utilization equipment is compatible with the electric power characteristics of the applicable edition(s) of MIL-STD-704, by testing the Unit Under Test (UUT) in accordance with the test procedures as described in test methods TVF101 through TVF603.

4.1.1 <u>Recording performance</u>. In table TVF-I, record the edition(s) of MIL-STD-704 that defined the aircraft electric power characteristics used for testing and the performance of the UUT for each of the test methods.

4.2 <u>Calibration of test equipment</u>. Test equipment and accessories required for measurement in accordance with this handbook should be calibrated in accordance with an approved calibration program traceable to the National Institute for Standards and Technology.

The serial numbers, model, and calibration date of all test equipment should be included with the test data.

4.3 <u>Test methods</u>. The test methods listed in table TVF-1 are provided in section 5 of this handbook.

## TABLE TVF-I. Summary of three phase, variable frequency,115 volt utilization equipment MIL-STD-704 compliance tests.

UUT:			
Complia	nce to MIL-STD-704 Edition(s):		
Test Date	25:		
Test	Description	Performance	Comments
Method		(Pass/Fail)	
Normal,	Aircraft Electrical Operation		
TVF101	Three Phase Load and Current		
	Harmonic Measurements		
TVF102	Steady State Limits for Voltage		
	(Including Unbalance) and		
	Frequency		
TVF103	Voltage Phase Difference		
TVF104	Voltage Modulation		
TVF105	Frequency Modulation		
TVF106	Voltage Distortion Spectrum		
TVF107	Total Voltage Distortion		
TVF108	DC Voltage Component		
TVF109	Normal Voltage Transients		
TVF110	Normal Frequency Transients		
Transfer,	Aircraft Electrical Operation		
TVF201	Power Interrupt		
Abnorma	ll, Aircraft Electrical Operation		
TVF301	Abnormal Limits for Voltage and		
	Frequency		
TVF302	Abnormal Voltage Transients		
	(Overvoltage/Undervoltage)		
TVF303	Abnormal Frequency Transients		
-	(Overfrequency/Underfrequency)		
Emergen	cy, Aircraft Electrical Operation		
TVF401	Emergency Limits for Voltage		
<u>G</u> (	and Frequency		
Starting,	Aircraft Electrical Operation		
	See Note #1	N/A	N/A
Power Fa	Descen Definer (St. 1, DI	on	
	Power Failure (Single Phase)		
1 VF602	Une Phase and Two Phase Power		
TUE(02	Failures		
TVF603	Phase Reversal		

Note 1: Starting operation conditions are usually not applicable to AC utilization equipment. No test is required for TVF501 unless specified by the equipment performance specification.

5. TEST METHODS

#### METHOD TVF101 Load Measurements

POWER GROUP:

Three Phase, Variable Frequency, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Normal

PARAMETER:

Load Measurements

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, variable frequency power utilization equipment utilizes only 115 Volt line-to-neutral power, current inrush is within limits, has balanced power, the power factor is within limits, and does not use half-wave rectification for the applicable edition(s) of MIL-STD-704. Additionally, when the utilization equipment performance specification document imposes current waveform requirements, this test procedure is used to verify that the utilization equipment current waveform is within total current distortion and current spectrum (current distortion vs frequency) limits defined in the utilization equipment performance specification document.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment utilize only 115 Volt line-to-neutral power, is within current inrush limits, is within the balanced load limits, is within the power factor limits, and does not use half-wave rectification for the applicable edition(s) of MIL-STD-704 and as noted in table TVF101-I. If required by the utilization equipment performance specification document, the utilization equipment current waveform must be within the total current distortion and current spectrum limits defined in the utilization equipment performance specification document. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE TVF101-I. MIL-STD-704 limits for inrush current, balanced load, power factor,
rectification restriction, current distortion, and current spectrum for three phase, variable
frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Inrush Current	N/A	N/A	N/A	N/A	N/A	300 Percent for Loads >3 kVA
Percent Unbalanced Load	N/A	N/A	N/A	N/A	N/A	Figure 1 MIL-STD-704F or 3.33% for Loads >30 kVA
Power Factor	N/A	N/A	N/A	N/A	N/A	0.85 Lagging to Unity for Loads >500 VA and No Leading Power Factor for > 100VA
Rectification Restriction	N/A	N/A	N/A	N/A	N/A	No Half-Wave Rectification
Current Distortion	N/A	N/A	N/A	N/A	N/A	See Note <u>1</u> /
Current Spectrum	N/A	N/A	N/A	N/A	N/A	See Note <u>1</u> /

<u>1</u>/. Utilization equipment specification should include requirements that reduce the likelihood of the equipment having an adverse effect on the electrical power characteristics of the aircraft. Current distortion and current spectrum limits may be imposed to minimize undesirable effects to the electrical power characteristics. These limits should take into account the utilization equipment power draw, aircraft electrical system capacity and distribution characteristics, tradeoffs with weight, volume, cost, and reliability that are specific to each type of equipment and aircraft.

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply (rotating AC source for current waveform limits)
- b. True RMS voltmeter
- c. Frequency counter
- d. Power meter
- e. Spectrum analyzer
- f. Distortion meter
- g. Current transformer
- h. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure TVF101-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT. Current

measurements must be taken from the 115 Volt conductors. If the utilization equipment performance specification document imposes current waveform limits, the AC power source must be a rotating machine.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TVF101-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz.

Close the circuit breaker, energizing the UUT. Record the inrush currents (oscilloscope traces) and record the maximum rms current of each phase in the data sheet shown in table TVF101-II. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the frequency in table TVF101-II. For each phase, record the voltage, VA, and power factor in the data sheet shown in table TVF101-II. Compare the calculated percent inrush current, the load unbalance, and power factor with the limits of the applicable edition(s) of MIL-STD-704. Repeat for each mode of operation of the UUT. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

Confirm the UUT does not use half-wave rectification and record in the data sheet shown in table TVF101-II. If the utilization equipment performance specification document imposes current waveform limits, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. For each phase record the total current distortion and current spectrum in the data sheet shown in table TVF101-II and compare to the limits defined in the utilization equipment performance specification document. Repeat for each mode of operation of the UUT.



5. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

 $\infty$ 

6. If current waveform limits are imposed by the detailed performance specification, the AC power source shall be a rotating machine.

FIGURE TVF101-1. Load measurements.
				Р	arameter	ſS				
Test perfor	Test performed at <b>400 Hz</b> steady state frequency									
Inrush Curr	Inrush Current									
Phase	Inrush	Percent of	(	Oscilloscope Trace		Pass/Fail	Comments			
	Current	Rated Current								
А	A _{rms}	%	Attach Tr	ace	A _{rms} v	rs Time				
В	A _{rms}	%	Attach Tr	ace	A _{rms} v	rs Time				
С	A _{rms}	%	Attach Tr	ace	A _{rms} v	rs Time				
Balanced L	oad and Powe	r Factor			_		_			
Phase	Voltage	Frequency	Volt-	Amp	Power	Factor	Pass/Fail	Comments		
А	V _{rms}	Hz		VA		pf				
В	V _{rms}			VA		pf				
С	V _{rms}			VA		pf				
Total VA VA										
Maximum	Unbalance (di	fference between		VA						
highe	est and lowest	phase load)								
Rectificatio	on Type									
							Pass/Fail	Comments		
Does not us	se half-wave re	ectification.								
Current Wa	aveform Measu	urements								
Phase	Total Curr	ent Distortion	(	Current S	Spectrun	1	Pass/Fail	Comments		
А		% Distortion	Attach		Amplit	ude Vs				
			Spectru	ım Plot	Frequ	lency				
В		% Distortion	Attach		Amplit	ude Vs				
			Spectru	im Plot	Frequ	iency				
С		% Distortion	Attach	um Dlat	Amplit	ude vs				
			spectru	ini riol	гтер	<i>iency</i>				

### TABLE TVF101-II. Sample data sheet for TVF101 load measurement.

	Daramaters										
	r al allicicits										
Test perfor	Test performed at <b>360 Hz</b> steady state frequency										
Inrush Curr	Inrush Current										
Phase	Inrush	Percent of	Oscillos	cope Trace	Pass/Fail	Comments					
	Current	Rated Current		-							
A	A _{rms}	%	Attach Trace	Attach Trace A _{rms} vs Time							
В	A _{rms}	%	Attach Trace A _{rms} vs Tim								
С	A _{rms}	%	Attach Trace	A _{rms} vs Time							
Balanced L	load and Power	Factor									
Phase	Voltage	Frequency	Volt-Amp	Power Factor	Pass/Fail	Comments					
А	V _{rms}	Hz	VA	pf							
В	V _{rms}		VA	pf							
С	V _{rms}	-	VA	pf							
	· · ·	Total VA	VA								
Maximum	Unbalance (dif	ference between	VA								
highe	est and lowest p	hase load)									

### TABLE TVF101-II. Sample data sheet for TVF101 load measurement. - Continued

Daramaters											
Test perfor	Test performed at <b>360 Hz</b> steady state frequency										
Inrush Cur	Inrush Current										
Phase	Inru	ush	Perce	ent of	(	Oscilloscope T		e	Pass/Fail		Comments
	Cur	rent	Rated (	Current		1					
А		A _{rms}		%	Attach Tr	Attach Trace		vs Time			
В		A _{rms}		%	Attach Trace		A _{rms} vs Time				
С		A _{rms}		%	Attach Trace A _{rms} vs Time						
Balanced L	load and	l Power	Factor								
Phase	Volt	tage	Frequ	iency	Volt-	Amp	Power Factor		Pass/Fail		Comments
А		V _{rms}		Hz		VA		pf			
В		V _{rms}				VA		pf			
С		V _{rms}				VA		pf			
			Тс	otal VA		VA					
Maximum	Unbalar	nce (diff	ference b	etween		VA	]				
highe	est and lo	owest p	hase load	d)							

### TABLE TVF101-II. Sample data sheet for TVF101 load measurement. - Continued

	Darameters										
Test perfor	lest performed at 600 Hz steady state frequency										
Inrush Curr	Inrush Current										
Phase	Inru	ısh	Perce	ent of	(	Oscillosc	ope Trac	e	Pass/Fail		Comments
	Curr	rent	Rated (	Current		1					
А		A _{rms}		%	Attach Tr	Attach Trace		s Time			
В		A _{rms}		%	Attach Tr	Attach Trace		s Time			
С		A _{rms}		%	Attach Trace A _{rms} vs Time						
Balanced L	load and	Power	Factor								
Phase	Volt	age	Frequ	iency	Volt-	Amp	Power Factor		Pass/Fail		Comments
А		V _{rms}		Hz		VA		pf			
В		V _{rms}				VA		pf			
С		V _{rms}				VA		pf			
	·		Тс	otal VA		VA					
Maximum	Unbalan	ce (diff	ference b	etween		VA					
highe	est and lo	owest pl	hase load	d)							

### TABLE TVF101-II. Sample data sheet for TVF101 load measurement. - Continued

#### METHOD TVF102 Steady State Limits for Voltage (Including Unbalance) and Frequency

POWER GROUP:	Three Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Normal
PARAMETER:	Steady State Limits for Voltage (Including Unbalance) and Frequency

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when provided power with voltage and frequency at the Normal Low Steady State (NLSS) limits and the Normal High Steady State (NHSS) limits as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when supplied input power of voltage and frequency at the specified normal steady state limits of the applicable edition(s) of MIL-STD-704 and as noted in table TVF102-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage and frequency limits and should be, not less than the time duration noted for the test conditions. The utilization equipment must demonstrate restart at the steady state voltage and frequency limits. The utilization equipment must not suffer damage or cause an unsafe condition.

Normal Limit	704A	704B	704C	704D	704E	704F
Voltage NLSS	N/A	N/A	N/A	N/A	N/A	108 V
Voltage NHSS	N/A	N/A	N/A	N/A	N/A	118 V
Voltage Unbalance	N/A	N/A	N/A	N/A	N/A	3.0V
Frequency NLSS	N/A	N/A	N/A	N/A	N/A	360 Hz
Frequency NHSS	N/A	N/A	N/A	N/A	N/A	800 Hz

TABLE TVF102-I.	MIL-STD-704	normal limits	for steady	state voltage,	voltage u	inbalance,	and
freque	ency for three	phase variable	frequency u	utilization equ	ipment.		

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. True RMS voltmeter
- c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure TVF102-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TVF102-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through RR noted in table TVF102-II, the UUT must remain for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage and frequency limits and should be, not less than the time duration noted. For test conditions E through NN, after each test condition slowly adjust the frequency until the next test condition is reached. This subjects the UUT to all frequency between 360 Hz and 800 Hz at the low steady state voltage limit and the high steady state voltage limit. Test conditions A through NN are three phase balanced voltages. Test conditions OO through RR are unbalanced voltage conditions.

At each test condition A through RR conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. For each test condition shutdown the UUT and verify that the UUT can be re-started. After re-start conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the voltages, frequency, time duration at test condition, successful/unsuccessful re-start and the performance of the UUT for each test condition in the data sheet shown in table TVF102-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

# TABLE TVF102-II. Test conditions for steady state limits of voltage and frequency for three phase, variable frequency utilization equipment.

Test Condition	Voltage	Frequency	Minimum Time
			Duration At test
			Condition
Balanced Nominal Voltag	ges	-	
А	115 V	360 Hz	30 min
В	115 V	400 Hz	30 min
С	115 V	600 Hz	30 min
D	115 V	800 Hz	30 min
Balanced Normal Low Ste	eady State Voltages		
Е	108 V	360 Hz	30 min
F	108 V	400 Hz	30 min
G	108 V	440 Hz	5 min
Н	108 V	480 Hz	5 min
Ι	108 V	520 Hz	5 min
J	108 V	560 Hz	5 min
K	108 V	600 Hz	30 min
L	108 V	520 Hz	5 min
М	108 V	540 Hz	5 min
N	108 V	560 Hz	5 min
0	108 V	570 Hz	5 min
Р	108 V	580 Hz	5 min
Q	108 V	600 Hz	30 min
R	108 V	640 Hz	5 min
S	108 V	680 Hz	5 min
Т	108 V	720 Hz	5 min
U	108 V	760 Hz	5 min
V	108 V	800 Hz	30 min
Balanced Normal High St	eady State Voltages		
W	118 V	360 Hz	30 min
Х	118 V	400 Hz	30 min
Y	118 V	440 Hz	5 min
Z	118 V	480 Hz	5 min
AA	118 V	520 Hz	5 min
BB	118 V	560 Hz	5 min
CC	118 V	600 Hz	30 min
DD	118 V	520 Hz	5 min
EE	118 V	540 Hz	5 min
FF	118 V	560 Hz	5 min
GG	118 V	570 Hz	5 min
HH	118 V	580 Hz	5 min
II	118 V	600 Hz	30 min
JJ	118 V	640 Hz	5 min
KK	118 V	680 Hz	5 min
LL	118 V	720 Hz	5 min
MM	118 V	760 Hz	5 min
NN	118 V	800 Hz	30 min
- 12 1			• • •

TABLE TVF102-II.	Test conditions for stead	ly state limits of vo	oltage and frequency	y for three
phas	e, variable frequency util	lization equipment	Continued	

Test Condition	Voltage	Frequency	Minimum Time Duration At test Condition
Unbalanced Voltages			
00	Van         108 V           Vbn         111 V           Vcn         111 V	360 Hz	30 min
РР	Van         118 V           Vbn         115 V           Vcn         115 V	360 Hz	30 min
QQ	Van         108 V           Vbn         111 V           Vcn         111 V	800 Hz	30 min
RR	Van         118 V           Vbn         115 V           Vcn         115 V	800 Hz	30 min



appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

17

FIGURE TVF102-1. Steady state limits for voltage (including unbalance) and frequency.

Test			Parameter	rs		Performance
Condition	Phase	Voltage	Frequency	Time Duration	Re-Start	Pass/Fail
				at Test	(Yes/No)	
				Condition		
	Α	V _{rms}	Hz	min		
А	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
В	В	V _{rms}				
	С	V _{rms}				
	А	V _{rms}	Hz	min		
C	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
D	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
Е	В	V _{rms}				
	С	V _{rms}				
	А	V _{rms}	Hz	min		
F	В	V _{rms}				
	С	V _{rms}				
	A	V _{rms}	Hz	min		
G	В	V _{rms}				
	C	V _{rms}				

TABLE TVF102-III.	Sample data sheet for	<b>FVF102</b> steady	y state limits of	voltage and f	requency for	or three p	hase,
	variable	frequency utili	zation equipme	ent.		*	

Test			Parameter	rs		Performance
Condition	Phase	Voltage	Frequency	Time Duration	Re-Start	Pass/Fail
		_		at Test	(Yes/No)	
				Condition		
	Α	V _{rms}	Hz	min		
Н	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
Ι	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
J	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
K	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
L	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
Μ	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
Ν	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
0	В	V _{rms}				
	С	V _{rms}				

 TABLE TVF102-III. Sample data sheet for TVF102 steady state limits of voltage and frequency for three phase, variable frequency utilization equipment.

 variable frequency utilization equipment.
 - Continued

Test			Parameter	rs		Performance
Condition	Phase	Voltage	Frequency	Time Duration	Re-Start	Pass/Fail
		-		at Test	(Yes/No)	
				Condition	· · · ·	
	Α	V _{rms}	Hz	min		
Р	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
Q	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
R	В	V _{rms}				
	С	V _{rms}				
	А	V _{rms}	Hz	min		
S	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
Т	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
U	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
V	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
W	В	V _{rms}				
	С	V _{rms}				

## TABLE TVF102-III. Sample data sheet for TVF102 steady state limits of voltage and frequency for three phase, variable frequency utilization equipment. variable frequency utilization equipment. - Continued

Test				Performance		
Condition	Phase	Voltage	Frequency	Time Duration	Re-Start	Pass/Fail
		-		at Test	(Yes/No)	
				Condition		
	Α	V _{rms}	Hz	min		
Х	В	V _{rms}				
	С	V _{rms}				
	А	V _{rms}	Hz	min		
Y	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
Z	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
AA	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
BB	В	V _{rms}				
	С	V _{rms}				
	А	V _{rms}	Hz	min		
CC	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
DD	В	V _{rms}				
	С	V _{rms}				
	A	V _{rms}	Hz	min		
EE	В	V _{rms}				
	С	V _{rms}				

 TABLE TVF102-III.
 Sample data sheet for TVF102 steady state limits of voltage and frequency for three phase,

 variable frequency utilization equipment.
 - Continued

Test			Parameter	rs		Performance
Condition	Phase	Voltage	Frequency	Time Duration	Re-Start	Pass/Fail
		-		at Test	(Yes/No)	
				Condition		
	Α	V _{rms}	Hz	min		
FF	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
GG	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
HH	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
II	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
JJ	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
KK	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
LL	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
MM	В	V _{rms}				
	C	V _{rms}				

 TABLE TVF102-III. Sample data sheet for TVF102 steady state limits of voltage and frequency for three phase, variable frequency utilization equipment.

 variable frequency utilization equipment.
 - Continued

Test			Parameter	rs		Performance
Condition	Phase	Voltage	Frequency	Time Duration	Re-Start	Pass/Fail
				at Test	(Yes/No)	
				Condition		
	A	V _{rms}	Hz	min		
NN	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
00	В	V _{rms}				
	С	V _{rms}				
	Α	V _{rms}	Hz	min		
PP	В	V _{rms}				
	С	V _{rms}				
	A	V _{rms}	Hz	min		
QQ	В	V _{rms}				
	С	V _{rms}				
	A	V _{rms}	Hz	min		
RR	В	V _{rms}				
	C	V _{rms}				

TABLE TVF102-III.	Sample data sheet for TVF102 stead	y state limits of	f voltage	and frequency	for three	phase,
	variable frequency utilization	<u>equipment</u> (	Continue	d	-	

#### METHOD TVF103 Voltage Phase Difference

POWER GROUP:	Three Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL	

OPERATING CONDITION: Normal

Voltage Phase Difference

1. <u>Scope</u>.

PARAMETER:

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when provided voltages having phase angles within the limits specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when provided voltages having phase angles at the limits of the applicable edition(s) of MIL-STD-704 and as noted in table TVF103-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate and should be, not less than thirty (30) minutes for each of the test conditions. The utilization equipment must not suffer damage or cause an unsafe condition.

 TABLE TVF103-I.
 MIL-STD-704 limits for voltage phase difference for three phase variable

 frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Voltage Phase Difference	N/A	N/A	N/A	N/A	N/A	116° to 124°

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Phase angle meter

4. <u>Test setup</u>. Configure the test setup as shown in figure TVF103-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TVF103-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the

frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A and B noted in table TVF103-II, the UUT must remain for a length of time that confirms the utilization equipment can continuously operate with voltage phase differences and should be, not less than thirty (30) minutes. The phase angles are referenced to Van. At each test condition conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the voltages, frequency, phase angles, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table TVF103-III. Repeat for each mode of operation of the UUT. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Adjust the phase angles to Van  $0^{\circ}$ , Vbn 120°, and Vcn 240°. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

 TABLE TVF103-II.
 Test conditions for voltage phase difference for three phase, variable

 frequency utilization equipment.

Test Condition	Voltage Phase Angle	Voltage Phase Angle	Voltage Phase Angle
	Van	Vbn	Vcn
А	$0^{\circ}$	116°	$240^{\circ}$
В	$0^{\circ}$	124°	$240^{\circ}$



5. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

26

FIGURE TVF103-1. Voltage phase difference.

## TABLE TVF103-III. Sample data sheet for TVF103 voltage phase difference for three phase, variable frequency utilization equipment.

Test			Parar	neters			Performance
Condition	Phase	Voltage	Frequency	Pl	hase Angle	Time Duration	Pass/Fail
						at Test	
						Condition	
Test performed	l at <b>400 H</b>	z steady state freq	uency				
	Α	V _{rms}	Hz	Van	0	min	
А	В	V _{rms}		Vbn	0		
	С	V _{rms}		Vcn	0		
	Α	V _{rms}	Hz	Van	0	min	
В	В	V _{rms}		Vbn	0		
	С	V _{rms}		Vcn	0		
Test performed	at 360 H	z steady state freq	uency				
	Α	V _{rms}	Hz	Van	0	min	
А	В	V _{rms}		Vbn	0		
	С	V _{rms}		Vcn	0		
	А	V _{rms}	Hz	Van	0	min	
В	В	V _{rms}		Vbn	0		
	С	V _{rms}		Vcn	0		
Test performed	at 600 H	z steady state freq	uency		· · · ·		
	Α	V _{rms}	Hz	Van	0	min	
А	В	V _{rms}		Vbn	0		
	С	V _{rms}		Vcn	0		
	A	V _{rms}	Hz	Van	0	min	
В	В	V _{rms}	•	Vbn	0		
	С	V _{rms}		Vcn	0		

TABLE TVF103-III.	Sample data sheet for TVF103 voltage phase difference for three phase, variable frequence	сy
	utilization equipment Continued	

Test			Paran	neters				Performance	
Condition	Phase	Voltage	Frequency	Р	hase Angle	Time Dur	ation	Pass/Fail	
						at Tes	t		
						Conditi	on		
Test performed	at 800 H	z steady state freq	uency	-					
	A	V _{rms}	Hz	Van	0		min		
A	В	V _{rms}		Vbn	0				
	С	V _{rms}		Vcn	0				
	Α	V _{rms}	Hz	Van	0		min		
В	В	V _{rms}		Vbn	0				
	С	V _{rms}		Vcn	0				~
									Į,
									±
									DB
									7-
									/0
									4- 5-
									-

#### METHOD TVF104 Voltage Modulation

POWER GROUP: Three Phase, Variable Frequency, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: Normal

PARAMETER:

Voltage Modulation

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to voltage modulation as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when supplied input power having voltage modulation as specified in the applicable edition(s) of MIL-STD-704 and as noted in table TVF104-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when provided power having voltage modulation. The utilization equipment must not suffer damage or cause an unsafe condition.

 TABLE TVF104-I.
 MIL-STD-704 limits for voltage modulation for three phase, variable

 frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
-						
Voltage	N/A	N/A	N/A	N/A	N/A	2.5 Vrms
Modulation						max

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure TVF104-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TVF104-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization

equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through G noted in table TVF104-II, set the voltage modulation amplitude and frequency of voltage modulation. The UUT must remain at the test condition for a length of time that confirms the utilization equipment can continuously operate, and should be at least ten (10) minutes at an average steady state voltage of 115 Vrms, at least ten (10) minutes at an average steady state voltage of 109.25 Vrms, and at least ten (10) minutes at an average steady state voltage of 116.75 Vrms. During the test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record average voltages, frequency, amplitude of voltage modulation, frequency of voltage modulation, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table TVF104-III. Repeat for each mode of operation of the UUT. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Frequency of Voltage	MIL-STD-704F
	Modulation	Amplitude of Voltage
		Modulation
		Vrms
А	1.0 Hz	0.375 Vrms
В	1.7 Hz	0.375 Vrms
С	10 Hz	2.5 Vrms
D	25 Hz	2.5 Vrms
Е	70 Hz	0.375 Vrms
F	100 Hz	0.375 Vrms
G	200 Hz	0.375 Vrms

#### TABLE TVF104-II. Test conditions for voltage modulation for three phase, variable frequency utilization equipment.



appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

31

FIGURE TVF104-1. Voltage modulation.

Test			I	Parameters			Performance
Condition	Phase	Average	Frequency	Amplitude of	Frequency of	Time Duration	Pass/Fail
		Voltage		Voltage	Voltage	at Test	
		_		Modulation	Modulation	Condition	
Test performed	l at <b>400</b> H	Iz steady state freq	luency				
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
A-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
A-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
A-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
B-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	А	V _{rms}	Hz	V _{rms}	Hz	min	
B-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
B-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
C-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		

TABLE TVF104-III. Sample data sheet for TVF104 voltage modulation for three phase, variable frequency utilization equipment.

Test			F	Parameters			Performance
Condition	Phase	Average	Frequency	Amplitude of	Frequency of	Time Duration	Pass/Fail
		Voltage		Voltage	Voltage	at Test	
				Modulation	Modulation	Condition	
Test performed	l at <b>400</b> H	Iz steady state freq	uency				
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
C-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
C-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
D-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
D-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
D-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
E-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
E-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz	1	

Test			F	Parameters			Performance
Condition	Phase	Average	Frequency	Amplitude of	Frequency of	Time Duration	Pass/Fail
		Voltage	1 0	Voltage	Voltage	at Test	
		_		Modulation	Modulation	Condition	
Test performed	at 400 H	Iz steady state freq	uency				
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
E-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
F-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
F-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
F-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
G-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
G-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
G-3	В	V _{rms}		V _{rms}	Hz		
	C	V _{rms}		V _{rms}	Hz		

Test			P	arameters			Performance
Condition	Phase	Average	Frequency	Amplitude of	Frequency of	Time Duration	Pass/Fail
		Voltage		Voltage	Voltage	at Test	
		_		Modulation	Modulation	Condition	
Test performed	at 360 H	z steady state freq	uency				
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
A-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
A-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
A-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
B-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
B-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
B-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
C-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		

TABLE TVF104	-III. <u>Sai</u>	mple data sheet for	TVF104 voltage	<u>modulation for the</u> Continued	ee phase, variable	e frequency utiliza	tion equipment
Test			F	arameters		1	Performance

Test			P	raneters			Performance
Condition	Phase	Average	Frequency	Amplitude of	Frequency of	Time Duration	Pass/Fail
		Voltage		Voltage	Voltage	at Test	
				Modulation	Modulation	Condition	
Test performed	at 360 H	z steady state freq	uency				
	А	V _{rms}	Hz	V _{rms}	Hz	min	
C-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	А	V _{rms}	Hz	V _{rms}	Hz	min	
C-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	А	V _{rms}	Hz	V _{rms}	Hz	min	
D-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
D-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	А	V _{rms}	Hz	V _{rms}	Hz	min	
D-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
E-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	А	V _{rms}	Hz	V _{rms}	Hz	min	
E-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		

Test			F	Parameters			Performance
Condition	Phase	Average	Frequency	Amplitude of	Frequency of	Time Duration	Pass/Fail
		Voltage		Voltage	Voltage	at Test	
				Modulation	Modulation	Condition	
Test performed	at 360 H	Iz steady state freq	uency				
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
E-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
F-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
F-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
F-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
G-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
G-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
G-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		

Test			F	Parameters			Performance
Condition	Phase	Average	Frequency	Amplitude of	Frequency of	Time Duration	Pass/Fail
		Voltage		Voltage	Voltage	at Test	
				Modulation	Modulation	Condition	
Test performed	l at <b>600</b> H	Iz steady state freq	uency				
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
A-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
A-2	В	V _{rms}	<u>.</u>	V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
A-3	В	V _{rms}	<u>.</u>	V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
B-1	В	V _{rms}	<u>.</u>	V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
B-2	В	V _{rms}	<u>.</u>	V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
B-3	В	V _{rms}	<u>.</u>	V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
C-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		

Test			F	Parameters			Performance
Condition	Phase	Average	Frequency	Amplitude of	Frequency of	Time Duration	Pass/Fail
		Voltage		Voltage	Voltage	at Test	
				Modulation	Modulation	Condition	
Test performed	at 600 H	Iz steady state freq	uency				
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
C-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
C-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
D-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
D-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
D-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
E-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
E-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		

Test			F	Parameters			Performance
Condition	Phase	Average	Frequency	Amplitude of	Frequency of	Time Duration	Pass/Fail
		Voltage		Voltage	Voltage	at Test	
				Modulation	Modulation	Condition	
Test performed	at 600 H	Iz steady state freq	uency				
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
E-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
F-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
F-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
F-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
G-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
G-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
G-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz	]	

Test	Parameters						Performance
Condition	Phase	Average	Frequency	Amplitude of	Frequency of	Time Duration	Pass/Fail
		Voltage	1 5	Voltage	Voltage	at Test	
		e		Modulation	Modulation	Condition	
Test performe	d at 800 Hz	z steady state freq	uency				L
	A	V _{rms}	Hz	V _{rms}	Hz	min	
A-1	В	V _{rms}	•	V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	A	V _{rms}	Hz	V _{rms}	Hz	min	
A-2	В	V _{rms}	•	V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	A	V _{rms}	Hz	V _{rms}	Hz	min	
A-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	A	V _{rms}	Hz	V _{rms}	Hz	min	
B-1	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
B-2	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	A	V _{rms}	Hz	V _{rms}	Hz	min	
B-3	В	V _{rms}		V _{rms}	Hz		
	С	V _{rms}		V _{rms}	Hz		
	Α	V _{rms}	Hz	V _{rms}	Hz	min	
C-1	В	V _{rms}		V _{rms}	Hz		

 $V_{rms}$ 

Hz

## TABLE TVF104-III. Sample data sheet for TVF104 voltage modulation for three phase, variable frequency utilization equipment. Continued

С

V_{rms}

TABLE TVF104-III.	Sample data sheet for TVF104	voltage modulation for three	phase, variable frequenc	y utilization equipment
	-	Continued	• • • •	

Test	Parameters							
Condition	Phase	Average	Frequency Amplitude of Frequency of Time Duration				Pass/Fail	
		Voltage		Voltage	Voltage	at Test		
				Modulation	Modulation	Condition		
Test performed at 800 Hz steady state frequency								
	Α	V _{rms}	Hz	V _{rms}	Hz	min		
C-2	В	V _{rms}		V _{rms}	Hz			
	С	V _{rms}		V _{rms}	Hz			
	Α	V _{rms}	Hz	V _{rms}	Hz	min		
C-3	В	V _{rms}		V _{rms}	Hz			
	С	V _{rms}		V _{rms}	Hz			
	Α	V _{rms}	Hz	V _{rms}	Hz	min		
D-1	В	V _{rms}		V _{rms}	Hz			
	С	V _{rms}		V _{rms}	Hz			
	Α	V _{rms}	Hz	V _{rms}	Hz	min		
D-2	В	V _{rms}		V _{rms}	Hz			
	С	V _{rms}		V _{rms}	Hz			
	Α	V _{rms}	Hz	V _{rms}	Hz	min		
D-3	В	V _{rms}		V _{rms}	Hz			
	С	V _{rms}		V _{rms}	Hz			
	Α	V _{rms}	Hz	V _{rms}	Hz	min		
E-1	В	V _{rms}		V _{rms}	Hz			
	С	V _{rms}		V _{rms}	Hz			
	A	V _{rms}	Hz	V _{rms}	Hz	min		
E-2	В	V _{rms}		V _{rms}	Hz			
	С	V _{rms}		V _{rms}	Hz			

42

TABLE TVF104-III.	Sample data sheet for TVF104	4 voltage modulation for three	<u>e phase, variable frequenc</u>	<u>y utilization equipment</u>
		Continued		

Test	Parameters						Performance	
Condition	Phase	Average	Frequency Amplitude of Frequency of Time Duration			Pass/Fail		
		Voltage		Voltage	Voltage	at Test		
				Modulation	Modulation	Condition		
Test performed at <b>800 Hz</b> steady state frequency								
	Α	V _{rms}	Hz	V _{rms}	Hz	min		
E-3	В	V _{rms}		V _{rms}	Hz			
	С	V _{rms}		V _{rms}	Hz			
	Α	V _{rms}	Hz	V _{rms}	Hz	min		
F-1	В	V _{rms}		V _{rms}	Hz			
	С	V _{rms}		V _{rms}	Hz			
	Α	V _{rms}	Hz	V _{rms}	Hz	min		
F-2	В	V _{rms}		V _{rms}	Hz			
	С	V _{rms}		V _{rms}	Hz			
	А	V _{rms}	Hz	V _{rms}	Hz	min		
F-3	В	V _{rms}		V _{rms}	Hz			
	С	V _{rms}		V _{rms}	Hz			
	Α	V _{rms}	Hz	V _{rms}	Hz	min		
G-1	В	V _{rms}		V _{rms}	Hz			
	С	V _{rms}		V _{rms}	Hz			
	Α	V _{rms}	Hz	V _{rms}	Hz	min		
G-2	В	V _{rms}		V _{rms}	Hz			
	С	V _{rms}		V _{rms}	Hz			
	Α	V _{rms}	Hz	V _{rms}	Hz	min		
G-3	В	V _{rms}		V _{rms}	Hz			
	С	V _{rms}		V _{rms}	Hz			

43

#### METHOD TVF105 Frequency Modulation

POWER GROUP: Three Phase, Variable Frequency, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: N

Normal

Frequency Modulation

1. <u>Scope</u>.

PARAMETER:

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to frequency modulation as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when supplied input power having frequency modulation as specified in the applicable edition(s) of MIL-STD-704 and as noted in table TVF105-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when provided power having frequency modulation and should be, not less than thirty (30) minutes. The utilization equipment must not suffer damage or cause an unsafe condition.

 TABLE TVF105-I.
 MIL-STD-704 limits for frequency modulation for three phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Frequency Modulation	N/A	N/A	N/A	N/A	N/A	4 Hz

#### 3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure TVF105-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TVF105-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization
equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through E noted in table TVF105-II, set the amplitude of frequency modulation and rate of change for frequency modulation. The UUT must remain at the test condition for a length of time that confirms the utilization equipment can continuously operate, and should be at least thirty (30) minutes. At each test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record voltages, average frequency, amplitude of frequency modulation, rate of change for frequency modulation, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table TVF105-III. Repeat for each mode of operation of the UUT. Repeat the testing at an average frequency of 362 Hz, 600 Hz, and 798 Hz.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

TABLE TVF105-II.	Test conditions for t	requency	y modulation	for three	phase,	variable
	frequency util	ization e	quipment.			

Test	Rate of change for	MIL-STD-704F
Condition	frequency modulation	Amplitude of
		Frequency
		Modulation
А	1 Hz/sec	4 Hz (± 2 Hz)
В	5 Hz/sec	4 Hz (± 2 Hz)
С	10 Hz/sec	4 Hz (± 2 Hz)
D	25 Hz/sec	4 Hz (± 2 Hz)
Е	100 Hz/sec	4 Hz (± 2 Hz)



5. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

46

FIGURE TVF105-1. Frequency modulation.

Test	Darameters						
Condition	DI	X7 1.	1		D ( C 1	T' D ('	
Condition	Phase	Voltage	Average	Amplitude of	Rate of change	Time Duration	Pass/Fail
			Frequency	Frequency	for frequency	at Test	
				Modulation	modulation	Condition	
Testing perform	ned at an	average frequency	/ of <b>400 Hz</b>				•
	Α	V _{rms}	Hz	± Hz	Hz/sec	min	
Α	В	V _{rms}					
	С	V _{rms}					
	A	V _{rms}	Hz	± Hz	Hz/sec	min	
В	В	V _{rms}					
	С	V _{rms}					
	A	V _{rms}	Hz	± Hz	Hz/sec	min	
C	В	V _{rms}	<u>.</u>				
	С	V _{rms}					
	Α	V _{rms}	Hz	± Hz	Hz/sec	min	
D	В	V _{rms}	<u>.</u>				
	С	V _{rms}					
	A	V _{rms}	Hz	± Hz	Hz/sec	min	
E	В	V _{rms}					
	C	V _{rms}					

TABLE TVF105-III. Sample data sheet for TVF105 frequency modulation for three phase, variable frequency utilization equipment.

TABLE TVF105-III.	Sample data sheet for TVF105 freque	ncy modulation for three	phase, variable frequency
	utilization equipment.	- Continued	

Test			Performance				
Condition	Phase	Voltage	Average	Amplitude of	Rate of change	Time Duration	Pass/Fail
			Frequency	Frequency	for frequency	at Test	
				Modulation	modulation	Condition	
Testing perform	ned at an	average frequency	y of <b>362 Hz</b>				
	A	V _{rms}	Hz	± Hz	Hz/sec	min	
А	В	V _{rms}					
	С	V _{rms}					
	Α	V _{rms}	Hz	± Hz	Hz/sec	min	
В	В	V _{rms}					
	С	V _{rms}					
	Α	V _{rms}	Hz	± Hz	Hz/sec	min	
С	В	V _{rms}					
	С	V _{rms}					
	Α	V _{rms}	Hz	± Hz	Hz/sec	min	
D	В	V _{rms}					
	С	V _{rms}					
	Α	V _{rms}	Hz	± Hz	Hz/sec	min	
E	В	V _{rms}				i	
	C	V _{rms}					

TABLE TVF105-III.	Sample data sheet for TVF105 freque	ncy modulation for three	phase, variable frequency
	utilization equipment.	- Continued	

Test		Parameters						
Condition	Phase	Voltage	Average	Amplitude of	Rate of change	Time Duration	Pass/Fail	
			Frequency	Frequency	for frequency	at Test		
				Modulation	modulation	Condition		
Testing perform	ned at an	average frequency	y of <b>600 Hz</b>					
	A	V _{rms}	Hz	± Hz	Hz/sec	min		
А	В	V _{rms}						
	С	V _{rms}						
	A	V _{rms}	Hz	± Hz	Hz/sec	min		
В	В	V _{rms}						
	С	V _{rms}						
	A	V _{rms}	Hz	± Hz	Hz/sec	min		
С	В	V _{rms}						
	С	V _{rms}						
	Α	V _{rms}	Hz	± Hz	Hz/sec	min		
D	В	V _{rms}						
	С	V _{rms}						
	A	V _{rms}	Hz	± Hz	Hz/sec	min		
E	В	V _{rms}						
	C	V _{rms}						

TABLE TVF105-III.	Sample data sheet for TVF105 frequence	y modulation for three	phase, variable frequency
	utilization equipment	Continued	

Test	Parameters						Performance
Condition	Phase	Voltage	Average	Amplitude of	Rate of change	Time Duration	Pass/Fail
		_	Frequency	Frequency	for frequency	at Test	
				Modulation	modulation	Condition	
Testing perform	ned at an	average frequency	7 of <b>798 Hz</b>	·			
	A	V _{rms}	Hz	± Hz	Hz/sec	min	
А	В	V _{rms}					
	С	V _{rms}					
	A	V _{rms}	Hz	± Hz	Hz/sec	min	
В	В	V _{rms}					
	С	V _{rms}					
	A	V _{rms}	Hz	± Hz	Hz/sec	min	
С	В	V _{rms}					
	С	V _{rms}					
	Α	V _{rms}	Hz	± Hz	Hz/sec	min	
D	В	V _{rms}					
	С	V _{rms}					
	A	V _{rms}	Hz	± Hz	Hz/sec	min	
Е	В	V _{rms}					
	C	V _{rms}					

### METHOD TVF106 Voltage Distortion Spectrum

POWER GROUP:	Three Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL	

OPERATING CONDITION: Normal

Voltage Distortion Spectrum

1. Scope.

PARAMETER:

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to voltage distortion of frequencies and amplitudes as specified by the voltage distortion spectrum in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to voltage distortions as specified by the voltage distortion spectrum in the applicable edition(s) of MIL-STD-704 and as noted in table TVF106-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when provided power having voltage distortion. The utilization equipment must not suffer damage or cause an unsafe condition.

Note: This test method subjects the UUT to voltage distortion having frequencies components from 50 Hz to 10 kHz. These voltage distortions simulate voltage distortions within aircraft due to the cumulative effects of generators, electrical distribution systems equipments, and aircraft loads. MIL-STD-461, (Requirements For The Control of Electromagnetic Interference Characteristics of Subsystems and Equipment), Test Method CS101, (Conducted Susceptibility, Power Leads, 30 Hz to 150 kHz) is a complimentary test. Power levels of the voltage distortions differ for the two test methods. Performance of Test Method TVF106 of this handbook does not relinquish the requirement to perform test Method CS101 of MIL-STD-461, and performance of TVF106 of this handbook.

TABLE TVF106-I.	MIL-STD-704 limits for voltage distortion spectrum for three pha	ase,
	variable frequency utilization equipment.	

Limit	704A	704B	704C	704D	704E	704F
Voltage Distortion Spectrum	N/A	N/A	N/A	N/A	N/A	figure 7 MIL-STD- 704F

### 3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. Variable frequency power source
- c. Coupling transformer
- d. True RMS voltmeter
- e. Frequency counter
- f. Spectrum analyzer
- g. (3) Inductors, 50  $\mu$ H
- h. (3) Capacitor,  $10 \ \mu F$
- i. Resistor, calibrated load

4. <u>Test setup</u>. Configure the test setup as shown in figure TVF106-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

4.1. <u>Calibration (50 Hz to 10 kHz)</u>. Install a calibrated resistive load in the test setup shown in figure TVF106-1 in place of the UUT. The calibrated resistive load must be sized to draw the same current as the UUT. Turn on the adjustable AC power supply and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Set the variable frequency power source to output a sine wave and adjust the frequency and amplitude so that the voltage distortion measured at the input to the calibrated resistive load conforms to each test condition A through H in table TVF106-II of the applicable edition(s) of MIL-STD-704. Record the settings of the variable frequency power source for each test condition. Repeat the calibration at steady state frequencies of 360 Hz, 600 Hz, and 800 Hz.

5. <u>Compliance test</u>. With the adjustable AC power supply off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TVF106-1. Figure TVF106-1 shows the coupling transformer installed in phase A. The test will be repeated with the coupling transformer installed in Phase B and Phase C. Turn on the adjustable AC power supply and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

Set the variable frequency power source to the settings recorded for test condition A of the calibration procedure. For each test condition, remain for a length of time that confirms the utilization equipment can continuously operate with the voltage distortion and should be, not less than five (5) minutes. At each test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. After each test condition, monitor the voltage distortion frequency and amplitude while slowly increasing the variable frequency power source frequency and adjusting the amplitude until the next test condition is reached. Do not exceed the voltage distortion spectrum limits. Repeat for each test condition A through H noted in table TVF106-II. For each test condition, record the phase tested, voltage,

frequency, frequency of voltage distortion, amplitude of voltage distortion, time duration at test condition, and the performance of the UUT in the data sheet shown in table TVF106-III. Repeat for each mode of operation of the UUT. Turn the adjustable AC power supply off, install the coupling transformer in phase B, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and the frequency to a steady state frequency of 400 Hz and repeat the testing for phase B. Turn the adjustable AC power supply off, install the coupling transformer in phase C, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and the frequency of 400 Hz and repeat the testing for Phase C. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

After all test conditions are complete, turn the adjustable AC power supply off and remove the coupling transformer from the circuit. Turn on the adjustable AC power supply. Adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Frequency of Voltage	MIL-STD-704B
	Distortion	C, D, E & F ^{1/}
		Amplitude of Voltage Distortion
		Voltage rms
А	50 Hz	0.316 Vrms
В	100 Hz	0.316 Vrms
С	500 Hz	1.580 Vrms
D	1 kHz	3.160 Vrms
Е	2 kHz	3.160 Vrms
F	3 kHz	3.160 Vrms
G	5 kHz	1.900 Vrms
Н	10 kHz	0.950 Vrms

TABLE TVF106-II.	Test conditions for	voltage distortion	spectrum	for three	phase,	variable
	frequency	utilization equipm	nent.		-	

 $\underline{1}$ /. For utilization equipment being tested to MIL-STD-704 edition A, use MIL-STD-704B limits.



- 2. For 5 phase 4 whe equipment, neutral connection to also be made within 10 cm of 001 input power terminals. For wire equipment, line-to-neutral measurements to be made with neutral connection made to power supply neutral.
- 3. CAUTION: Verify suitability of power supply NEUTRAL and GROUND connections.
- 4. CAUTION: Verify suitability of instrumentation inputs and/or use appropriate attenuation.
- 5. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)
- 6. CAUTION: Verify suitability of variable frequency power source and coupling transformer for distortion spectrum testing.
- 7. Coupling Transformer shown is connected in series on Phase A. Testing is repeated with Coupling Transformer connected in series on Phase B and Phase C.

Stimulation & Monitoring Equipment (See Note 5)

FIGURE TVF106-1. Normal operation - voltage distortion spectrum (50 Hz to 10 kHz).

	-									
Test			]	Parameter			Performance			
Condition	Phase	Voltage	Frequency	Frequency of	Amplitude of	Time Duration	Pass/Fail			
		c	1 2	Voltage	Voltage	at Test				
				Distortion	Distortion	Condition				
Testing perfe	Testing performed at 400 Hz									
	Α									
А		V _{rms}	Hz	Hz	V _{rms}	min				
В		V _{rms}	Hz	Hz	V _{rms}	min				
С		V _{rms}	Hz	Hz	V _{rms}	min				
D		V _{rms}	Hz	kHz	V _{rms}	min				
Е		V _{rms}	Hz	kHz	V _{rms}	min				
F		V _{rms}	Hz	kHz	V _{rms}	min				
G		V _{rms}	Hz	kHz	V _{rms}	min				
Н		V _{rms}	Hz	kHz	V _{rms}	min				
Testing perfe	ormed at	400 Hz	· · · ·	· · ·						
	В									
Α		V _{rms}	Hz	Hz	V _{rms}	min				
В		V _{rms}	Hz	Hz	V _{rms}	min				
С		V _{rms}	Hz	Hz	V _{rms}	min				
D		V _{rms}	Hz	kHz	V _{rms}	min				
Е		V _{rms}	Hz	kHz	V _{rms}	min				
F		V _{rms}	Hz	kHz	V _{rms}	min				
G		V _{rms}	Hz	kHz	V _{rms}	min				
Н		V _{rms}	Hz	kHz	V _{rms}	min				

Test			J	Parameter			Performance
Condition	Phase	Voltage	Frequency	Frequency of	Amplitude of	Time Duration	Pass/Fail
				Voltage	Voltage	at Test	
				Distortion	Distortion	Condition	
Testing perfo	ormed at	400 Hz					
	С						
А		V _{rms}	Hz	Hz	V _{rms}	min	
В		V _{rms}	Hz	Hz	V _{rms}	min	
С		V _{rms}	Hz	Hz	V _{rms}	min	
D		V _{rms}	Hz	kHz	V _{rms}	min	
E		V _{rms}	Hz	kHz	V _{rms}	min	
F		V _{rms}	Hz	kHz	V _{rms}	min	
G		V _{rms}	Hz	kHz	V _{rms}	min	
Н		V _{rms}	Hz	kHz	V _{rms}	min	

Test			]	Parameter			Performance
Condition	Phase	Voltage	Frequency	Frequency of	Amplitude of	Time Duration	Pass/Fail
				Voltage	Voltage	at Test	
				Distortion	Distortion	Condition	
Testing perfo	ormed at	360 Hz					
	Α						
А		V _{rms}	Hz	Hz	V _{rms}	min	
В		V _{rms}	Hz	Hz	V _{rms}	min	
С		V _{rms}	Hz	Hz	V _{rms}	min	
D		V _{rms}	Hz	kHz	V _{rms}	min	
E		V _{rms}	Hz	kHz	V _{rms}	min	
F		V _{rms}	Hz	kHz	V _{rms}	min	
G		V _{rms}	Hz	kHz	V _{rms}	min	
Н		V _{rms}	Hz	kHz	V _{rms}	min	
Testing perfo	ormed at	360 Hz					
	В						
А		V _{rms}	Hz	Hz	V _{rms}	min	
В		V _{rms}	Hz	Hz	V _{rms}	min	
С		V _{rms}	Hz	Hz	V _{rms}	min	
D		V _{rms}	Hz	kHz	V _{rms}	min	
E		V _{rms}	Hz	kHz	V _{rms}	min	
F		V _{rms}	Hz	kHz	V _{rms}	min	
G		V _{rms}	Hz	kHz	V _{rms}	min	
Н		V _{rms}	Hz	kHz	V _{rms}	min	

Test			H	Parameter			Performance
Condition	Phase	Voltage	Frequency	Frequency of	Amplitude of	Time Duration	Pass/Fail
				Voltage	Voltage	at Test	
				Distortion	Distortion	Condition	
Testing perfo	ormed at	360 Hz					
	С						
А		V _{rms}	Hz	Hz	V _{rms}	min	
В		V _{rms}	Hz	Hz	V _{rms}	min	
С		V _{rms}	Hz	Hz	V _{rms}	min	
D		V _{rms}	Hz	kHz	V _{rms}	min	
E		V _{rms}	Hz	kHz	V _{rms}	min	
F		V _{rms}	Hz	kHz	V _{rms}	min	
G		V _{rms}	Hz	kHz	V _{rms}	min	
Н		V _{rms}	Hz	kHz	V _{rms}	min	

Test			J	Parameter			Performance
Condition	Phase	Voltage	Frequency	Frequency of	Amplitude of	Time Duration	Pass/Fail
		_		Voltage	Voltage	at Test	
				Distortion	Distortion	Condition	
Testing perfo	ormed at	600 Hz					
	Α						
А		V _{rms}	Hz	Hz	V _{rms}	min	
В		V _{rms}	Hz	Hz	V _{rms}	min	
С		V _{rms}	Hz	Hz	V _{rms}	min	
D		V _{rms}	Hz	kHz	V _{rms}	min	
E		V _{rms}	Hz	kHz	V _{rms}	min	
F		V _{rms}	Hz	kHz	V _{rms}	min	
G		V _{rms}	Hz	kHz	V _{rms}	min	
Н		V _{rms}	Hz	kHz	V _{rms}	min	
Testing perfo	ormed at	600 Hz					
	В						
А		V _{rms}	Hz	Hz	V _{rms}	min	
В		V _{rms}	Hz	Hz	V _{rms}	min	
С		V _{rms}	Hz	Hz	V _{rms}	min	
D		V _{rms}	Hz	kHz	V _{rms}	min	
Е		V _{rms}	Hz	kHz	V _{rms}	min	
F		V _{rms}	Hz	kHz	V _{rms}	min	
G		V _{rms}	Hz	kHz	V _{rms}	min	
Н		V _{rms}	Hz	kHz	V _{rms}	min	

Test			H	Parameter			Performance
Condition	Phase	Voltage	Frequency	Frequency of	Amplitude of	Time Duration	Pass/Fail
				Voltage	Voltage	at Test	
				Distortion	Distortion	Condition	
Testing perfo	ormed at	600 Hz					
	С						
А		V _{rms}	Hz	Hz	V _{rms}	min	
В		V _{rms}	Hz	Hz	V _{rms}	min	
С		V _{rms}	Hz	Hz	V _{rms}	min	
D		V _{rms}	Hz	kHz	V _{rms}	min	
E		V _{rms}	Hz	kHz	V _{rms}	min	
F		V _{rms}	Hz	kHz	V _{rms}	min	
G		V _{rms}	Hz	kHz	V _{rms}	min	
Н		V _{rms}	Hz	kHz	V _{rms}	min	

Test			J	Parameter			Performance
Condition	Phase	Voltage	Frequency	Frequency of	Amplitude of	Time Duration	Pass/Fail
				Voltage	Voltage	at Test	
				Distortion	Distortion	Condition	
Testing perfo	ormed at	800 Hz					
	Α						
А		V _{rms}	Hz	Hz	V _{rms}	min	
В		V _{rms}	Hz	Hz	V _{rms}	min	
С		V _{rms}	Hz	Hz	V _{rms}	min	
D		V _{rms}	Hz	kHz	V _{rms}	min	
Е		V _{rms}	Hz	kHz	V _{rms}	min	
F		V _{rms}	Hz	kHz	V _{rms}	min	
G		V _{rms}	Hz	kHz	V _{rms}	min	
Н		V _{rms}	Hz	kHz	V _{rms}	min	
Testing perfo	ormed at	800 Hz					
	В						
А		V _{rms}	Hz	Hz	V _{rms}	min	
В		V _{rms}	Hz	Hz	V _{rms}	min	
С		V _{rms}	Hz	Hz	V _{rms}	min	
D		V _{rms}	Hz	kHz	V _{rms}	min	
E		V _{rms}	Hz	kHz	V _{rms}	min	
F		V _{rms}	Hz	kHz	V _{rms}	min	
G		V _{rms}	Hz	kHz	V _{rms}	min	
Н		V _{rms}	Hz	kHz	V _{rms}	min	

Test			H	Parameter			Performance
Condition	Phase	Voltage	Frequency	Frequency of	Amplitude of	Time Duration	Pass/Fail
				Voltage	Voltage	at Test	
				Distortion	Distortion	Condition	
Testing perfo	ormed at	800 Hz					
	С						
А		V _{rms}	Hz	Hz	V _{rms}	min	
В		V _{rms}	Hz	Hz	V _{rms}	min	
С		V _{rms}	Hz	Hz	V _{rms}	min	
D		V _{rms}	Hz	kHz	V _{rms}	min	
E		V _{rms}	Hz	kHz	V _{rms}	min	
F		V _{rms}	Hz	kHz	V _{rms}	min	
G		V _{rms}	Hz	kHz	V _{rms}	min	
Н		V _{rms}	Hz	kHz	V _{rms}	min	

### METHOD TVF107 Total Voltage Distortion

POWER GROUP:	Three Phase, Variable Frequency, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: N

Normal

Total Voltage Distortion

1. <u>Scope</u>.

PARAMETER:

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to voltage waveforms having a distortion factor as specified by the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to voltage waveforms having a distortion factor as specified by the applicable edition(s) of MIL-STD-704 and as noted in table TVF107-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when subjected to distorted voltage waveforms and should be not less than thirty (30) minutes. The utilization equipment must not suffer damage or cause an unsafe condition.

 TABLE TVF107-I.
 MIL-STD-704 limits for total voltage distortion for three phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Voltage Distortion Factor	N/A	N/A	N/A	N/A	N/A	0.05

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Spectrum analyzer
- e. Distortion meter

4. <u>Test setup</u>. Configure the test setup as shown in figure TVF107-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

4.1 <u>Calibration</u>. Install a resistive load in the test setup shown in figure TVF107-1 in place of the UUT. The resistive load must be sized to draw the same current as the UUT. Set

the programmable power supply to produce a voltage waveform having harmonic contents listed in table TVF107-II. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Confirm that the programmable power supply is producing a voltage waveform having harmonic content listed in table TVF107-II. Record the settings of the programmable power supply.

5. Compliance test. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TVF107-1. Set the programmable power supply to the settings recorded during the calibration procedure. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. The UUT must remain for a length of time that confirms the utilization equipment can continuously operate with the total voltage distortion and should be not less than thirty (30) minutes. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the voltage, frequency, voltage distortion factor, voltage harmonics, time duration at test condition, and the performance of the UUT in the data sheet shown in table TVF107-III. Repeat for each mode of operation of the UUT. Repeat the testing at a fundamental frequency of 360 Hz, 600 Hz, and 800 Hz.

After all test conditions are complete, set the programmable power supply to produce sine waves for each of the three phases. Adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

## TABLE TVF107-II. Voltage harmonics as percent of fundamental for total voltage distortion test for three phase, variable frequency utilization equipment.

Harmonic	MIL-STD-704F
	Percent of
	Fundamental
Fundamental	100%
2nd	0%
3rd	2.75%
4th	0%
5th	2.75%
6th	0%
7th	1.97%
8th	0%
9th	1.53%
10th	0%
11th	1.25%
12th	0%
13th	1.06%
14th	0%
15th	0.92%



appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

66

FIGURE TVF107-1. Total voltage distortion.

TABLE TVF107-III.	Sam	ple data sheet for	TVF107 total	voltage	e distortion for	three pl	hase,	variable freq	Juenc	y utilization	equi	pment.

			P	arameter	S				Perform	nance
Phase	Vol	tage	Frequ	iency	Vol	tage	Time D	uration	Pass/Fail	
					Disto	ortion	at T	ſest		
					Fac	tor	Condition			
Testing	performe	ed at a fui	ndamenta	l frequen	cy of 400	) Hz				
А		V _{rms}		Hz		No units		min		
В		V _{rms}				No units				
С		V _{rms}				No units				
	Voltage Harmonics			Volta	Itage Harmonics Voltage Harm					
		Phase A			Phase B Phase C			Phase C		
	Fund		%	Fund		%	Fund		%	
	$2^{nd}$		%	$2^{nd}$		%	$2^{nd}$		%	
	3 rd		%	3 rd		%	3 rd		%	
	4 th		%	$4^{\text{th}}$		%	$4^{\text{th}}$		%	
	5 th		%	$5^{\text{th}}$		%	$5^{\text{th}}$		%	
	6 th		%	$6^{\text{th}}$		%	$6^{\text{th}}$		%	
	7 th		%	$7^{\text{th}}$		%	$7^{\text{th}}$		%	
	$8^{\text{th}}$		%	$8^{\text{th}}$		%	$8^{\text{th}}$		%	
	9 th		%	$9^{\text{th}}$		%	$9^{\text{th}}$		%	
	10 th		%	10 th		%	$10^{\text{th}}$		%	
	11 th		%	11 th		%	11 th		%	
	12 th		%	12 th		%	$12^{\text{th}}$		%	
	13 th		%	13 th		%	13 th		%	
	$14^{\text{th}}$		%	$14^{\text{th}}$		%	$14^{\text{th}}$		%	
	15 th		%	$15^{\text{th}}$		%	$15^{\text{th}}$		%	

			Р	arameter	'S				Performance			
Phase	Vol	tage	Frequ	iency	Vol	tage	Time D	uration	Pass/Fail			
		_	_		Disto	ortion	at 🛛	Test				
					Fac	ctor	Conc	lition				
Testing	performe	ed at a fui	ndamenta	l frequen	cy of 360	) Hz						
А		V _{rms}		Hz		No units		min				
В		V _{rms}				No units						
С		V _{rms}				No units						
	Voltage Harmonics			Volta	ige Harm	onics	Volta	ige Harm	onics			
		Phase A			Phase B			Phase C				
	Fund		%	Fund		%	Fund		%			
	$2^{nd}$		%	$2^{nd}$		%	$2^{nd}$		%			
	3 rd		%	3 rd		%	3 rd		%			
	$4^{\text{th}}$		%	$4^{\text{th}}$		%	$4^{\text{th}}$		%			
	5 th		%	5 th		%	$5^{\text{th}}$		%			
	6 th		%	6 th		%	$6^{\text{th}}$		%			
	7 th		%	$7^{\text{th}}$		%	$7^{\text{th}}$		%			
	$8^{\text{th}}$		%	$8^{\text{th}}$		%	$8^{th}$		%			
	9 th		%	9 th		%	$9^{\text{th}}$		%			
	$10^{\text{th}}$		%	$10^{\text{th}}$		%	$10^{\text{th}}$		%			
	11 th		%	11 th		%	11 th		%			
	12 th		%	$12^{\text{th}}$		%	$12^{\text{th}}$		%			
	13 th		%	13 th		%	13 th		%			
	$14^{\text{th}}$		%	$14^{\text{th}}$		%	$14^{\text{th}}$		%			
	$15^{\text{th}}$		%	$15^{\text{th}}$		%	$15^{\text{th}}$		%			

			Р	arameter	'S				Performance	
Phase	Vol	tage	Frequ	iency	Vol	tage	Time D	uration	Pass/Fail	
		_			Disto	ortion	at 🛛	Test		
					Fac	ctor	Conc	lition		
Testing	performe	ed at a fui	ndamenta	l frequen	cy of 600	) Hz				
А		V _{rms}		Hz		No units		min		
В		V _{rms}				No units				
С		V _{rms}				No units				
	Voltage Harmonics Vo			Volta	ige Harm	onics	Volta	ige Harm	onics	
		Phase A			Phase B			Phase C		
	Fund		%	Fund		%	Fund		%	
	$2^{nd}$		%	$2^{nd}$		%	$2^{nd}$		%	
	3 rd		%	3 rd		%	3 rd		%	
	$4^{\text{th}}$		%	$4^{\text{th}}$		%	$4^{\text{th}}$		%	
	5 th		%	$5^{\text{th}}$		%	$5^{\text{th}}$		%	
	$6^{\text{th}}$		%	$6^{\text{th}}$		%	$6^{\text{th}}$		%	
	7 th		%	$7^{\text{th}}$		%	$7^{\text{th}}$		%	
	$8^{\text{th}}$		%	$8^{\text{th}}$		%	$8^{\text{th}}$		%	
	9 th		%	$9^{\text{th}}$		%	$9^{\text{th}}$		%	
	$10^{\text{th}}$		%	$10^{\text{th}}$		%	$10^{\text{th}}$		%	
	11 th		%	11 th		%	11 th		%	
	$12^{\text{th}}$		%	$12^{\text{th}}$		%	$12^{\text{th}}$		%	
	13 th		%	13 th		%	13 th		%	
	$14^{\text{th}}$		%	$14^{\text{th}}$		%	$14^{\text{th}}$		%	
	$15^{\text{th}}$		%	$15^{\text{th}}$		%	$15^{\text{th}}$		%	

			Р	arameter	'S				Performance			
Phase	Vol	tage	Frequ	iency	Vol	tage	Time D	ouration	Pass/Fail			
		_	_		Disto	ortion	at 🛛	ſest				
					Fac	ctor	Conc	lition				
Testing	performe	ed at a fui	ndamenta	l frequen	cy of 800	) Hz						
А		V _{rms}		Hz		No units		min				
В		V _{rms}				No units						
С		V _{rms}				No units						
	Voltage Harmonics			Volta	ige Harm	onics	Volta	ige Harm	onics			
		Phase A			Phase B			Phase C				
	Fund		%	Fund		%	Fund		%			
	$2^{nd}$		%	$2^{nd}$		%	$2^{nd}$		%			
	3 rd		%	3 rd		%	3 rd		%			
	$4^{\text{th}}$		%	$4^{\text{th}}$		%	$4^{\text{th}}$		%			
	5 th		%	5 th		%	$5^{\text{th}}$		%			
	6 th		%	6 th		%	$6^{\text{th}}$		%			
	$7^{\text{th}}$		%	$7^{\text{th}}$		%	$7^{\text{th}}$		%			
	$8^{\text{th}}$		%	$8^{\text{th}}$		%	$8^{th}$		%			
	9 th		%	9 th		%	$9^{\text{th}}$		%			
	$10^{\text{th}}$		%	$10^{\text{th}}$		%	$10^{\text{th}}$		%			
	11 th		%	11 th		%	11 th		%			
	$12^{\text{th}}$		%	$12^{\text{th}}$		%	$12^{\text{th}}$		%			
	13 th		%	13 th		%	13 th		%			
	$14^{\text{th}}$		%	$14^{\text{th}}$		%	$14^{\text{th}}$		%			
	$15^{\text{th}}$		%	$15^{\text{th}}$		%	$15^{\text{th}}$		%			

### METHOD TVF108 DC Voltage Component

POWER GROUP:	Three Phase, Variable Frequency, 115 V	
FOWER OROUF.	Three Flase, valiable Frequency, 115 v	

AIRCRAFT ELECTRICAL OPERATING CONDITION: No

Normal

PARAMETER: DC Voltage Component

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to a direct current component of AC voltage as specified by the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to a direct current component of AC voltage as specified by the applicable edition(s) of MIL-STD-704 and as noted in table TVF108-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when subjected to a direct current component of AC voltage and should be not less than thirty (30) minutes. The utilization equipment must not suffer damage or cause an unsafe condition.

 MIL-STD-704 limits for direct current component of AC voltage for three phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
DC Voltage	N/A	N/A	N/A	N/A	N/A	$\pm 0.10 \text{ V}$
Component						
of the AC						
Voltage						

- 3. <u>Apparatus</u>. The test equipment should be as follows:
  - a. Programmable AC power supply
  - b. True RMS voltmeter (with capability to measure DC component of AC waveform)
  - c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure TVF108-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TVF108-1. Set the programmable power

supply to produce voltage waveforms having a DC component on each of the three phases for test condition A as noted in table TVF108-II. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. The UUT must remain for a length of time that confirms the utilization equipment can continuously operate with the direct current component of the AC voltage and should be not less than thirty (30) minutes. Repeat the test for test condition B as noted in table TVF108-II. Record the voltages, frequency, DC voltage component, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table TVF108-III. Repeat for each mode of operation of the UUT. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

After all test conditions are complete, set the programmable power supply to produce voltage sine waves without a DC component. Adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

TABLE TVF108-II.	Test conditions for direct current component of AC voltage for three phase,
	variable frequency utilization equipment.

Test Condition	MIL-STD-704F Direct Current Component
A	+ 0.10V
В	– 0.10 V



Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropria inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

73

FIGURE TVF108-1. DC voltage component.

Test				Performance							
Condition	Phase	Voltage	Frequency	DC Voltage Component	Time Duration at Test Condition	Pass/Fail					
Testing Perform	Testing Performed at 400 Hz										
	Α	V _{rms}	Hz	V _{dc}	min						
Α	В	V _{rms}		V _{dc}							
	С	V _{rms}		V _{dc}							
	Α	V _{rms}	Hz	V _{dc}	min						
В	В	V _{rms}		V _{dc}							
	С	V _{rms}		V _{dc}							
Testing Perform	med at <b>36</b>	0 Hz									
	Α	V _{rms}	Hz	V _{dc}	min						
A	В	V _{rms}		V _{dc}							
	C	V _{rms}		V _{dc}							
	Α	V _{rms}	Hz	V _{dc}	min						
В	В	V _{rms}		V _{dc}							
	C	V _{rms}		V _{dc}							
Testing Perform	med at 60	0 Hz									
	Α	V _{rms}	Hz	V _{dc}	min						
Α	В	V _{rms}		V _{dc}							
	C	V _{rms}		V _{dc}							
	A	V _{rms}	Hz	V _{dc}	min						
В	В	V _{rms}		V _{dc}							
	C	V _{rms}		$V_{dc}$							

TABLE TVF108-III. Sample data sheet for TVF108 DC voltage component for three phase, variable frequency utilization equipment.

Test				Performance						
Condition	Phase	Voltage	Frequency	DC Voltage	Time Duration	Pass/Fail				
				Component	at Test					
					Condition					
Testing Performed at 800 Hz										
	Α	V _{rms}	Hz	V _{dc}	min					
А	В	V _{rms}		V _{dc}						
	С	V _{rms}		V _{dc}						
	Α	V _{rms}	Hz	V _{dc}	min					
В	В	V _{rms}		V _{dc}						
	C	V _{rms}		V _{dc}						

TABLE TVF108-III.	Sample data sheet for TVF108 DC voltage component for three phase, variable frequer	icy							
utilization equipment Continued									

### METHOD TVF109 Normal Voltage Transients

POWER GROUP:	Three Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Normal

PARAMETER: Normal Voltage Transients

1. Scope.

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to normal voltage transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to voltage transients within the normal limits of the applicable edition(s) of MIL-STD-704 and as noted in table TVF109-I. The utilization equipment must maintain specified performance during and after the voltage transients. The utilization equipment must not suffer damage or cause an unsafe condition.

 TABLE TVF109-I.
 MIL-STD-704 limits for normal voltage transients for three phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Normal Voltage Transients	N/A	N/A	N/A	N/A	N/A	figure 3 MIL-STD- 704F

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure TVF109-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TVF109-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization

equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

The UUT must be subjected to the voltage transients for each test condition A through M noted in table TVF109-II. The voltage must increase or decrease from steady state voltage to the voltage transient level within  $\frac{1}{2}$  cycle. The voltage must remain at the voltage transient level for the duration noted in table TVF109-II. The voltage must return to steady state over the time duration noted in table TVF109-II. For test condition G, three overvoltage transients of 180 Vrms for 10 milliseconds are performed, separated by 0.5 seconds. For test condition L, three undervoltage transients of 80 Vrms for 10 milliseconds are performed, separated by 0.5 seconds. For test condition M, an undervoltage transient of 80 Vrms for 10 milliseconds is immediately followed by an overvoltage transient of 180 Vrms for 10 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal steady state limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltages, steady state frequency, voltage transient level, time duration at voltage transient, oscilloscope trace, and the performance of the UUT for each test condition in the data sheet shown in table TVF109-III. Repeat for each mode of operation of the UUT. In addition perform the repetitive normal voltage transient test described below. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

5.1 <u>Repetitive normal voltage transients test</u>. Program the power supply to provide a continually repeating voltage transient that decreases from 115 Vrms to 90 Vrms in ½ cycle, then increases to 140 Vrms over 50 msec, then decreases to 115 Vrms over ½ cycle. The voltage transient is repeated every 0.5 seconds, see figure TVF109-2. The UUT must be subjected to the repetitive voltage transient for a length of time that confirms the utilization equipment can continuously operate and should be not less than thirty (30) minutes. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltages, steady state frequency, high voltage transient level, low voltage transient level, oscilloscope trace, time duration at test condition, and the performance of the UUT in the data sheet shown in table TVF109-III. Repeat for each mode of operation of the UUT. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Time From	Voltage	Duration at	Time From					
	Steady State	Transient Level	Voltage	Voltage					
	Voltage to	Vrms	Transient Level	Transient Level					
	Voltage		milliseconds	to Steady State					
	Transient Level			Voltage					
	milliseconds			milliseconds					
Overvoltage Transients									
А	< ½ cycle	140 Vrms	60 msec	< ½ cycle					
В	< ½ cycle	140 Vrms	60 msec	25 msec					
С	< ½ cycle	160 Vrms	34 msec	< ½ cycle					
D	< ½ cycle	160 Vrms	34 msec	52 msec					
Е	< ½ cycle	180 Vrms	10 msec	< ½ cycle					
F	< ½ cycle	180 Vrms	10 msec	77 msec					
G	< ½ cycle	180 Vrms	10 msec	< ½ cycle					
0		(3 times)	every 0.5 sec						
Undervoltage Transients									
Н	< ½ cycle	90 Vrms	35 msec	< ½ cycle					
Ι	< ½ cycle	90 Vrms	35 msec	45 msec					
J	< ½ cycle	80 Vrms	10 msec	< ½ cycle					
K	< ½ cycle	80 Vrms	10 msec	70 msec					
Т	< ¹ / ₂ cycle	80 Vrms	10 msec	< ½ cycle					
L		(3 times)	every 0.5 sec						
Combined Transient									
М	$< \frac{1}{2}$ cycle	80 Vrms	10 msec	$< \frac{1}{2}$ cycle					
IVI	then $< \frac{1}{2}$ cycle	180 Vrms	10 msec	77 msec					

# TABLE TVF109-II. Test conditions for normal voltage transients for three phase, variable frequency utilization equipment.



Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

79

FIGURE TVF109-1. Normal voltage transients.



FIGURE TVF109-2. <u>Repetitive Normal Voltage Transient</u>.
Test				Parameters			Performance
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscilloscope Trace	Pass/Fail
		Voltage	Frequency	Transient	Voltage		
					Transient		
					Level		
Testing perf	formed at	t 400 Hz					
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	
А	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	
В	В	V _{rms}		V _{rms}	msec	-	
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	
С	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	
D	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	
E	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	
F	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	
G	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		

### TABLE TVF109-III. Sample data sheet for TVF109 normal voltage transients for three phase, variable frequency utilization equipment.

Test				Parameters			Performance
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscilloscope Trace	Pass/Fail
		Voltage	Frequency	Transient	Voltage		
					Transient		
					Level		
Testing perf	formed at	2400 Hz					
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	
Н	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	
Ι	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	
J	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	
K	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	
L	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	
	В	V _{rms}		V _{rms}	msec		
М	С	V _{rms}		V _{rms}	msec		
	Α			V _{rms}	msec		
	В			V _{rms}	msec		
	С			V _{rms}	msec		

Test			Parameters									Performance
Condition	Phase	Steady	/ State	Steady	v State	Vol	tage	Tim	ie at	Oscillo	scope Trace	Pass/Fail
		Volt	tage	Frequ	iency	Transient		Vol	tage			
						Transient						
				Level								
Testing perf	formed at	400 Hz	0 Hz $V_{rms}$ Hz $V_{rms}$ msec Attach Trace $V_{rms}$ vs Time									
	А		V _{rms}		Hz		V _{rms}		msec	Attach Trace	V _{rms} vs Time	
	В		V _{rms}				V _{rms}		msec			
Popotitivo	С		V _{rms}				V _{rms}		msec			
Transiont	А						V _{rms}		msec			
Transient	В						V _{rms}		msec			
	С						V _{rms}		msec			
		Time duration at test condition						min				

Test				Parameters				Performance
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscillos	scope Trace	Pass/Fail
		Voltage	Frequency	Transient	Voltage			
					Transient			
					Level			
Testing per	formed at	t 360 Hz						-
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
А	В	V _{rms}		V _{rms}	msec	-		
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
В	В	V _{rms}		V _{rms}	msec	_		
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
С	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
D	В	V _{rms}		V _{rms}	msec	-		
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
Е	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
F	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
G	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			

Test				Parameters				Performance
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscillo	scope Trace	Pass/Fail
		Voltage	Frequency	Transient	Voltage			
					Transient			
					Level			
Testing per	formed at	: 360 Hz						
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
Н	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{\text{rms}}$ vs Time	
Ι	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
J	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
K	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{\text{rms}}$ vs Time	
L	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
	В	V _{rms}		V _{rms}	msec			
М	С	V _{rms}		V _{rms}	msec			
	Α			V _{rms}	msec			
	В			V _{rms}	msec			
	С			V _{rms}	msec			

Test			Parameters									Performance
Condition	Phase	Steady	/ State	Steady	/ State	Vol	tage	Tim	ie at	Oscillos	scope Trace	Pass/Fail
		Vol	tage	Frequ	iency	Transient Voltage		tage				
							Transient					
							Level					
Testing perf	formed at	360 Hz		Vrms     Hz     Vrms     msec     Attach Trace     Vrms vs Time								
	Α		V _{rms}		Hz		$V_{rms}$		msec	Attach Trace	$V_{rms}$ vs Time	
	В		V _{rms}				V _{rms}		msec			
Repetitive	С		V _{rms}				V _{rms}		msec			
Transient	Α						V _{rms}		msec			
Transient	В						V _{rms}		msec			
	С						V _{rms}		msec			
						Time duration at test condition				min		

Test				Parameters				Performance
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscillos	scope Trace	Pass/Fail
		Voltage	Frequency	Transient	Voltage			
					Transient			
					Level			
Testing per	formed at	t 600 Hz						
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
А	В	V _{rms}		V _{rms}	msec	-		
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
В	В	V _{rms}		V _{rms}	msec	-		
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
С	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
D	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{\text{rms}}$ vs Time	
Е	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
F	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs Time	
G	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			

Test				Parameters			Performance
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscilloscope Trace	Pass/Fail
		Voltage	Frequency	Transient	Voltage		
					Transient		
					Level		
Testing perf	formed at	: 600 Hz					
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	
Н	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	
Ι	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	
J	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	
K	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	
L	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	
	В	V _{rms}		V _{rms}	msec		
М	С	V _{rms}		V _{rms}	msec		
	Α			V _{rms}	msec		
	В			V _{rms}	msec		
	С			V _{rms}	msec		

Test			Parameters									Performance
Condition	Phase	Steady	/ State	Steady	/ State	Voltage Time at			e at	Oscillos	scope Trace	Pass/Fail
		Vol	tage	Frequ	iency	Transient Voltage						
							Transient					
							Level					
Testing perf	formed at	600 Hz		ms Hz V _{rms} Msec Attach Trace V _{rms} vs Time								
	Α		V _{rms}		Hz		V _{rms}		msec	Attach Trace	$V_{rms}$ vs Time	
	В		V _{rms}				V _{rms}		msec			
Popotitivo	С		V _{rms}				V _{rms}		msec			
Transient	Α						V _{rms}		msec			
Transient	В						V _{rms}		msec			
	С						V _{rms}		msec			
						Time duration at test condition				min		

Test				Parameters				Performance
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscillos	scope Trace	Pass/Fail
		Voltage	Frequency	Transient	Voltage			
					Transient			
					Level			
Testing per	formed at	t 800 Hz						
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
А	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
В	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
С	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
D	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{\text{rms}}$ vs Time	
Е	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
F	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs Time	
G	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			

Test				Parameters			Performance
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscilloscope Trace	Pass/Fail
		Voltage	Frequency	Transient	Voltage		
					Transient		
					Level		
Testing perf	formed at	800 Hz					
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	
Н	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	
Ι	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	
J	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	
K	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	
L	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	
	В	V _{rms}		V _{rms}	msec		
М	С	V _{rms}		V _{rms}	msec		
	Α			V _{rms}	msec		
	В			V _{rms}	msec		
	С			V _{rms}	msec		

Test			Parameters									
Condition	Phase	Steady	v State	Steady	/ State	Vol	tage	Tim	ie at	Oscillo	scope Trace	Pass/Fail
		Volt	tage	Frequ	iency	Transient		Vol	tage			
						Transient						
				Level								
Testing perf	formed at	800 Hz	Hz V _{rms} Hz V _{rms} msec Attach Trace V _{rms} vs Time									
	А		V _{rms}		Hz		V _{rms}		msec	Attach Trace	V _{rms} vs Time	
	В		V _{rms}				V _{rms}		msec			
Popotitivo	С		V _{rms}				V _{rms}		msec			
Transient	А						V _{rms}		msec			
Transient	В						V _{rms}		msec			
С					V _{rms}		msec					
						Time duration at test condition					min	

#### MIL-HDBK-704-5

#### METHOD TVF110 **Normal Frequency Transients**

POWER GROUP:	Three Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Normal
PARAMETER:	Normal Frequency Transients

Normal Frequency Transients

1. Scope

1.1 Purpose. This test procedure is used to verify that three phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to normal frequency transients as specified in the applicable edition(s) of MIL-STD-704.

2. Validation criteria. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to frequency transients within the normal limits of the applicable edition(s) of MIL-STD-704 and as noted in table TVF110-I. The utilization equipment must maintain specified performance during and after the frequency transients. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE TVF110-I. MIL-STD-704 limits for normal frequency transients for three phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Normal Frequency Transients	N/A	N/A	N/A	N/A	N/A	360 Hz to 800 Hz
						Maximum
						Rate of
						Change of
						Frequency
						250 Hz/sec

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. Test setup. Configure the test setup as shown in figure TVF110-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TVF110-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

The UUT must be subjected to the frequency transients for each test condition A through I noted in table TVF110-II. The frequency must increase or decrease from the start frequency to the frequency transient level over the duration noted; the frequency must remain at the frequency transient level for the duration noted; and the frequency must return from the frequency transient level over the duration noted; and the frequency must return from the frequency transient level over the duration noted. For test condition I, an underfrequency transient is immediately followed by an overfrequency transient. For each test condition, monitoring the performance of the UUT during the frequency transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Repeat each test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltages, start frequency, frequency transient level, time at frequency transient, oscilloscope trace (Hz vs time), and the performance of the UUT for each test condition in the data sheet shown in table TVF110-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

TABLE TVF110-II.	Test conditions for MIL-STD-704 normal frequency transients for three
	phase, variable frequency utilization equipment.

Test Condition	Start Frequency	Time From Start Frequency to Frequency Transient Level	Frequency Transient Level	Duration at Frequency Transient Level	Time From Frequency Transient Level to Start Frequency
Overfrequency T	ransients				
А	360 Hz	1.76 seconds	800 Hz	¹ / ₂ cycle	1.76 seconds
В	360 Hz	1.76 seconds	800 Hz	1 second	1.76 seconds
С	360 Hz	0.96 seconds	600 Hz	¹ / ₂ cycle	0.96 seconds
D	360 Hz	0.96 seconds	600 Hz	1 second	0.96 seconds
Underfrequency	Transients				
Е	800 Hz	1.76 seconds	360 Hz	¹ / ₂ cycle	1.76 seconds
F	800 Hz	1.76 seconds	360 Hz	1 second	1.76 seconds
G	800 Hz	0.80 seconds	600 Hz	¹ / ₂ cycle	0.80 seconds
Н	800 Hz	0.80 seconds	600 Hz	1 second	0.80 seconds
Combined Trans	ient				
I	600 Hz	0.96 seconds	360 Hz	¹ / ₂ cycle	0.96 seconds
1		then 0.80 seconds	800 Hz	¹ / ₂ cycle	0.80 seconds



 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

96

FIGURE TVF110-1. Normal frequency transients.

## TABLE TVF110-III. Sample data sheet for TVF110 normal frequency transients for three phase, variable frequency utilization equipment.

Test		Parameters								
Condition	Phase	Steady State	Start	Frequency	Time at	Oscillos	cope Trace	Pass/Fail		
		Voltage	Frequency	Transient	Frequency					
					Transient					
					Level					
	Α	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs Time			
А	В	V _{rms}								
	C	V _{rms}								
	Α	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs Time			
В	В	V _{rms}								
	C	V _{rms}								
	Α	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs Time			
C	В	V _{rms}								
	C	V _{rms}								
	Α	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs Time			
D	В	V _{rms}								
	C	V _{rms}								
	A	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs Time			
E	В	V _{rms}								
	С	V _{rms}								
	A	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs Time			
F	В	V _{rms}								
	С	V _{rms}								
	A	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs Time			
G	В	V _{rms}								
	C	V _{rms}								

Test	Parameters											
Condition	Phase	Steady State	Start	Frequency		Time at		Oscilloscope Trace		Pass/Fail		
		Voltage	Frequency	Transient		Transient		Frequ	lency			
						Tran	sient					
						Le	vel					
	Α	V _{rms}	Hz		Hz		sec	Attach Trace	Hz vs Time			
Н	В	V _{rms}										
	С	V _{rms}										
	Α	V _{rms}	Hz		Hz		msec	Attach Trace	Hz vs Time			
	В	V _{rms}										
Ι	С	V _{rms}										
					Hz		msec					

#### METHOD TVF201 Power Interrupt

POWER GROUP:Three Phase, Variable Frequency, 115 VAIRCRAFT ELECTRICAL

OPERATING CONDITION: Transfer Interrupt

PARAMETER:

Power Interrupt

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to power interrupts as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for transfer aircraft electrical conditions when subjected to power interrupts as specified by the applicable edition(s) of MIL-STD-704 and as noted in table TVF201-I. The utilization equipment must maintain the specified performance during power interrupts. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

### MIL-STD-704 power transfer limits for three phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Power	N/A	N/A	N/A	N/A	N/A	50 msec
Interrupt						
Voltage	N/A	N/A	N/A	N/A	N/A	108 V
NLSS						
Voltage	N/A	N/A	N/A	N/A	N/A	118 V
NHSS						

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope
- e. Resistive dummy load

4. <u>Test setup</u>. Configure the test setup as shown in figure TVF201-1. The dummy resistive load placed in parallel to the UUT should be sized to draw three times the steady state current of the

UUT up to a maximum of 25 kW dummy load. Note: This is done to ensure that the UUT test does not lose stored energy to other aircraft loads during power interrupts. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TVF201-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through K noted in table TVF201-II, adjust the voltage to the steady state voltage listed. Perform a power interrupt (0 V) of the duration listed. The voltage must decrease from the steady state voltage to 0 Volts within 1/2 cycle, remain at 0 Volts for the duration listed for the test condition, and return from 0 Volts to the steady state voltage within 1/2 cycle. For test condition J, three 50 milliseconds power interrupts are performed, separated by 0.5 second. For test condition K a normal overvoltage transient follows the power interrupt. The normal voltage transient is 160 Vrms for 30 milliseconds and returns to nominal voltage over the next 40 milliseconds. For test condition L a normal undervoltage transient follows the power interrupt. The normal voltage transient is 70 Vrms for 30 milliseconds and returns to nominal voltage over the next 40 milliseconds. For each test condition, monitor the performance of the UUT according to the utilization equipment performance test procedures for power transfer operation to verify that the UUT is providing specified performance for transfer aircraft electrical conditions. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing the performance specified for normal aircraft electrical conditions (if the UUT is allowed degraded performance during power interrupts, verify the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage). Record the steady state voltages, steady state frequency, time duration of power interrupts, and the performance of the UUT for each test condition in the data sheet shown in table TVF201-III. Repeat each test condition 5 times. Repeat for each mode of operation of the UUT. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

#### MIL-HDBK-704-5

Test Condition	Steady State Voltage	Duration of Interrupt
А	Nominal Voltage	50 msec
В	NLSS Voltage	50 msec
С	NHSS Voltage	50 msec
D	Nominal Voltage	30 msec
E	NLSS Voltage	30 msec
F	NHSS Voltage	30 msec
G	Nominal Voltage	10 msec
Н	NLSS Voltage	10 msec
Ι	NHSS Voltage	10 msec
J	Nominal Voltage	50 msec (repeated 3 times, separated by 0.5 sec )
К	Nominal Voltage	50 msec (followed by a normal voltage transient of 160 Vrms for 30 msec and return to steady state voltage in 40 msec)
L	Nominal Voltage	50 msec (followed by a normal voltage transient of 70 Vrms for 30 msec and return to steady state voltage in 40 msec)

# TABLE TVF201-II. Test conditions for transfer interrupt for three phase, variable frequency utilization equipment.



Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

102

FIGURE TVF201-1. Power interrupt.

Test		Performance			
Condition	Phase	Voltage	Frequency	Time Duration	Pass/Fail
				of Power	
				Interrupt	
Testing perform	med at 400	) Hz			
	A	V _{rms}	Hz	msec	
А	В	V _{rms}		msec	
	С	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
В	В	V _{rms}		msec	
	С	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
С	В	V _{rms}		msec	
	С	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
D	В	V _{rms}		msec	
	С	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
E	В	V _{rms}		msec	
	С	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
F	В	V _{rms}		msec	
	C	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
G	В	V _{rms}		msec	
	C	V _{rms}		msec	

TABLE TVF201-III. Sample data sheet for TVF201 power interrupt for three phase, variable frequency utilization equipment.

 TABLE TVF201-III.
 Sample data sheet for TVF201 power interrupt for three phase, variable frequency utilization equipment. 

 Continued

Test				Paramete	er	Performance		
Condition	Phase	Voltage		Frequency		Time Duration		Pass/Fail
						of P	ower	
						Inte	rrupt	
Testing perform	ned at 40	0 Hz						
	Α		V _{rms}		Hz		msec	
Н	В		V _{rms}				msec	
	С		V _{rms}				msec	
	Α		V _{rms}		Hz		msec	
Ι	В		V _{rms}				msec	
	С		V _{rms}				msec	
	Α		V _{rms}		Hz		msec	
J	В		V _{rms}				msec	
	С		V _{rms}				msec	
	Α		V _{rms}		Hz		msec	
	В		V _{rms}				msec	
	С		V _{rms}				msec	
K	Volt	age Tran	sient			Time at	Voltage	
K		Level				Transie	nt Level	
	A		V _{rms}				msec	
	В		V _{rms}				msec	
	C		V _{rms}				msec	

 TABLE TVF201-III.
 Sample data sheet for TVF201 power interrupt for three phase, variable frequency utilization equipment. 

 Continued

Test			Performance					
Condition	Phase	Vol	tage	Frequency		Time Duration		Pass/Fail
						of P	ower	
						Inte	rrupt	
Testing perform	ned at 40	0 Hz						
	Α		V _{rms}		Hz		msec	
	В		V _{rms}				msec	
	С		V _{rms}				msec	
Т	Volt	age Tran	sient			Time at	Voltage	
L		Level	evel Transient Level					
	A		V _{rms}				msec	
	В		V _{rms}	msec		msec		
	С		V _{rms}				msec	

 TABLE TVF201-III.
 Sample data sheet for TVF201 power interrupt for three phase, variable frequency utilization equipment. 

 Continued

Test		Performance			
Condition	Phase	Voltage	Frequency	Time Duration	Pass/Fail
				of Power	
				Interrupt	
Testing perform	ned at 360	) Hz		<u> </u>	
	A	V _{rms}	Hz	msec	
A	В	V _{rms}		msec	
	C	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
В	В	V _{rms}		msec	
	C	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
C	В	V _{rms}		msec	
	С	V _{rms}		msec	
	Α	V _{rms}	Hz	msec	
D	В	V _{rms}		msec	
	С	V _{rms}		msec	
	Α	V _{rms}	Hz	msec	
E	В	V _{rms}		msec	
	С	V _{rms}		msec	
	Α	V _{rms}	Hz	msec	
F	В	V _{rms}		msec	
	С	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
G	В	V _{rms}		msec	
	С	V _{rms}		msec	

 TABLE TVF201-III.
 Sample data sheet for TVF201 power interrupt for three phase, variable frequency utilization equipment. 

 Continued

Test		Performance						
Condition	Phase	Voltage		Frequency		Time Duration		Pass/Fail
						of P	ower	
						Inte	rrupt	
Testing perform	ned at 36	0 Hz						
	A		V _{rms}		Hz		msec	
Н	В		V _{rms}				msec	
	С		V _{rms}				msec	
	Α		V _{rms}		Hz		msec	
Ι	В		V _{rms}				msec	
	С		V _{rms}				msec	
	Α		V _{rms}		Hz		msec	
J	В		V _{rms}				msec	
	С		V _{rms}				msec	
	Α		V _{rms}		Hz		msec	
	В		V _{rms}				msec	
	С		V _{rms}				msec	
K	Volt	age Tran	sient			Time at	Voltage	
K		Level				Transie	nt Level	
	A		V _{rms}				msec	
	В		V _{rms}				msec	
	C		V _{rms}				msec	

 TABLE TVF201-III.
 Sample data sheet for TVF201 power interrupt for three phase, variable frequency utilization equipment. 

 Continued

Test			Performance					
Condition	Phase	Vol	tage	Frequency		Time Duration		Pass/Fail
						of Power		
						Interrupt		
Testing perform	ned at 36	0 Hz						
	Α		V _{rms}		Hz		msec	
	В		V _{rms}				msec	
	С		V _{rms}				msec	
т	Volt	age Tran	sient			Time at	Voltage	
L	Level				Transie	nt Level		
	A		V _{rms}				msec	
	В		V _{rms}				msec	
	С		V _{rms}				msec	

 TABLE TVF201-III.
 Sample data sheet for TVF201 power interrupt for three phase, variable frequency utilization equipment. 

 Continued

Test		Performance			
Condition	Phase	Voltage	Frequency	Time Duration	Pass/Fail
				of Power	
				Interrupt	
Testing perform	ned at 600	) Hz			
	A	V _{rms}	Hz	msec	
A	В	V _{rms}		msec	
	С	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
В	В	V _{rms}		msec	
	С	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
C	В	V _{rms}		msec	
	С	V _{rms}		msec	
	Α	V _{rms}	Hz	msec	
D	В	V _{rms}		msec	
	С	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
E	В	V _{rms}		msec	
	С	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
F	В	V _{rms}		msec	
	C	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
G	В	V _{rms}		msec	
	С	V _{rms}		msec	

 TABLE TVF201-III.
 Sample data sheet for TVF201 power interrupt for three phase, variable frequency utilization equipment. 

 Continued

Test			-	Paramete	er	Performance		
Condition	Phase	Voltage		Frequency		Time Duration		Pass/Fail
		Ũ				of Power		
						Inte	rrupt	
Testing performed at 600 Hz								
	A		V _{rms}		Hz		msec	
Н	В		V _{rms}				msec	
	С		V _{rms}				msec	
	Α		V _{rms}		Hz		msec	
Ι	В		V _{rms}				msec	
	С		V _{rms}				msec	
	Α		V _{rms}		Hz		msec	
J	В		V _{rms}				msec	
	С		V _{rms}				msec	
	Α		V _{rms}		Hz		msec	
	В		V _{rms}				msec	
	С		V _{rms}				msec	
K	Volt	age Tran	sient			Time at	Voltage	
К		Level				Transie	nt Level	
	A		V _{rms}				msec	
	В		V _{rms}				msec	
	C		V _{rms}				msec	

 TABLE TVF201-III.
 Sample data sheet for TVF201 power interrupt for three phase, variable frequency utilization equipment. 

 Continued

Test			Performance					
Condition	Phase	Vol	tage	Frequency		Time Duration		Pass/Fail
						of P	ower	
						Interrupt		
Testing perform	ned at 60	0 Hz						
	Α		V _{rms}		Hz		msec	
	В		V _{rms}				msec	
	С		V _{rms}				msec	
Т	Volt	age Tran	sient	Time at Voltage				
L	Level Trans		Transie	nt Level				
	Α		V _{rms}				msec	
	В		V _{rms}				msec	
	С		V _{rms}				msec	

 TABLE TVF201-III.
 Sample data sheet for TVF201 power interrupt for three phase, variable frequency utilization equipment. 

 Continued

Test		Performance			
Condition	Phase	Voltage	Frequency	Time Duration	Pass/Fail
				of Power	
				Interrupt	
Testing perform					
	A	V _{rms}	Hz	msec	
А	В	V _{rms}		msec	
	C	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
В	В	V _{rms}		msec	
	C	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
C	В	V _{rms}		msec	
	С	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
D	В	V _{rms}		msec	
	C	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
Е	В	V _{rms}		msec	
	C	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
F	В	V _{rms}		msec	
	C	V _{rms}		msec	
	A	V _{rms}	Hz	msec	
G	В	V _{rms}		msec	
	C	V _{rms}		msec	

 TABLE TVF201-III.
 Sample data sheet for TVF201 power interrupt for three phase, variable frequency utilization equipment. 

 Continued

Test			-	Parameter				Performance
Condition	Phase	Voltage		Frequency		Time Duration		Pass/Fail
		-				of Power		
						Inte	rrupt	
Testing perform	ned at <b>80</b>	0 Hz						
	Α		V _{rms}		Hz		msec	
Н	В		V _{rms}				msec	
	С		V _{rms}				msec	
	Α		V _{rms}		Hz		msec	
Ι	В		V _{rms}				msec	
	С		V _{rms}				msec	
	Α		V _{rms}		Hz		msec	
J	В		V _{rms}				msec	
	С		V _{rms}				msec	
	Α		V _{rms}		Hz		msec	
	В		V _{rms}				msec	
	С		V _{rms}				msec	
K	Volt	age Tran	sient			Time at	Voltage	
K		Level				Transie	nt Level	
	Α		V _{rms}				msec	
	В		V _{rms}				msec	
	С		V _{rms}				msec	

 TABLE TVF201-III.
 Sample data sheet for TVF201 power interrupt for three phase, variable frequency utilization equipment. 

 Continued

Test			Performance					
Condition	Phase	Vol	tage	Frequency		Time Duration		Pass/Fail
						of Power		
						Interrupt		
Testing perform	ned at <b>80</b>	0 Hz						
	Α		V _{rms}		Hz		msec	
	В		V _{rms}				msec	
	С		V _{rms}				msec	
Т	Volt	age Tran	sient			Time at	Voltage	
L		Level				Transient Level		
	A		V _{rms}				msec	
	В		V _{rms}	-			msec	
	С		V _{rms}				msec	

#### MIL-HDBK-704-5

#### METHOD TVF301 Abnormal Steady State Limits for Voltage and Frequency

POWER GROUP:	Three Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Abnormal

PARAMETER:

Abnormal Steady State Limits for Voltage and Frequency

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, variable frequency power utilization equipment klkklk operates and maintains specified performance when provided power with voltage and frequency at the Abnormal Low Steady State (ALSS) limits and the Abnormal High Steady State (AHSS) limits as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment performance specification document for abnormal aircraft electrical conditions when supplied input power of voltage and frequency at the specified abnormal steady state limits of the applicable edition(s) of MIL-STD-704 and as noted in table TVF301-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the abnormal steady state voltage and frequency limits and should be not less than thirty (30) minutes for each of the test conditions. Unless otherwise specified in the utilization equipment must demonstrate re-start at the abnormal steady state voltage and frequency limits. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

 MIL-STD-704 abnormal limits for steady state voltage and frequency for three phase, variable frequency utilization equipment.

Abnormal Limit	704A	704B	704C	704D	704E	704F
Voltage ALSS	N/A	N/A	N/A	N/A	N/A	100 V
Voltage AHSS	N/A	N/A	N/A	N/A	N/A	125 V
Frequency ALSS	N/A	N/A	N/A	N/A	N/A	360 Hz
Frequency AHSS	N/A	N/A	N/A	N/A	N/A	800 Hz

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. True RMS voltmeter
- c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure TVF301-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TVF301-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through H noted in table TVF301-II, the UUT must remain for a length of time that confirms the utilization equipment can perform as specified at the abnormal steady state voltage and frequency limits and should be, not less than thirty (30) minutes. At each test condition conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. For each test condition shutdown the UUT and verify that the UUT can be re-started. After re-start conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Adjust the voltage to the nominal steady state voltage of 115 Vrms and adjust the frequency to the steady state frequency of the test condition. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the voltages, frequency, time duration at test condition, successful/unsuccessful re-start and the performance of the UUT for each test condition in the data sheet shown in table TVF301-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.
TABLE TVF301-II.	Test conditions for abnormal steady state limits of voltage and frequency
<u>fo</u>	r three phase, variable frequency utilization equipment.

Test Condition	Voltage	Frequency
Balanced Voltages		
А	100 V	400 Hz
В	100 V	360 Hz
С	100 V	600 Hz
D	100 V	800 Hz
E	125 V	400 Hz
F	125 V	360 Hz
G	125 V	600 Hz
Н	125 V	800 Hz



5. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

118

FIGURE TVF301-1. Abnormal steady state limits for voltage and frequency.

### TABLE TVF301-III. Sample data sheet for TVF301 abnormal steady state limits for voltage and frequency for three phase, variable frequency utilization equipment.

Test		]	Parameter		Performance
Condition	Phase	Voltage	Frequency	Time Duration	Pass/Fail
				at Test	
				Condition	
	A	V _{rms}	Hz	min	
А	В	V _{rms}			
	С	V _{rms}			
	Α	V _{rms}	Hz	min	
В	В	V _{rms}			
	С	V _{rms}			
	A	V _{rms}	Hz	min	
C	В	V _{rms}			
	С	V _{rms}			
	Α	V _{rms}	Hz	min	
D	В	V _{rms}			
	С	V _{rms}			
	A	V _{rms}	Hz	min	
Е	В	V _{rms}			
	С	V _{rms}			
	A	V _{rms}	Hz	min	
F	В	V _{rms}			
	С	V _{rms}			

## TABLE TVF301-III. Sample data sheet for TVF301 abnormal steady state limits for voltage and frequency for three phase, variable frequency utilization equipment. - Continued

Test		Parameter						
Condition	Phase	Volt	tage	Frequ	iency	Time Duration		Pass/Fail
					at Test			
						Cond	lition	
	А		V _{rms}		Hz		min	
G	В		V _{rms}					
	С		V _{rms}					
	А		V _{rms}		Hz		min	
Н	В		V _{rms}					
	С		V _{rms}					

#### METHOD TVF302 Abnormal Voltage Transients

POWER GROUP:	Three Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Abnormal

PARAMETER:

Abnormal Voltage Transients

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to abnormal voltage transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for abnormal aircraft electrical conditions when subjected to voltage transients within the abnormal limits of the applicable edition(s) of MIL-STD-704 and as noted in table TVF302-I. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

 

 TABLE TVF302-I.
 MIL-STD-704 limits for abnormal voltage transients for three phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Abnormal Voltage Transients	N/A	N/A	N/A	N/A	N/A	figure 4 MIL-STD- 704F

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure TVF302-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TVF302-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the

frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

The UUT must be subjected to the voltage transients for each test condition A through O noted in table TVF302-II. The voltage must increase or decrease from steady state voltage to the voltage transient level within ¹/₂ cycle. The voltage must remain at the voltage transient level for the duration noted in table TVF302-II. The voltage must return to steady state over the time duration noted in table TVF302-II. For test condition G, three over-voltage transients of 180 Vrms for 20 milliseconds are performed, separated by 0.5 seconds. For test condition N, three under-voltage transients of 45 Vrms for 20 milliseconds are performed, separated by 0.5 seconds. For test condition O, an under-voltage transient of 45 Vrms for 20 milliseconds is immediately followed by an overvoltage transient of 180 Vrms for 50 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT automatically returns to specified performance for normal aircraft electrical conditions when the power returns to within normal limits, and has not suffered damage. Record the steady state voltages, steady state frequency, voltage transient level, time duration at voltage transient, oscilloscope trace, and the performance of the UUT for each test condition in the data sheet shown in table TVF302-III. Repeat for each mode of operation of the UUT. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

TABLE TVF302-II.	Test conditions for abnormal voltage transients for three phase, variable
	frequency utilization equipment.

Test Condition	Time From Steady State Voltage to Voltage Transient Level milliseconds	Voltage Transient Level Vrms	Duration at Voltage Transient Level milliseconds	Time From Voltage Transient Level to Steady State Voltage or Next Voltage Level
Overvoltage Transients				
Α	< ½ cycle	140 Vrms	180 msec	< ½ cycle
	< ½ cycle	140 Vrms	180 msec	87 msec
	then	135 Vrms	decreasing	253 msec
В	then	130 Vrms	decreasing	6.41 sec
	then	125 Vrms	decreasing	>10 sec
		115 Vrms		
С	< ½ cycle	160 Vrms	78 msec	< ½ cycle
	< ½ cycle	160 Vrms	78 msec	31 msec
	then	150 Vrms	decreasing	71 msec
	then	140 Vrms	decreasing	87 msec
D	then	135 Vrms	decreasing	253 msec
	then	130 Vrms	decreasing	6.41 sec
	then	125 Vrms	decreasing	>10 sec
		115 Vrms		
Е	< ½ cycle	180 Vrms	50 msec	< ½ cycle
	< ½ cycle	180 Vrms	50 msec	11 msec
	then	170 Vrms	decreasing	17 msec
	then	160 Vrms	decreasing	31 msec
	then	150 Vrms	decreasing	71 msec
F	then	140 Vrms	decreasing	87 msec
	then	135 Vrms	decreasing	253 msec
	then	130 Vrms	decreasing	6.41 sec
	then	125 Vrms	decreasing	>10 sec
		115 Vrms		
G	$< \frac{1}{2}$ cycle	180 Vrms	20 msec	< ½ cycle
U		(3 times)	every 0.5 sec	

# TABLE TVF302-II. Test conditions for abnormal voltage transients for three phase, variable frequency utilization equipment. - Continued

Test Condition	Time From	Voltage	Duration at	Time From
	Steady State	Transient Level	Voltage	Voltage
	Voltage to	Vrms	Transient Level	Transient Level
	Voltage		milliseconds	to Steady State
	Transient Level			Voltage
	milliseconds			or
				Next Voltage
				Level
Undervoltage Transients	< 1/ 1	05 14	100	<1/ 1
H	$< \frac{1}{2}$ cycle	85 Vrms	180 msec	$< \frac{1}{2}$ cycle
	$< \frac{1}{2}$ cycle	85 Vrms	180 msec	8 / msec
Ţ	then	90 Vrms	increasing	253 msec
1	then	95 Vrms	increasing	6.41 sec
	then	100 Vrms	increasing	>10 sec
	.1/ 1	115 Vrms	70	.1/ 1
J	< ¹ / ₂ cycle	66 Vrms	78 msec	$< \frac{1}{2}$ cycle
	< ¹ / ₂ cycle	65 Vrms	78 msec	31 msec
	then	75 Vrms	increasing	71 msec
	then	85 Vrms	increasing	87 msec
K	then	90 Vrms	increasing	253 msec
	then	95 Vrms	increasing	6.41 sec
	then	100 Vrms	increasing	>10 sec
		115 Vrms		
L	< ½ cycle	45 Vrms	50 msec	$< \frac{1}{2}$ cycle
	$< \frac{1}{2}$ cycle	45 Vrms	50 msec	11 msec
	then	55 Vrms	increasing	17 msec
	then	65 Vrms	increasing	31 msec
	then	75 Vrms	increasing	71 msec
М	then	85 Vrms	increasing	87 msec
	then	90 Vrms	increasing	253 msec
	then	95 Vrms	increasing	6.41 sec
	then	100 Vrms	increasing	>10 sec
		115 Vrms		
Ν	< ½ cycle	45 Vrms	20 msec	< ¹ / ₂ cycle
		(3 times)	every 0.5 sec	
Combined Transient				
	$< \frac{1}{2}$ cycle	45 Vrms then	20 msec	$< \frac{1}{2}$ cycle
	$< \frac{1}{2}$ cycle	180 Vrms	50 msec	11 msec
	then	170 Vrms	decreasing	17 msec
	then	160 Vrms	decreasing	31 msec
О	then	150 Vrms	decreasing	71 msec
, j	then	140 Vrms	decreasing	87 msec
	then	135 Vrms	decreasing	253 msec
	then	130 Vrms	decreasing	6.41 sec
	then	125 Vrms	decreasing	>10 sec
		115 Vrms		



 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

125

FIGURE TVF302-1. Abnormal voltage transients.

Test				Parameters			Performance
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscilloscope Trace	Pass/Fail
		Voltage	Frequency	Transient	Voltage		
					Transient		
					Level		
Testing Perf	formed at	t 400 Hz					
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	
А	В	V _{rms}	·	V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	А	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	
В	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	
С	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	А	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	
D	В	V _{rms}	·	V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	А	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	
Е	В	V _{rms}		V _{rms}	msec	·	
	С	V _{rms}		V _{rms}	msec		
	А	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	
F	В	V _{rms}		V _{rms}	msec	·	
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	
G	В	V _{rms}		V _{rms}	msec		
	С	Vrms		V _{rms}	msec	1	

### TABLE TVF302-III. Sample data sheet for TVF302 abnormal voltage transients for three phase, variable frequency utilization equipment.

Test	Parameters							
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscilloscope Trace	Pass/Fail	
		Voltage	Frequency	Transient	Voltage			
					Transient			
					Level			
Testing Per	formed at	t 400 Hz						
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time		
Н	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time		
Ι	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time		
J	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time		
K	В	V _{rms}		V _{rms}	msec			
	C	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time		
L	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time		
М	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec	1		

Test				Parameters				Performance
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscillos	cope Trace	Pass/Fail
		Voltage	Frequency	Transient	Voltage		-	
		_			Transient			
					Level			
Testing Per	formed a	t 400 Hz						
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{\text{rms}}$ vs Time	
Ν	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
	В	V _{rms}		V _{rms}	msec			
О	С	V _{rms}		V _{rms}	msec	-		
	Α			V _{rms}	msec	-		
	В			V _{rms}	msec			
	С			V _{rms}	msec			
Testing Per	formed a	t 360 Hz						
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
А	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
В	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
С	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
D	В	V _{rms}	I	V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec	1		

Test				Parameters				Performance
Condition	Phase	Steady State	Steady State	Voltage	Voltage Time at C		pe Trace	Pass/Fail
		Voltage	Frequency	Transient	Voltage			
					Transient			
					Level			
Testing Per	formed at	t 360 Hz				•		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V	rms vs Time	
E	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V	rms vs Time	
F	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V	rms vs Time	
G	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V	rms vs Time	
Н	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	А	V _{rms}	Hz	V _{rms}	msec	Attach Trace V	rms vs Time	
Ι	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	А	V _{rms}	Hz	V _{rms}	msec	Attach Trace V	rms vs Time	
J	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	А	V _{rms}	Hz	V _{rms}	msec	Attach Trace V	rms vs Time	
K	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec	]		

Test	Parameters									
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscilloscope Trace	Pass/Fail			
		Voltage	Frequency	Transient	Voltage					
					Transient					
					Level					
Testing Per	formed a	t 360 Hz								
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	2			
L	В	V _{rms}		V _{rms}	msec					
	С	V _{rms}		V _{rms}	msec					
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	e			
М	В	V _{rms}		V _{rms}	msec					
	С	V _{rms}		V _{rms}	msec					
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	e			
Ν	В	V _{rms}		V _{rms}	msec					
	С	V _{rms}		V _{rms}	msec					
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	e			
	В	V _{rms}		V _{rms}	msec					
0	С	V _{rms}		V _{rms}	msec					
	Α			V _{rms}	msec					
	В			V _{rms}	msec					
	С			V _{rms}	msec					
Testing Per	formed a	t 600 Hz								
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	e			
А	В	V _{rms}		V _{rms}	msec					
	С	V _{rms}		V _{rms}	msec					
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	2			
В	В	V _{rms}		V _{rms}	msec					
	С	V _{rms}		V _{rms}	msec					

Test				Parameters				Performance
Condition	Phase	Steady State	Steady State	Voltage	Voltage Time at C		cope Trace	Pass/Fail
		Voltage	Frequency	Transient	Voltage			
					Transient			
					Level			
Testing Per	formed at	t 600 Hz				·		•
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs Time	
С	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs Time	
D	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs Time	
Е	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec	-		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs Time	
F	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec	-		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs Time	
G	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec	-		
	А	V _{rms}	Hz	V _{rms}	msec	Attach Trace	V _{rms} vs Time	
Н	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec	-		
	А	V _{rms}	Hz	V _{rms}	msec	Attach Trace	$V_{rms}$ vs Time	
Ι	В	V _{rms}		V _{rms}	msec			]
	С	V _{rms}		V _{rms}	msec	1		

Test	Parameters										
Condition	Phase	Steady State	Steady State	Voltage	Time at	Oscilloscope Trace	Pass/Fail				
		Voltage	Frequency	Transient	Voltage						
					Transient						
					Level						
Testing Per	formed a	t 600 Hz									
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time					
J	В	V _{rms}		V _{rms}	msec						
	С	V _{rms}		V _{rms}	msec						
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time					
K	В	V _{rms}		V _{rms}	msec						
	С	V _{rms}		V _{rms}	msec						
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time					
L	В	V _{rms}		V _{rms}	msec						
	С	V _{rms}		V _{rms}	msec						
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time					
М	В	V _{rms}		V _{rms}	msec						
	С	V _{rms}		V _{rms}	msec						
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time					
Ν	В	V _{rms}		V _{rms}	msec						
	С	V _{rms}		V _{rms}	msec						
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time					
	В	V _{rms}		V _{rms}	msec						
0	С	V _{rms}		V _{rms}	msec						
	А			V _{rms}	msec						
	В			V _{rms}	msec	]					
	С			V _{rms}	msec	1					

MIL-HDBK-704-5

Test				Parameters				Performance
Condition	Phase	Steady State	Steady State	Voltage	Voltage Time at		ope Trace	Pass/Fail
		Voltage	Frequency	Transient	Voltage			
					Transient			
					Level			
Testing Per	formed at	t 800 Hz		· · · · · ·				
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V	V _{rms} vs Time	
А	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V	V _{rms} vs Time	
В	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	А	V _{rms}	Hz	V _{rms}	msec	Attach Trace V	V _{rms} vs Time	
С	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	А	V _{rms}	Hz	V _{rms}	msec	Attach Trace V	V _{rms} vs Time	
D	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	А	V _{rms}	Hz	V _{rms}	msec	Attach Trace V	V _{rms} vs Time	
Е	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec			
	А	V _{rms}	Hz	V _{rms}	msec	Attach Trace V	V _{rms} vs Time	
F	В	V _{rms}		V _{rms}	msec	· · · ·		
	С	V _{rms}		V _{rms}	msec			
	A	V _{rms}	Hz	V _{rms}	msec	Attach Trace V	V _{rms} vs Time	
G	В	V _{rms}		V _{rms}	msec			
	С	V _{rms}		V _{rms}	msec	1		

Test				Parameters			Performance
Condition	Phase	Steady State	Steady State	Voltage Time at 0		Oscilloscope Trace	Pass/Fail
		Voltage	Frequency	Transient Voltage			
					Transient		
					Level		
Testing Per	formed at	t 800 Hz					
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	
Н	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	
Ι	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	
J	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	
K	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	А	V _{rms}	Hz	V _{rms}	msec	Attach Trace $V_{rms}$ vs Time	
L	В	V _{rms}		V _{rms}	msec		
	С	V _{rms}		V _{rms}	msec		
	Α	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs Time	
М	В	V _{rms}		V _{rms}	msec		]
	С	V _{rms}		V _{rms}	msec		

Test				Para	neters					Performance
Condition	Phase	Steady State	Steady State	Vol	Voltage		Time at		scope Trace	Pass/Fail
		Voltage	Frequency	Tran	sient	Voltage				
						Tran	sient			
						Level				
Testing Per	formed at	800 Hz								
	Α	V _{rms}	Hz		V _{rms}		msec	Attach Trace	$V_{rms}$ vs Time	
Ν	В	V _{rms}			V _{rms}		msec			
	С	V _{rms}			V _{rms}		msec			
	Α	V _{rms}	Hz		V _{rms}		msec	Attach Trace	$V_{rms}$ vs Time	
	В	V _{rms}			V _{rms}		msec			
0	С	V _{rms}			V _{rms}		msec			
	Α				V _{rms}		msec			
	В				V _{rms}		msec			
	C				V _{rms}		msec			

#### METHOD TVF303 **Abnormal Frequency Transients**

POWER GROUP:	Three Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Abnormal
PARAMETER	Abnormal Frequency Transients

**Abnormal Frequency Transients** 

1. Scope.

1.1 Purpose. This test procedure is used to verify that three phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to abnormal frequency transients as specified in the applicable edition(s) of MIL-STD-704.

2. Validation criteria. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for abnormal aircraft electrical conditions when subjected to frequency transients within the abnormal limits of the applicable edition(s) of MIL-STD-704 and as noted in table TVF303-I. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE TVF303-I. MIL-STD-704 limits for abnormal frequency transients for three phase, variable frequency utilization equipment.

Limit	704 4	704B	704C	704D	704F	704F
Linnt	/04A	/04D	704C	/04D	704E	/041
Abnormal	N/A	N/A	N/A	N/A	N/A	360 Hz to
Eraguanau						200 II-
riequency						800 HZ
Transients						
						Maximum
						Rate of
						Change of
						Frequency
						500 Hz/sec

3. Apparatus. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. Test setup. Configure the test setup as shown in figure TVF303-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TVF303-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions.

The UUT must be subjected to the frequency transients for each test condition A through I noted in table TVF303-II. The frequency must increase or decrease from the start frequency to the frequency transient level over the duration noted; the frequency must remain at the frequency transient level for the duration noted; and the frequency must return from the frequency transient level over the duration noted; and the frequency must return from the frequency transient level over the duration noted. For test condition E, an underfrequency transient is immediately followed by an overfrequency transient. For each test condition, monitor the performance of the UUT during the frequency transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to start frequency, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions, and has not suffered damage. Record the steady state voltages, start frequency, frequency transient level, time at frequency transient, oscilloscope trace (Hz vs time), and the performance of the UUT for each test condition in the data sheet shown in table TVF303-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

### TABLE TVF303-II. Test conditions for MIL-STD-704F abnormal frequency transients for three phase, variable frequency utilization equipment.

Test Condition	Start Frequency	Time From Start Frequency to Frequency Transient Level	Frequency Transient Level	Duration at Frequency Transient Level	Time From Frequency Transient Level
					Frequency
Overfrequency T	ransients				
Α	360 Hz	0.88 seconds	800 Hz	¹ / ₂ cycle	0.88 seconds
В	360 Hz	0.88 seconds	800 Hz	1 second	0.88 seconds
С	360 Hz	0.48 seconds	600 Hz	¹ / ₂ cycle	0.48 seconds
D	360 Hz	0.48 seconds	600 Hz	1 second	0.48 seconds
Underfrequency	Transients				
Е	800 Hz	0.88 seconds	360 Hz	¹ / ₂ cycle	0.88 seconds
F	800 Hz	0.88 seconds	360 Hz	1 second	0.88 seconds
G	800 Hz	0.40 seconds	600 Hz	¹ / ₂ cycle	0.40 seconds
Н	800 Hz	0.40 seconds	600 Hz	1 second	0.40 seconds
Combined Trans	ient				
Ι	600 Hz	0.48 seconds	360 Hz	¹ / ₂ cycle	0.48 seconds
		then 0.40 seconds	800 Hz	¹ / ₂ cycle	0.40 seconds



5. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

FIGURE TVF303-1. Abnormal frequency transients.

MIL-HDBK-704-5

Test		Parameters								
Condition	Phase	Steady State	Start	Frequency	Time at	Oscilloscope Trace	Pass/Fail			
		Voltage	Frequency	Transient	Frequency	-				
					Transient					
					Level					
	Α	V _{rms}	Hz	Hz	msec	Attach Trace Hz vs Time				
А	В	V _{rms}								
	С	V _{rms}								
	Α	V _{rms}	Hz	Hz	sec	Attach Trace Hz vs Time				
В	В	V _{rms}								
	С	V _{rms}								
	Α	V _{rms}	Hz	Hz	msec	Attach Trace Hz vs Time				
С	В	V _{rms}								
	С	V _{rms}								
	Α	V _{rms}	Hz	Hz	sec	Attach Trace Hz vs Time				
D	В	V _{rms}								
	С	V _{rms}								
	Α	V _{rms}	Hz	Hz	msec	Attach Trace Hz vs Time				
Е	В	V _{rms}								
	С	V _{rms}								
	Α	V _{rms}	Hz	Hz	sec	Attach Trace Hz vs Time				
F	В	V _{rms}								
	С	V _{rms}								
	Α	V _{rms}	Hz	Hz	msec	Attach Trace Hz vs Time				
G	В	V _{rms}								
	С	V _{rms}								

### TABLE TVF303-III. Sample data sheet for TVF303 abnormal frequency transients for three phase, variable frequency utilization equipment.

MIL-HDBK-704-5

Test				Paramet	ers					Performance
Condition	Phase	Steady State	Start	Frequence	Frequency		Time at Oso		Oscilloscope Trace	
		Voltage	Frequency	Transier	nt	Frequency				
							Transient			
						Level				
	A	V _{rms}	Hz	]	Hz		sec	Attach Trace	Hz vs Time	
Н	В	V _{rms}								
	С	V _{rms}								
	Α	V _{rms}	Hz	]	Hz		msec	Attach Trace	Hz vs Time	
Ι	В	V _{rms}								
	С	V _{rms}								
				]	Hz		msec			

#### METHOD TVF401 Emergency Steady State Limits for Voltage and Frequency

POWER GROUP:	Three Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Emergency

PARAMETER:

Emergency Steady State Limits for Voltage and Frequency

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 Volt, variable frequency power utilization equipment operates and maintains specified performance when provided power with voltage and frequency at the Emergency Low Steady State (ELSS) limits and the Emergency High Steady State (EHSS) limits as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. For MIL-STD-704F, the three phase, 115 volt, variable frequency power utilization equipment normal steady state limits are the same as the emergency steady state limits. The emergency steady state limits for three phase, 115 Volt, variable frequency equipment are noted in table TVF401-I. Performance of test method TVF102 will constitute performance of test method TVF401.

### MIL-STD-704 Emergency limits for steady state voltage and frequency for three phase, variable frequency utilization equipment.

Emergency Limit	704A	704B	704C	704D	704E	704F
Voltage ELSS	N/A	N/A	N/A	N/A	N/A	108 V
Voltage EHSS	N/A	N/A	N/A	N/A	N/A	118 V
Frequency ELSS	N/A	N/A	N/A	N/A	N/A	360 Hz
Frequency EHSS	N/A	N/A	N/A	N/A	N/A	800 Hz

#### METHOD TVF501 No Tests

POWER GROUP: Three Phase, Variable Frequency, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Starting

PARAMETER: No Tests

Starting operations are usually not applicable to AC Utilization Equipment.

#### METHOD TVF601 Power Failure (Three Phase)

POWER GROUP:	Three Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Power Failure

PARAMETER: Power Failure (Three Phase)

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to three phase power failures as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for power failure aircraft electrical conditions when subjected to three phase power failures as specified by the applicable edition(s) of MIL-STD-704 and as noted in table TVF601-I. The utilization equipment must maintain the specified performance during the three phase power failures. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

 

 TABLE TVF601-I.
 MIL-STD-704 power failure limits for three phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Power Failure	N/A	N/A	N/A	N/A	N/A	7 sec figure 4 MIL-STD- 704F

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure TVF601-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TVF601-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through D noted in table TVF601-II, perform a three phase power failure (0 V) of the duration listed. The voltage must decrease from the steady state voltage to 0 volts within ½ cycle, remain at 0 volts for the duration listed for the test condition, and return from 0 volts to the steady state voltage within ½ cycle. For each test condition, monitor the performance of the UUT according to the utilization equipment performance test procedures for power failure operation to verify that the UUT is providing specified performance for power failure aircraft electrical conditions. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the steady state voltages, steady state frequency, time duration of power failure, and the performance of the UUT for each test condition in the data sheet shown in table TVF601-III. Repeat each test condition 5 times. Repeat for each mode of operation of the UUT. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Duration of Power Failure
А	100 msec
В	500 msec
С	3 seconds
D	7 seconds

 TABLE TVF601-II.
 Test conditions for three phase power failures for three phase, variable

 frequency utilization equipment.



5. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

146

FIGURE TVF601-1. Power failure (three phase).

Test			Parameter	rs		Performance				
Condition	Phase	Steady State	Steady State	Voltage during	Time Duration	Pass/Fail				
		Voltage	Frequency	Power Failure	of Power					
		-			Failure					
Testing Perform	Testing Performed at 400 Hz									
	Α	V _{rms}	Hz	V _{rms}	msec					
Α	В	V _{rms}		V _{rms}	msec					
	С	V _{rms}		V _{rms}	msec					
	Α	V _{rms}	Hz	V _{rms}	msec					
В	В	V _{rms}		V _{rms}	msec					
	С	V _{rms}		V _{rms}	msec					
	Α	V _{rms}	Hz	V _{rms}	sec					
C	В	V _{rms}		V _{rms}	sec					
	С	V _{rms}		V _{rms}	sec					
	Α	V _{rms}	Hz	V _{rms}	sec					
D	В	V _{rms}		V _{rms}	sec					
	С	V _{rms}		V _{rms}	sec					

 TABLE TVF601-III.
 Sample data sheet for TVF601 power failure (three phase) for three phase, variable frequency utilization equipment.

Test	Parameters									Performance
Condition	Phase	Steady	y State	Steady	Steady State		Voltage during		Juration	Pass/Fail
		Vol	tage	Frequ	iency	Power	Failure	of P	ower	
			-		1 2			Fai	lure	
Testing Perform	ned at 36	0 Hz								
	Α		V _{rms}		Hz		V _{rms}		msec	
A	В		V _{rms}				V _{rms}		msec	
	С		V _{rms}				V _{rms}		msec	
	Α		V _{rms}		Hz		V _{rms}		msec	
В	В		V _{rms}				V _{rms}		msec	
	С		V _{rms}				V _{rms}		msec	
	A		V _{rms}		Hz		V _{rms}		sec	
C	В		V _{rms}				V _{rms}		sec	
	С		V _{rms}				V _{rms}		sec	
	A		V _{rms}		Hz		V _{rms}		sec	
D	В		V _{rms}				V _{rms}		sec	
	C		V _{rms}				V _{rms}		sec	

 TABLE TVF601-III.
 Sample data sheet for TVF601 power failure (three phase) for three phase, variable frequency

 utilization equipment.
 - Continued

Test	Parameters									Performance
Condition	Phase	Steady	y State	Steady	Steady State		Voltage during		Juration	Pass/Fail
		Vol	tage	Frequ	lency	Power	Failure	of P	ower	
					1 2			Fai	lure	
Testing Perform	med at 60	0 Hz								
	A		V _{rms}		Hz		V _{rms}		msec	
A	В		V _{rms}				V _{rms}		msec	
	С		V _{rms}				V _{rms}		msec	
	Α		V _{rms}		Hz		V _{rms}		msec	
В	В		V _{rms}				V _{rms}		msec	
	С		V _{rms}				V _{rms}		msec	
	A		V _{rms}		Hz		V _{rms}		sec	
C	В		V _{rms}				V _{rms}		sec	
	С		V _{rms}				V _{rms}		sec	
	A		V _{rms}		Hz		V _{rms}		sec	
D	В		V _{rms}				V _{rms}		sec	
	C		V _{rms}				V _{rms}		sec	

 TABLE TVF601-III.
 Sample data sheet for TVF601 power failure (three phase) for three phase, variable frequency

 utilization equipment.
 - Continued

Test	Parameters									Performance
Condition	Phase	Steady	y State	Steady	Steady State		Voltage during		Juration	Pass/Fail
		Vol	tage	Frequ	lency	Power	Failure	of P	ower	
					1 2			Fai	lure	
Testing Perform	ned at <b>80</b>	0 Hz								
	Α		V _{rms}		Hz		V _{rms}		msec	
A	В		V _{rms}				V _{rms}		msec	
	С		V _{rms}				V _{rms}		msec	
	Α		V _{rms}		Hz		V _{rms}		msec	
В	В		V _{rms}				V _{rms}		msec	
	С		V _{rms}				V _{rms}		msec	
	A		V _{rms}		Hz		V _{rms}		sec	
C	В		V _{rms}				V _{rms}		sec	
	С		V _{rms}				V _{rms}		sec	
	A		V _{rms}		Hz		V _{rms}		sec	
D	В		V _{rms}				V _{rms}		sec	
	C		V _{rms}				V _{rms}		sec	

TABLE TVF601-III.	Sample data sheet	for TVF601	power	failure	(three	phase)	) for t	hree	phase,	variable	freq	uency
	•	utilization ec	uipme	<u>ent</u> Co	ntinue	d			<b>_</b>		-	

#### METHOD TVF602 One and Two Phase Power Failures

POWER GROUP:	Three Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Power Failure

PARAMETER:

One and Two Phase Power Failures

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 volt, variable frequency power utilization equipment operates and maintains specified performance when subjected to one and two phase power failures (7 seconds and indefinitely) as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for power failure aircraft electrical conditions when subjected to power failures as specified by the applicable edition(s) of MIL-STD-704 and as noted in table TVF602-I. The utilization equipment must maintain the specified performance during one and two phase power failures. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate with one and two phase power failures and should be not less than thirty (30) minutes for each of the test conditions. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

 

 TABLE TVF602-I.
 MIL-STD-704 power failure limits for three phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Single Phase	N/A	N/A	N/A	N/A	N/A	7 sec and
and						indefinitely
Two Phase						figure 4
Power						MIL-STD-
Failure						704F

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure TVF602-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TVF602-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through J noted in table TVF602-II, perform a power failure (0 V) on the phase(s) noted and of the duration listed. The voltage must decrease from the steady state voltage to 0 volts within  $\frac{1}{2}$  cycle, remain at 0 volts for the duration listed for the test condition, and return from 0 volts to the steady state voltage within  $\frac{1}{2}$  cycle. For each test condition, monitor the performance of the UUT according to the utilization equipment performance test procedures for power failure operation to verify that the UUT is providing specified performance for power failure aircraft electrical conditions. For the indefinite time duration, the utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage and frequency limits and should be not less than thirty (30) minutes for each of the test conditions. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the steady state voltages, steady state frequency, time duration of power failure, and the performance of the UUT for each test condition in the data sheet shown in table TVF602-III. Repeat test conditions A, B, C, G, and H 5 times. Test conditions D, E, F, I, and J are required to be performed once each. Repeat for each mode of operation of the UUT. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.
TABLE TVF602-II.	Test conditions for on	ne and two	phase	power	failures	for three	phase,
	variable frequency	utilization	equip	<u>ment</u> .			•

Test Condition	Phases	Duration of Power Failure
One Phase Power		
Failure		
А	Phase A	7 seconds
В	Phase B	7 seconds
С	Phase C	7 seconds
D	Phase A	Indefinitely
Е	Phase B	Indefinitely
F	Phase C	Indefinitely
Two Phase Power		
Failures		
G	Phase A & B	7 seconds
Н	Phase B & C	7 seconds
Ι	Phase A & B	Indefinitely
J	Phase B & C	Indefinitely



inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

154

FIGURE TVF602-1. One and two phase power failures.

Test			Paramete	rs		Performance
Condition	Phase	Steady State	Steady State	Voltage during	Time Duration	Pass/Fail
		Voltage	Frequency	Power Failure	of Power	
		_			Failure	
Testing Perform	med at 40	0 Hz				
	A	V _{rms}	Hz	V _{rms}	sec	
А	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
В	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
C	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
D	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
Е	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	A	V _{rms}	Hz	V _{rms}	sec	
F	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
G	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	A	V _{rms}	Hz	V _{rms}	sec	
Н	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	

# TABLE TVF602-III. Sample data sheet for TVF602 one and two phase power failures for three phase, variable frequency utilization equipment.

TABLE TVF602-III.	Sample data sheet for	TVF602 on	e and two	phase j	power fa	ailures	for three	phase,	variable freque	ncy	utilization
	*	<u>e</u>	quipment.	- Conti	inued			•	*	•	

Test		Parameters							Performance	
Condition	Phase	Steady	y State	Steady	y State	Voltage during		Time Duration		Pass/Fail
		Vol	tage	Frequ	lency	Power	Failure	of P	ower	
								Fai	lure	
Testing Perform	ned at 40	0 Hz								
	Α		V _{rms}		Hz		V _{rms}		sec	
Ι	В		V _{rms}				V _{rms}		sec	
	С		V _{rms}				V _{rms}		sec	
	Α		V _{rms}		Hz		V _{rms}		sec	
J	В		V _{rms}				V _{rms}		sec	
	C		V _{rms}				V _{rms}		sec	

Test			Parameter	rs		Performance
Condition	Phase	Steady State	Steady State	Voltage during	Time Duration	Pass/Fail
		Voltage	Frequency	Power Failure	of Power	
					Failure	
Testing Perform	med at 36	0 Hz				
	Α	V _{rms}	Hz	V _{rms}	sec	
Α	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
В	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
С	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
D	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
E	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
F	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
G	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	A	V _{rms}	Hz	V _{rms}	sec	
Н	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	

 TABLE TVF602-III. Sample data sheet for TVF602 one and two phase power failures for three phase, variable frequency utilization

 equipment. - Continued

Test		Parameters							Performance	
Condition	Phase	Steady	v State	Steady	v State	Voltage	during	Time D	uration	Pass/Fail
		Volt	tage	Frequ	iency	Power Failure		of Power		
								Failure		
Testing Perform	ned at 36	0 Hz								
	А		V _{rms}		Hz		V _{rms}		sec	
Ι	В		V _{rms}				V _{rms}		sec	
	С		V _{rms}				V _{rms}		sec	
	А		V _{rms}		Hz		V _{rms}		sec	
J	В		V _{rms}				V _{rms}		sec	
	С		V _{rms}				V _{rms}		sec	

# TABLE TVF602-III. Sample data sheet for TVF602 one and two phase power failures for three phase, variable frequency utilization equipment. variable frequency utilization equipment. - Continued

Test			Parameter	rs		Performance
Condition	Phase	Steady State	Steady State	Voltage during	Time Duration	Pass/Fail
		Voltage	Frequency	Power Failure	of Power	
		_			Failure	
Testing Perform	ned at 60	0 Hz				
	A	V _{rms}	Hz	V _{rms}	sec	
А	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
В	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
С	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
D	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	А	V _{rms}	Hz	V _{rms}	sec	
Е	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	А	V _{rms}	Hz	V _{rms}	sec	
F	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	А	V _{rms}	Hz	V _{rms}	sec	
G	В	V _{rms}	-	V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	

# TABLE TVF602-III. Sample data sheet for TVF602 one and two phase power failures for three phase, variable frequency utilization equipment. variable frequency utilization equipment.

Test			Parameter	S		Performance
Condition	Phase	Steady State	Steady State	Voltage during	Time Duration	Pass/Fail
		Voltage	Frequency	Power Failure	of Power	
					Failure	
Testing Perform	ned at 60	0 Hz		·		·
	Α	V _{rms}	Hz	V _{rms}	sec	
Н	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
Ι	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
J	В	V _{rms}		V _{rms}	sec	]
	C	V _{rms}		V _{rms}	sec	

 TABLE TVF602-III.
 Sample data sheet for TVF602 one and two phase power failures for three phase, variable

 frequency utilization equipment.
 - Continued

Test			Parameter	rs		Performance
Condition	Phase	Steady State	Steady State	Voltage during	Time Duration	Pass/Fail
		Voltage	Frequency	Power Failure	of Power	
					Failure	
Testing Perform	ned at <b>80</b>	0 Hz				
	Α	V _{rms}	Hz	V _{rms}	sec	
А	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
В	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	A	V _{rms}	Hz	V _{rms}	sec	
С	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
D	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
E	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
F	В	V _{rms}		V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	
	Α	V _{rms}	Hz	V _{rms}	sec	
G	В	V _{rms}	·	V _{rms}	sec	
	С	V _{rms}		V _{rms}	sec	

 TABLE TVF602-III.
 Sample data sheet for TVF602 one and two phase power failures for three phase, variable

 frequency utilization equipment.
 - Continued

Test		Parameters Perfe						
Condition	Phase	Steady State	Steady State	Voltage during	Time Duration	Pass/Fail		
		Voltage	Frequency	Power Failure	of Power			
					Failure			
Testing Perform	ned at 80	0 Hz				·		
	Α	V _{rms}	Hz	V _{rms}	sec			
Н	В	V _{rms}		V _{rms}	sec			
	С	V _{rms}		V _{rms}	sec			
	Α	V _{rms}	Hz	V _{rms}	sec			
Ι	В	V _{rms}		V _{rms}	sec			
	С	V _{rms}		V _{rms}	sec			
	Α	V _{rms}	Hz	V _{rms}	sec			
J	В	V _{rms}		V _{rms}	sec	]		
	C	V _{rms}		V _{rms}	sec			

# TABLE TVF602-III. Sample data sheet for TVF602 one and two phase power failures for three phase, variable frequency utilization equipment. - Continued

#### METHOD TVF603 Phase Reversal (Three Phase)

POWER GROUP:	Three Phase, Variable Frequency, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Power Failure
PARAMETER:	Phase Reversal (Three Phase)

1. Scope.

1.1 <u>Purpose</u>. This test procedure is used to verify that three phase, 115 volt, variable frequency power utilization equipment is not damaged by phase reversal or a positive physical means is employed to prevent phase reversal.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment is not damaged and does not cause an unsafe condition when the input phase sequence is reversed for the applicable edition(s) of MIL-STD-704 and as noted in table TVF603-I. A positive physical means to prevent phase sequence reversal may be used to fulfill this requirement.

 

 MIL-STD-704 phase sequence reversal requirement for three phase, variable frequency utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Phase Reversal	N/A	N/A	N/A	N/A	N/A	Phase Sequence Reversal Does not Cause Damage

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. True RMS voltmeter
- c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure TVF603-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. If a positive physical means is employed to prevent phase sequence reversal, confirm that the phase conductors cannot be reversed.

If the phase sequence can be reversed, with the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TVF603-1 (reversed phase

sequence of C-B-A). Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. The UUT must remain for a length of time that confirms the utilization equipment is not damaged and does not cause an unsafe condition due to phase sequence reversal and should be not less than thirty (30) minutes. Record the steady state voltages, steady state frequency, time duration at phase sequence reversal test condition, and the performance of the UUT in the data sheet shown in table TVF603-II. Repeat the testing at a steady state frequency of 360 Hz, 600 Hz, and 800 Hz.

With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure TVF603-2 (correct phase sequence of A-B-C). Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to a steady state frequency of 400 Hz. Energize the UUT. The UUT must remain for a length of time that confirms the utilization equipment was not damaged and does not cause an unsafe condition after the phase sequence reversal and should be not less than thirty (30) minutes. Conduct a performance test of the UUT according to the utilization equipment performance specified for normal aircraft electrical conditions and has not suffered damage. Record the steady state voltages, steady state frequency, time duration at test condition, and the performance of the UUT in the data sheet shown in table TVF603-II. Repeat for each mode of operation of the UUT.



6. Phase Rotation is reversed.

165

FIGURE TVF603-1. Phase reversal.



5. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

166

FIGURE TVF603-2. Correct phase connection.

Test	Daramatara							
Condition	Parameters							Veg/Ne
	1 D	. 11	D	D1 · 1				Y es/INO
Phase Sequence Reve	ersal Prev	rented by	Positive	Physical	Means			
			I	f No				1
	Phase	Vol	tage	Frequ	iency	Time I	Duration	Pass/Fail
						at Test		
						Condition		
Testing Performed at	400 Hz							
Phase Sequence	Α		V _{rms}		Hz		min	
Reversed	В		V _{rms}					
(C-B-A)	С		V _{rms}					
Testing Performed at	360 Hz					·		
Phase Sequence	Α		V _{rms}		Hz		min	
Reversed	В		V _{rms}					
(C-B-A)	С		V _{rms}					
Testing Performed at	600 Hz							
Phase Sequence	Α		V _{rms}		Hz		min	
Reversed	В		V _{rms}					
(C-B-A)	С		V _{rms}					
Testing Performed at	Testing Performed at 800 Hz							
Phase Sequence	Α		V _{rms}		Hz		min	
Reversed	В		V _{rms}					
(C-B-A)	С		V _{rms}					
Testing Performed at	Testing Performed at 400 Hz							
Correct Phase	Α		V _{rms}		Hz		min	
Sequence	В		V _{rms}					
(A-B-C)	С		V _{rms}					

TABLE TVF603-II. Sample data sheet for TVF603 phase sequence reversal for three phase, variable frequency utilization equipment.

#### 6. NOTES

6.1 <u>Intended use</u>. This handbook should be used as guidance when establishing test requirements, for inclusion in performance specifications developed for the procurement of utilization equipment, to ensure compliance with the aircraft electrical power characteristics as specified by MIL-STD-704.

#### 6.2 Subject term (keyword) listing.

Aircraft, electrical power Aircraft, electrical test Electrical operating areas Equipment, utilization Power groups Specification, utilization equipment

#### CONCLUDING MATERIAL

Custodians: Army - AV Navy - AS Air Force - 11 Preparing Activity: Navy - AS

(Project No. SESS-0051)

Review Activities: Army - CR, MI, TE Navy - EC, MC, SA, SH, YD

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at <u>www.dodssp.daps.mil</u>.

NOT MEASUREMENT SENSITIVE

MIL-HDBK-704-6 9 April 2004

# DEPARTMENT OF DEFENSE HANDBOOK

GUIDANCE FOR TEST PROCEDURES FOR DEMONSTRATION OF UTILIZATION EQUIPMENT COMPLIANCE TO AIRCRAFT ELECTRICAL POWER CHARACTERISTICS SINGLE PHASE, 60 Hz, 115 VOLT (PART 6 OF 8 PARTS)



This Handbook is for guidance only. Do not cite this document as a requirement.

AMSC N/A

**AREA SESS** 

#### FOREWORD

1. This handbook is approved for use by all Departments and Agencies of the Department of Defense.

2. This handbook provides guidance on test procedures for demonstration of single phase, 60 Hz, 115 volt utilization equipment to determine compliance with the applicable edition of MIL-STD-704.

3. MIL-HDBK-704-6 is Part 6 in a series of 8 Parts. Part 6 describes the test methods and procedures to demonstrate that single phase, 60 Hz, 115 volt utilization equipment is compatible with the electric power characteristics of MIL-STD-704. These series of handbooks and MIL-STD-704 are companion documents.

4. Comments, suggestions, or questions on this document should be addressed to Commander, Naval Air Systems Command, Code 4.1.4, Highway 547, Lakehurst, NJ 08733-5100 or email to <u>thomas.omara@navy.mil</u>. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at <u>www.dodssp.daps.mil</u>.

# CONTENTS

PAR/	AGARPH	PAGE
	FOREWORD	ii
1. 1.1	SCOPE Scope	1 1
2. 2.1 2.2 2.2.1	APPLICABLE DOCUMENTS General Government documents Specifications, standards and handbooks	
3 3.1	DEFINITIONS Acronyms and definitions	1 1
4. 4.1 4.1.1 4.2 4.3	TEST METHODS INFORMATION Demonstration of compatibility Recording performance Calibration of test equipment Test methods	1 1 1 1 2
5.	<ul> <li>TEST METHODS</li></ul>	$\begin{array}{c} & & 4 \\ & & 5 \\ & & 9 \\ & & 13 \\ & & 14 \\ & & 18 \\ & & 22 \\ & & 27 \\ & & 27 \\ & & 22 \\ & & 32 \\ & & 36 \\ & & 42 \\ & & 47 \\ & & & 47 \\ & & & 52 \\ & & & 57 \\ & & & 62 \\ & & & & 66 \\ & & & 67 \\ & & & 68 \end{array}$
	METHOD SXF602 No Test Required METHOD SXF603 Phase Reversal (Single Phase)	

PARAG	ARPH	PAGE
6. N	NOTES	
6.1	Intended use	
6.2	Single phase test numbers	
6.3	Subject term (keyword) listing	
TABLE		
SXF-I.	Summary of single phase, 400 Hz, 115 volt utilization equipment	
	MIL-STD-704 compliance test	
CONCLU	UDING MATERIAL	

# 1. SCOPE

1.1 <u>Scope</u>. This handbook provides, as guidance, test methods used to demonstrate that single phase, 60 Hz, 115 volt utilization equipment is compatible with the electric power characteristics of the applicable edition(s) of MIL-STD-704. This handbook is for guidance only and cannot be cited as a requirement.

## 2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed below are not necessarily all of the documents referenced herein, but are those needed to understand the information provided by this handbook.

### 2.2 Government documents.

2.2.1 <u>Specifications, standards, and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein.

### DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-704

DoD Interface Standard for Aircraft Electric Power Characteristics

(Copies of these documents are available online at <u>http://assist.daps.dla.mil/quicksearch</u> or <u>www.dodssp.daps.mil/</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

# 3. DEFINITIONS

3.1 <u>Acronyms and definitions</u>. The acronyms and definitions of MIL-STD-704 are applicable to this handbook.

# 4. TEST METHODS INFORMATION

4.1 <u>Demonstration of compatibility</u>. This section contains the test methods which will ensure that single phase, 60 Hz, 115 volt utilization equipment is compatible with the electric power characteristics of the applicable edition(s) of MIL-STD-704, by testing the Unit Under Test (UUT) in accordance with the test procedures as described in test methods SXF101 through SXF603.

4.1.1 <u>Recording performance</u>. In table SXF-I, record the edition(s) of MIL-STD-704 that defined the aircraft electric power characteristics used for testing and the performance of the UUT for each of the test methods.

4.2 <u>Calibration of test equipment</u>. Test equipment and accessories required for measurement in accordance with this handbook should be calibrated in accordance with an approved calibration program traceable to the National Institute for Standards and Technology.

The serial numbers, model, and calibration date of all test equipment should be included with the test data.

4.3 <u>Test methods</u>. The test methods listed in table SXF-I are provided in section 5 of this handbook.

TABLE SXF-I.	Summary of single phase, 60 Hz,115 volt utilization equipment MIL-STD-704
	compliance tests.

UUT:						
Complia	nce to MIL-STD-704 Edition(s):					
Test Date	25:					
Test	Description	Performance	Comments			
Method		(Pass/Fail)				
Normal,	Aircraft Electrical Operation					
SXF101	Load and Current Harmonic					
	Measurements					
SXF102	Steady State Limits for Voltage					
	and Frequency					
SXF103	No Test, See Note #1	N/A	N/A			
SXF104	Voltage Modulation					
SXF105	Frequency Modulation					
SXF106	Voltage Distortion Spectrum					
SXF107	Total Voltage Distortion					
SXF108	DC Voltage Component					
SXF109	Normal Voltage Transients					
SXF110	Normal Frequency Transients					
Transfer,	Aircraft Electrical Operation					
SXF201	Power Interrupt					
Abnorma	l, Aircraft Electrical Operation					
SXF301	Abnormal Limits for Voltage and					
	Frequency					
SXF302	Abnormal Voltage Transients					
	(Overvoltage/Undervoltage)					
SXF303	Abnormal Frequency Transients					
	(Overfrequency/Underfrequency)					
Emergen	cy, Aircraft Electrical Operation					
SXF401	Emergency Limits for Voltage					
	and Frequency					
Starting, Aircraft Electrical Operation						
SXF501	See Note#2	N/A	N/A			
<b>Power Fa</b>	ilure, Aircraft Electrical Operati	on				
SXF601	Power Failure (Single Phase)					
SXF602	No Test, See Note #1	N/A	N/A			
SXF603	Phase Reversal					

Note 1: There are no tests required for SXF103 and SXF602. The numbering has been arranged so that the single phase test numbers coincide with the three phase test numbers.

Note 2: Starting operation conditions are usually not applicable to AC utilization equipment. No test is required for SXF501 unless specified by the equipment performance specification.

5. TEST METHODS

#### METHOD SXF101 Load Measurements

POWER GROUP:

Single Phase, 60 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Normal

Load Measurements

1. <u>Scope</u>.

**PARAMETER:** 

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 volt, 60 Hz power utilization equipment utilizes only 115 volt line-to-neutral power, does not require more power than allowed, the power factor is within limits, and does not use half-wave rectification for the applicable edition(s) of MIL-STD-704. Additionally, when the utilization equipment performance specification document imposes current waveform requirements, this test procedure is used to verify that the utilization equipment current waveform is within total current distortion and current spectrum (current distortion vs. frequency) limits defined in the utilization equipment performance specification document.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment requires less than or equal to the power limit for single phase equipment, is within the power factor limits, and does not use half-wave rectification for the applicable edition(s) of MIL-STD-704 and as noted in table SXF101-I. If required by the utilization equipment performance specification document, the utilization equipment current waveform must be within the total current distortion and current spectrum limits defined in the utilization equipment performance specification document. The utilization equipment must not suffer damage or cause an unsafe condition.

Limit	704A	704B	704C	704D	704E	704F
Single Phase kVA	N/A	N/A	N/A	N/A	N/A	0.5 kVA
Power Factor	N/A	N/A	N/A	N/A	N/A	No Leading Power Factor for >100 VA
Rectification Restriction	N/A	N/A	N/A	N/A	N/A	No Half-Wave Rectification
Current Distortion	N/A	N/A	N/A	N/A	N/A	See Note <u>1</u> /
Current Spectrum	N/A	N/A	N/A	N/A	N/A	See Note <u>1</u> /

TABLE SXF101-I. <u>MIL-STD-704 limits for single phase power, power factor, rectification</u> restriction, current distortion, and current spectrum for single phase, 60 Hz utilization equipment.

1/. The utilization equipment performance specification document should include requirements that reduce the likelihood of the equipment having an adverse effect on the electrical power characteristics of the aircraft. Current distortion and current spectrum limits may be imposed to minimize undesirable effects to the electrical power characteristics. These limits should take into account the utilization equipment power draw, aircraft electrical system capacity and distribution characteristics, trade-offs with weight, volume, cost, and reliability that are specific to each type of equipment and aircraft.

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply (rotating AC source for current waveform limits)
- b. True RMS voltmeter
- c. Frequency counter
- d. Power meter
- e. Spectrum analyzer
- f. Distortion meter
- g. Current transformer
- h. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SXF101-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT. Current measurements must be taken from the 115 Volt conductor. If the utilization equipment performance specification document imposes current waveform limits, the AC power source must be a rotating machine.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SXF101-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz.

Close the circuit breaker, energizing the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the voltage, frequency, kVA, and power factor in table SXF101-II. Confirm that the utilization equipment does not use half-wave rectification and record in table SXF101-II. Compare the kVA, power factor, and rectification with the required limits/restriction of the applicable edition(s) of MIL-STD-704. If the utilization equipment performance specification document imposes current waveform limits, record the total current distortion and current spectrum in the data sheet shown in table SXF101-II and compare to the limits defined in the utilization equipment performance specification document. Repeat for each mode of operation of the UUT.



5. If current waveform limits are imposed by the detailed performance specification, the AC power source shall be a rotating machine.

-

FIGURE SXF101-1. Load and current distortion measurement.

Parameter	Measurement	Unit	Performance
			Pass/Fail
Voltage		V _{rms}	N/A
Frequency		Hz	N/A
kVA		kVA	
Power Factor		pf	
No Half-Wave Rectification		N/A	
Total Current Distortion		% Current	
Total Current Distortion		Distortion	
Current Speetrum	Attach Speatrum Plat	Amplitude vs.	
Current Spectrum	Attach Spectrum Flot	Frequency	

#### METHOD SXF102 Steady State Limits for Voltage and Frequency

POWER GROUP:	Single Phase, 60 Hz, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Normal

PARAMETER: Steady State Limits for Voltage and Frequency

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, 60 Hz power utilization equipment operates and maintains specified performance when provided power with voltage and frequency at that the Normal Low Steady State (NLSS) limits and the Normal High Steady State (NHSS) limits as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when supplied input power of voltage and frequency at the specified normal steady state limits of the applicable edition(s) of MIL-STD-704 and as noted in table SXF102-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage and frequency limits and should be, not less than thirty (30) minutes for each of the test conditions. The utilization equipment must demonstrate re-start at the steady state voltage and frequency limits. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE SXF102-I.	MIL-STD-704 normal limits for steady state voltage and frequency for
	single phase, 60 Hz utilization equipment.

Normal	704A	704B	704C	704D	704E	704F
Limit						
Voltage	N/A	N/A	N/A	N/A	N/A	105 V
NLSS						
Voltage	N/A	N/A	N/A	N/A	N/A	125 V
NHSS						
Frequency	N/A	N/A	N/A	N/A	N/A	59.5 Hz
NLSS						
Frequency	N/A	N/A	N/A	N/A	N/A	60.5 Hz
NHSS						

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. True RMS voltmeter
- c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure SXF102-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SXF102-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through I noted in table SXF102-II, the UUT must remain for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage and frequency limits and should be not less than thirty (30) minutes. At each test condition conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. For each test condition shutdown the UUT and verify that the UUT can be re-started. After re-start conduct a performance test of the UUT is providing specified performing to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. For each test condition shutdown the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the voltage, frequency, time duration at test condition, successful/unsuccessful re-start and the performance of the UUT for each test condition in the data sheet shown in table SXF102-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Voltage	Frequency
А	115 V	60 Hz
В	115 V	59.5 Hz
С	115 V	60.5 Hz
D	105 V	60 Hz
Е	105 V	59.5 Hz
F	105 V	60.5 Hz
G	125 V	60 Hz
Н	125 V	59.5 Hz
Ι	125 V	60.5 Hz

TABLE SXF102-II.	Test conditions for stea	dy state limits for	voltage	and frequency	for single	
phase, 60 Hz utilization equipment.						



 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

. ____

FIGURE SXF102-1. Steady state limits for voltage and frequency.

Test		Performance			
Condition	Voltage	Frequency	Time Duration	Re-Start	Pass/Fail
			at Condition	(Yes/No)	
A	V _{rms}	Hz	min		
В	V _{rms}	Hz	min		
С	V _{rms}	Hz	min		
D	V _{rms}	Hz	min		
Е	V _{rms}	Hz	min		
F	V _{rms}	Hz	min		
G	V _{rms}	Hz	min		
Н	V _{rms}	Hz	min		
Ι	V _{rms}	Hz	min		

TABLE SXF102-III. Sample data sheet for SXF102 steady state limits for voltage and frequency for 60 Hz utilization equipment.

# METHOD SXF103 No Test Required

POWER GROUP:

Single Phase, 60 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:	Normal
PARAMETER:	No Test Required. Test number SXF103 is not used so that the Single Phase, 60 Hz, 115 V(SXF) test numbers coincide with the Three Phase, 115 V (TAC and TVF) test sequence numbers.

#### METHOD SXF104 Voltage Modulation

POWER GROUP:

Single Phase, 60 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: Normal

PARAMETER:

Voltage Modulation

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 volt, 60 Hz power utilization equipment operates and maintains specified performance when subjected to voltage modulation as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when supplied input power having voltage modulation as specified in the applicable edition(s) of MIL-STD-704 and as noted in table SXF104-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when provided power having voltage modulation. The utilization equipment must not suffer damage or cause an unsafe condition.

 TABLE SXF104-I.
 MIL-STD-704 limits for voltage modulation for single phase, 60 Hz

 utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Voltage	N/A	N/A	N/A	N/A	N/A	2.5 Vrms
Modulation						max

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SXF104-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SXF104-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the

utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through F noted in table SXF104-II, set the voltage modulation amplitude and frequency of voltage modulation. The UUT must remain at the test condition for a length of time that confirms the utilization equipment can continuously operate, and should be at least ten (10) minutes at an average steady state voltage of 115 Vrms, at least ten (10) minutes at an average steady state voltage of 115 Vrms, at least ten (10) minutes at an average steady state voltage of 117 Vrms. During the test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record average voltage, frequency, amplitude of voltage modulation, frequency of voltage modulation, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table SXF104-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Frequency of Voltage	MIL-STD-704F	
	Modulation	Amplitude of Voltage	
		Modulation	
		Vrms	
А	1.0 Hz	0.375 Vrms	
В	1.5 Hz	2.5 Vrms	
С	4 Hz	2.5 Vrms	
D	10 Hz	0.375 Vrms	
Е	15 Hz	0.375 Vrms	
F	30 Hz	0.375 Vrms	

 TABLE SXF104-II.
 Test conditions for voltage modulation for single phase, 60 Hz utilization equipment.



16

FIGURE SXF104-1. Voltage modulation.
Test		Parameters							
Condition	Average	Frequency	Amplitude of	Frequency of	Time Duration at	Pass/Fail			
	Voltage		Voltage	Voltage	Condition				
			Modulation	Modulation					
	V _{rms}	Hz	V _{rms}	Hz	min				
А	V _{rms}	Hz	V _{rms}	Hz	min				
	V _{rms}	Hz	V _{rms}	Hz	min				
	V _{rms}	Hz	V _{rms}	Hz	min				
В	V _{rms}	Hz	V _{rms}	Hz	min				
	V _{rms}	Hz	V _{rms}	Hz	min				
	V _{rms}	Hz	V _{rms}	Hz	min				
С	V _{rms}	Hz	V _{rms}	Hz	min				
	V _{rms}	Hz	V _{rms}	Hz	min				
	V _{rms}	Hz	V _{rms}	Hz	min				
D	V _{rms}	Hz	V _{rms}	Hz	min				
	V _{rms}	Hz	V _{rms}	Hz	min				
	V _{rms}	Hz	V _{rms}	Hz	min				
Е	V _{rms}	Hz	V _{rms}	Hz	min				
	V _{rms}	Hz	V _{rms}	Hz	min				
	V _{rms}	Hz	V _{rms}	Hz	min				
F	V _{rms}	Hz	V _{rms}	Hz	min				
	V _{rms}	Hz	V _{rms}	Hz	min				

TABLE SXF104-III. Sample data sheet for SXF104 voltage modulation for single phase, 60 Hz utilization equipment.

17

## METHOD SXF105 Frequency Modulation

POWER GROUP:

Single Phase, 60 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Normal

PARAMETER:

Frequency Modulation

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, 60 Hz power utilization equipment operates and maintains specified performance when subjected to frequency modulation as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when supplied input power having frequency modulation as specified in the applicable edition(s) of MIL-STD-704 and as noted in table SXF105-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when provided power having frequency modulation. The utilization equipment must not suffer damage or cause an unsafe condition.

 TABLE SXF105-I.
 MIL-STD-704 limits for frequency modulation for single phase, 60 Hz

 utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Frequency Modulation	N/A	N/A	N/A	N/A	N/A	0.5 Hz

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SXF105-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SXF105-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Energize the UUT. Allow sufficient

time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through E noted in table SXF105-II, set the amplitude of frequency modulation and rate of change for frequency modulation. The UUT must remain at the test condition for a length of time that confirms the utilization equipment can continuously operate, and should be at least ten (10) minutes at an average steady state frequency of 60 Hz, at least ten (10) minutes at an average steady state frequency of 59.75 Hz, and at least ten (10) minutes at an average steady state frequency of 60.75 Hz. During the test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record voltage, average frequency, amplitude of frequency modulation, rate of change for frequency modulation, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table SXF105-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test	Rate of change for	MIL-STD-704F
Condition	frequency modulation	Amplitude of
		Frequency
		Modulation
А	0.1 Hz/sec	0.5 Hz (± 0.25 Hz)
В	0.5 Hz/sec	0.5 Hz (± 0.25 Hz)
С	4 Hz/sec	0.5 Hz (± 0.25 Hz)
D	25 Hz/sec	0.5 Hz (± 0.25 Hz)
Е	15 Hz/sec	0.5 Hz (± 0.25 Hz)

## TABLE SXF105-II. Test conditions for frequency modulation for single phase, 60 Hz utilization equipment.



20

FIGURE SXF105-1. Frequency modulation.

Test		Daramatora							
Test		Parameters							
Condition	Voltage	Average	Amplitude of	Rate of change for	Time Duration	Pass/Fail			
		Frequency	Frequency	frequency	at Condition				
		1 2	Modulation	modulation					
	V _{rms}	Hz	± Hz	Hz/sec	min				
А	V _{rms}	Hz	± Hz	Hz/sec	min				
	V _{rms}	Hz	± Hz	Hz/sec	min				
	V _{rms}	Hz	± Hz	Hz/sec	min				
В	V _{rms}	Hz	± Hz	Hz/sec	min				
	V _{rms}	Hz	± Hz	Hz/sec	min				
	V _{rms}	Hz	± Hz	Hz/sec	min				
С	V _{rms}	Hz	± Hz	Hz/sec	min				
	V _{rms}	Hz	± Hz	Hz/sec	min				
	V _{rms}	Hz	± Hz	Hz/sec	min				
D	V _{rms}	Hz	± Hz	Hz/sec	min				
	V _{rms}	Hz	± Hz	Hz/sec	min				
	V _{rms}	Hz	± Hz	Hz/sec	min				
E	V _{rms}	Hz	± Hz	Hz/sec	min				
	V _{rms}	Hz	±Hz	Hz/sec	min				

TABLE SXF105-III.	Sample data sheet for	SXF105 frequency	y modulation for sing	gle phase,	60 Hz utilization equipment.
	*				* *

#### METHOD SXF106 Voltage Distortion Spectrum

**POWER GROUP:** 

Single Phase, 60 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Normal

Voltage Distortion Spectrum

1. <u>Scope</u>.

PARAMETER:

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 volt, 60 Hz power utilization equipment operates and maintains specified performance when subjected to voltage distortion of frequencies and amplitudes as specified by the voltage distortion spectrum in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to voltage distortions as specified by the voltage distortion spectrum in the applicable edition(s) of MIL-STD-704 and as noted in table SXF106-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when provided power having voltage distortion. The utilization equipment must not suffer damage or cause an unsafe condition.

Note: This test method subjects the UUT to voltage distortion having frequencies components from 50 Hz to 10 kHz. These voltage distortions simulate voltage distortions within aircraft due to the cumulative effects of generators, electrical distribution systems equipments, and aircraft loads. MIL-STD-461, (Requirements For The Control of Electromagnetic Interference Characteristics of Subsystems and Equipment), Test Method CS101, (Conducted Susceptibility, Power Leads, 30 Hz to 150 kHz) is a complimentary test. Power levels of the voltage distortions differ for the two test methods. Performance of Test Method SXF106 of this handbook does not relinquish the requirement to perform Test Method CS101 of MIL-STD-461, and performance of Method CS101 of MIL-STD-461 does not relinquish the requirement to perform Test Method SXF106 of this handbook.

 MIL-STD-704 limits for voltage distortion spectrum for single phase, 60 Hz

 utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Voltage Distortion	N/A	N/A	N/A	N/A	N/A	figure 12 MIL-STD-
Spectrum						704F

## 3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. Variable frequency power source
- c. Coupling transformer
- d. True RMS voltmeter
- e. Frequency counter
- f. Spectrum analyzer
- g. (2) Inductors, 50  $\mu H$
- h. Capacitor, 10  $\mu F$
- i. Resistor, calibrated load

4. <u>Test setup</u>. Configure the test setup as shown in figure SXF106-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

4.1 <u>Calibration (50 Hz to 10 kHz)</u>. Install a calibrated resistive load in the test setup shown in figure SXF106-1 in place of the UUT. The calibrated resistive load must be sized to draw the same current as the UUT. Turn on the adjustable AC power supply and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Set the variable frequency power source to output a sine wave and adjust the frequency and amplitude so that the voltage distortion measured at the input to the calibrated resistive load conforms to each test condition A through G in table SXF106-II of the applicable edition(s) of MIL-STD-704. Record the settings of the variable frequency power source for each test condition.

5. <u>Compliance test</u>. With the adjustable AC power supply off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SXF106-1. Turn on the adjustable AC power supply and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

Set the variable frequency power source to the settings recorded for test condition A of the calibration procedure. For each test condition, remain for a length of time that confirms the utilization equipment can continuously operate with the voltage distortion and should be not less than five (5) minutes. At each test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. After each test condition, monitor the voltage distortion frequency and amplitude while slowly increasing the variable frequency power source frequency and adjusting the amplitude until the next test condition is reached. Do not exceed the voltage distortion spectrum limits. Repeat for each test condition A through G noted in table SXF106-II. For each test condition, record voltage, frequency, frequency of voltage distortion, amplitude of voltage distortion, time duration at test condition, and the performance of the UUT in the data sheet shown in table SXF106-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, turn the adjustable AC power supply off and remove the coupling transformer from the circuit. Turn on the adjustable AC power supply. Adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and the frequency to the nominal steady state frequency of 60 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Frequency of Voltage	MIL-STD-704F
	Distortion	Amplitude of Voltage
		Distortion
		Voltage rms
А	50 Hz	1.000 Vrms
В	150 Hz	3.162 Vrms
С	450 Hz	3.162 Vrms
D	1 kHz	1.333 Vrms
Е	3 kHz	0.473 Vrms
F	5 kHz	0.282 Vrms
G	10 kHz	0.150 Vrms

TABLE SXF106-II.	Test conditions for voltage distortion spectrum for single phase, 60	Hz
	utilization equipment.	



5. CAUTION: Verify suitability of variable frequency power source and coupling transformer for distortion spectrum testing.

FIGURE SXF106-1. Normal operation - voltage distortion spectrum (50 Hz to 10 kHz).

Test		Parameters						
Condition	Voltage	Frequency	Frequency of	Amplitude of	Time Duration	Pass/Fail		
			Voltage	Voltage	at Condition			
			Distortion	Distortion Distortion				
А	V _{rms}	Hz	Hz	V _{rms}	min			
В	V _{rms}	Hz	Hz	V _{rms}	min			
С	V _{rms}	Hz	Hz	V _{rms}	min			
D	V _{rms}	Hz	kHz	V _{rms}	min			
Е	V _{rms}	Hz	kHz	V _{rms}	min			
F	V _{rms}	Hz	kHz	V _{rms}	min			
G	V _{rms}	Hz	kHz	V _{rms}	min			

TABLE SXF106-III. Sample data sheet for SXF106 voltage distortion spectrum for single phase, 60 Hz utilization equipment.

#### METHOD SXF107 Total Voltage Distortion

POWER GROUP:

Single Phase, 60 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Normal

Total Voltage Distortion

1. <u>Scope</u>.

PARAMETER:

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 volt, 60 Hz power utilization equipment operates and maintains specified performance when subjected to a voltage waveform having a distortion factor as specified by the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to a voltage waveform having a distortion factor as specified by the applicable edition(s) of MIL-STD-704 and as noted in table SXF107-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when subjected to a distorted voltage waveform and should be not less than thirty (30) minutes. The utilization equipment must not suffer damage or cause an unsafe condition.

## MIL-STD-704 limits for total voltage distortion for single phase, 60 Hz utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Voltage Distortion Factor	N/A	N/A	N/A	N/A	N/A	0.05

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Spectrum analyzer
- e. Distortion meter

4. <u>Test setup</u>. Configure the test setup as shown in figure SXF107-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

4.1 <u>Calibration</u>. Install a resistive load in the test setup shown in figure SXF107-1 in place of the UUT. The resistive load must be sized to draw the same current as the UUT. Set

the programmable power supply to produce a voltage waveform having harmonic contents listed in table SXF107-II. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60Hz. Confirm that the programmable power supply is producing a voltage waveform having harmonic content listed in table SXF107-II. Record the settings of the programmable power supply.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SXF107-1. Set the programmable power supply to the settings recorded during the calibration procedure. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. The UUT must remain for a length of time that confirms the utilization equipment can continuously operate with the total voltage distortion and should be not less than thirty (30) minutes. Conduct a performance test of the UUT according to the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the voltage, frequency, voltage distortion factor, voltage harmonics, time duration at test condition, and the performance of the UUT in the data sheet shown in table SXF107-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, set the programmable power supply to produce a sine wave. Adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

## TABLE SXF107-II. Voltage harmonics as percent of fundamental for total voltage distortion test for single phase, 60 Hz utilization equipment.

Harmonic	MIL-STD-704F
	Percent of
	Fundamental
Fundamental	100%
2nd	0%
3rd	2.75%
4th	0%
5th	2.75%
6th	0%
7th	1.97%
8th	0%
9th	1.53%
10th	0%
11th	1.25%
12th	0%
13th	1.06%
14th	0%
15th	0.92%



FIGURE SXF107-1. Total distortion.

	Parameters								Performance	
Voltage		Frequency		cy Voltage		Time Duration		uration	Pass/Fail	
				Disto	rtion	1	at	Con	dition	
				Fac	tor					
	V		Hz		N	0			min	
	* mis		112		Ur	nits				
					01					
			V	oltage H	arma	nice				
			Euro	a l			/			
			run	u		7	0			
			2"			<u> </u>	0			
			314			%	Ó			
			4 th			%	ó 0			
			$5^{\text{th}}$			0/	ó			
			6 th			%	, 0			
			7 th			0/	, 0			
			8 th			0/	ó			
			9 th			0/	~ ^			
			10 th	1		0/	0 /0			
			11 th	1		0/	0 /			
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		0/	0 (			
			12 12 th	1			0 ⁄			
			13 ^m			<u>%</u>	0			
			14 th	-		%	0			
			15 th	1		0/	Ó			

TABLE SXF107-III. Sample data sheet for SXF107 total voltage distortion for single phase, 60 Hz utilization equipment.

## METHOD SXF108 DC Voltage Component

**POWER GROUP:** 

Single Phase, 60 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: N

Normal

PARAMETER: DC Voltage Component

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 volt, 60 Hz power utilization equipment operates and maintains specified performance when subjected to a direct current component of AC voltage as specified by the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to a direct current component of AC voltage as specified by the applicable edition(s) of MIL-STD-704 and as noted in table SXF108-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when subjected to a direct current component of AC voltage and should be not less than thirty (30) minutes. The utilization equipment must not suffer damage or cause an unsafe condition.

 MIL-STD-704 limits for direct current component of AC voltage for single phase, 60 Hz utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
DC Voltage	N/A	N/A	N/A	N/A	N/A	± 0.10 V
Component						
of the AC						
Voltage						

- 3. <u>Apparatus</u>. The test equipment should be as follows:
  - a. Programmable AC power supply
  - b. True RMS voltmeter (with capability to measure DC component of AC waveform)
  - c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure SXF108-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SXF108-1. Set the programmable power supply to produce a voltage waveform having a DC component for test condition A as noted in table SXF108-II. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. The UUT must remain for a length of time that confirms the utilization equipment can continuously operate with the direct current component of the AC voltage and should be not less than thirty (30) minutes. Repeat the test for test condition B as noted in table SXF108-II. Record the voltage, frequency, DC voltage component, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table SXF108-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, set the programmable power supply to produce a voltage sine wave without a DC component. Adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

TABLE SXF108-II.	Test conditions for direct current component of AC voltage for single
	phase, 60 Hz utilization equipment.

Test Condition	MIL-STD-704F Direct Current Component of AC Voltage
А	+ 0.10 V
В	– 0.10 V



34

FIGURE SXF108-1. DC voltage component.

Test		Parameters							
Condition	Vol	tage	Frequ	iency	DC Voltage Tim		Time D	uration	Pass/Fail
					Component		at Condition		
A		V _{rms}		Hz		V _{dc}		min	
В		V _{rms}		Hz		$V_{dc}$		min	

TABLE SXF108-III. Sample data sheet for SXF108 DC voltage component for single phase, 60 Hz utilization equipment.

#### METHOD SXF109 Normal Voltage Transients

POWER GROUP: Single Phase, 60 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: N

Normal

PARAMETER: Normal Voltage Transients

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 volt, 60 Hz power utilization equipment operates and maintains specified performance when subjected to normal voltage transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to voltage transients within the normal limits of the applicable edition(s) of MIL-STD-704 and as noted in table SXF109-I. The utilization equipment must maintain specified performance during and after the voltage transients. The utilization equipment must not suffer damage or cause an unsafe condition.

 MIL-STD-704 limits for normal voltage transients for single phase, 60 Hz

 utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Normal Voltage Transients	N/A	N/A	N/A	N/A	N/A	figure 8 MIL-STD- 704F

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SXF109-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SXF109-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the

utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

The UUT must be subjected to the voltage transients for each test condition A through I noted in table SXF109-II. The voltage must increase or decrease from steady state voltage to the voltage transient level within ¹/₂ cycle (8.33 milliseconds). The voltage must remain at the voltage transient level for the duration noted in table SXF109-II. The voltage must return to steady state over the time duration noted in table SXF109-II. For test condition D, three over-voltage transients of 130 Vrms for 16.67 milliseconds are performed, separated by 0.5 seconds. For test condition H, three under-voltage transients of 70 Vrms for 16.67 milliseconds are performed, separated by 0.5 seconds. For test condition I, an under-voltage transient of 70 Vrms for 16.67 milliseconds is immediately followed by an overvoltage transient of 130 Vrms for 16.67 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal steady state limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltage, steady state frequency, voltage transient level, time duration at voltage transient, oscilloscope trace, and the performance of the UUT for each test condition in the data sheet shown in table SXF109-III. Repeat for each mode of operation of the UUT. In addition, perform the repetitive normal voltage transient test described below.

5.1 <u>Repetitive normal voltage transients test</u>. Program the power supply to provide a continually repeating voltage transient that decreases from 115 Vrms to 100 Vrms in 8.33 msec, then increases to 128 Vrms over 50 msec, then decreases to 115 Vrms over 8.33 msec. The voltage transient is repeated every 0.5 seconds, see figure SXF109-2. The UUT must be subjected to the repetitive voltage transient for a length of time that confirms the utilization equipment can continuously operate and should be not less than thirty (30) minutes. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltage, steady state frequency, high voltage transient level, low voltage transient level, oscilloscope trace, time duration at test condition, and the performance of the UUT in the data sheet shown in table SXF109-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

TABLE SXF109-II.	Test conditions for normal voltage transients for single phase, 60	<u>0 Hz</u>
	utilization equipment.	

Test Condition	Time From Steady State Voltage to Voltage Transient Level milliseconds	Voltage Transient Level Vrms	Duration at Voltage Transient Level milliseconds	Time From Voltage Transient Level to Steady State Voltage milliseconds
Overvoltage Transients				
А	N/A	152 Vrms	1/2 cycle	N/A
В	< 8.333 msec	130 Vrms	1 cycle	< 8.333 msec
С	< 8.333 msec	130 Vrms	1 cycle	250 msec
D	< 8.333 msec	130 Vrms	1 cycle	< 8.333 msec
D		(3 times)	every 0.5 sec	
Undervoltage Transients				
E	N/A	31 Vrms	1/2 cycle	N/A
F	< 8.333 msec	70 Vrms	1 cycle	< 8.333 msec
G	< 8.333 msec	70 Vrms	1 cycle	107 msec
II	< 8.333 msec	70 Vrms	1 cycle	< 8.333 msec
п		(3 times)	every 0.5 sec	
Combined Transient				
	< 8.333 msec	70 Vrms	1 cycle	< 8.333 msec
Ι	then			
	< 8.333 msec	130 Vrms	1 cycle	250 msec



39

FIGURE SXF109-1. Normal voltage transients.



FIGURE SXF109-2. Repetitive normal voltage transient.

## TABLE SXF109-III. Sample data sheet for SXF109 normal voltage transients for MIL-STD-704 for single phase, 60 Hz utilization equipment.

	Test	Parameters								Performance		
	Condition	Steady	y State	Steady	y State	Voltage	Transient	Time at	Voltage	Oscillos	cope Trace	Pass/Fail
		Vol	tage	Frequ	uency			Transie	nt Level			
	А		V _{rms}		Hz		V _{rms}		msec	Attach Trace	$V_{rms}$ vs. Time	
	В		V _{rms}		Hz		V _{rms}		msec	Attach Trace	$V_{rms}$ vs. Time	
	С		V _{rms}		Hz		V _{rms}		msec	Attach Trace	$V_{rms}$ vs. Time	
	D		V _{rms}		Hz		V _{rms}		msec	Attach Trace	$V_{rms}$ vs. Time	
	E		V _{rms}		Hz		V _{rms}		msec	Attach Trace	$V_{rms}$ vs. Time	
	F		V _{rms}		Hz		V _{rms}		msec	Attach Trace	$V_{rms}$ vs. Time	
	G		V _{rms}		Hz		V _{rms}		msec	Attach Trace	$V_{rms}$ vs. Time	
	Н		V _{rms}		Hz		V _{rms}		msec	Attach Trace	$V_{rms}$ vs. Time	
	T		V _{rms}		Hz		V _{rms}		msec	Attach Trace	$V_{rms}$ vs. Time	
	1						V _{rms}		msec			
4	Repetitive Norr	mal Voltag	ge Transien	ıt								
_		Steady	y State	Steady	y State	High V	/oltage	Low V	/oltage	Oscilloso	cope Trace	
		Vol	tage	Frequ	uency	Tran	sient	Tran	sient			
	Repetitive		$\mathbf{V}_{\mathrm{rms}}$		Hz		V _{rms}		V _{rms}	Attach Trace	V _{rms} vs. Time	
	Transient	Time Du Test Co	ration at ondition		1				1	1		
			minutes									

#### METHOD SXF110 Normal Frequency Transients

POWER GROUP: Single Phase, 60 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: No

Normal

## PARAMETER: Normal Frequency Transients

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 volt, 60 Hz power utilization equipment operates and maintains specified performance when subjected to normal frequency transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to frequency transients within the normal limits of the applicable edition(s) of MIL-STD-704 and as noted in table SXF110-I. The utilization equipment must maintain specified performance during and after the frequency transients. The utilization equipment must not suffer damage or cause an unsafe condition.

 MIL-STD-704 limits for normal frequency transients for single phase, 60 Hz

 utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Normal Frequency Transients	N/A	N/A	N/A	N/A	N/A	figure 10 MIL-STD- 704F
Normal Maximum Rate of Change of Frequency	N/A	N/A	N/A	N/A	N/A	100 Hz/sec

- 3. <u>Apparatus</u>. The test equipment should be as follows:
  - a. Programmable AC power supply
  - b. True RMS voltmeter
  - c. Frequency counter
  - d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SXF110-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SXF110-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

The UUT must be subjected to the frequency transients for each test condition A through E noted in table SXF110-II. The frequency must increase or decrease from steady state frequency to the frequency transient level over the duration noted; the frequency must remain at the frequency transient level for the duration noted; and the frequency must return from the frequency transient level over the duration noted; and the frequency must return from the frequency transient level over the duration noted. For test condition E, an underfrequency transient of 59 Hz is immediately followed by an overfrequency transient of 61 Hz. For each test condition, monitor the performance of the UUT during the frequency transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for normal steady state limits, conduct a performance test of the UUT according to the utilization equipment performance for normal aircraft electrical conditions. Record the steady state voltage, steady state frequency, frequency transient level, time at frequency transient, oscilloscope trace (Hz vs. time), and the performance of the UUT for each test condition in the data sheet shown in table SXF110-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

# TABLE SXF110-II. Test conditions for normal frequency transients for single phase, 60 Hz utilization equipment.

Test Condition	Time From Steady State Frequency to Frequency Transient Level	Frequency Transient Level Hz	Duration at Frequency Transient Level	Time From Frequency Transient Level to Steady State Frequency
	milliseconds			
Overfrequency Transients				
А	10 msec	61 Hz	¹ / ₂ cycle	10 msec
В	10 msec	61 Hz	5 sec	10 msec
Underfrequency Transients				
С	10 msec	59 Hz	¹ / ₂ cycle	10 msec
D	10 msec	59 Hz	5 sec	10 msec
Combined Transient				
Е	10 msec then 10 msec	59 Hz 61 Hz	¹ / ₂ cycle ¹ / ₂ cycle	10 msec 10 msec



FIGURE SXF110-1. Normal frequency transients.

## TABLE SXF110-III. Sample data sheet for SXF110 normal frequency transients for MIL-STD-704 for single phase, 60 Hz utilization equipment.

Test		Parameters									
Condition	Steady State	Steady State		Frequency		Time at		Oscilloscope Trace		Pass/Fail	
	Voltage	Freque	ency	Transient		Frequency					
						Transient					
						Level					
А	V _{rms}		Hz		Hz		msec	Attach Trace	Hz vs. Time		
В	V _{rms}		Hz		Hz		msec	Attach Trace	Hz vs. Time		
С	V _{rms}		Hz		Hz		msec	Attach Trace	Hz vs. Time		
D	V _{rms}		Hz		Hz		msec	Attach Trace	Hz vs. Time		
F	V _{rms}		Hz		Hz		msec	Attach Trace	Hz vs. Time		
Ľ					Hz		msec				

#### METHOD SXF201 Power Interrupt

POWER GROUP:

Single Phase, 60 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: Transfer

Transfer Interrupt

PARAMETER:

Power Interrupt

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 volt, 60 Hz power utilization equipment operates and maintains specified performance when subjected to power interrupts as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for transfer aircraft electrical conditions when subjected to power interrupts as specified by the applicable edition(s) of MIL-STD-704 and as noted in table SXF201-I. The utilization equipment must maintain the specified performance during power interrupts. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

 MIL-STD-704 power transfer limits for single phase, 60 Hz utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Power	N/A	N/A	N/A	N/A	N/A	50 msec
Interrupt						
Voltage	N/A	N/A	N/A	N/A	N/A	105 V
NLSS						
Voltage	N/A	N/A	N/A	N/A	N/A	125 V
NHSS						

3. <u>Apparatus</u>. The test equipment should be as follows:

a. Programmable AC power supply

- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope
- e. Resistive dummy load

4. <u>Test setup</u>. Configure the test setup as shown in figure SXF201-1. The dummy resistive load placed in parallel to the UUT should be sized to draw three times the steady state current of the

UUT. Note: This is done to ensure that the UUT test does not lose stored energy to other aircraft loads during power interrupts. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SXF201-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through K noted in table SXF201-II, adjust the voltage to the steady state voltage listed. Perform a power interrupt (0 V) of the duration listed. The voltage must decrease from the steady state voltage to 0 Volts within 1/2 cycle (8.33 milliseconds), remain at 0 Volts for the duration listed for the test condition, and return form 0 Volts to the steady state voltage within ¹/₂ cycle (8.33 milliseconds). For test condition J, three 50 millisecond power interrupts are performed, separated by 0.5 seconds. For test condition K a normal overvoltage transient follows the power interrupt. The normal voltage transient is 130 Vrms for 1 cycle and returns to nominal voltage over the next 250 milliseconds. For test condition L a normal undervoltage transient follows the power interrupt. The normal voltage transient is 70 Vrms for 1 cycle and returns to nominal voltage over the next 107 milliseconds. For each test condition, monitoring the performance of the UUT according to the utilization equipment performance test procedures for power transfer operation to verify that the UUT is providing specified performance for transfer aircraft electrical conditions. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing the performance specified for normal aircraft electrical conditions (if the UUT is allowed degraded performance during power interrupts, verify the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage). Record the steady state voltage, steady state frequency, time duration of power interrupts, and the performance of the UUT for each test condition in the data sheet shown in table SXF201-III. Repeat each test condition 5 times. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

	Test Condition	Steady State Voltage	Duration of Interrupt		
ſ	А	Nominal Voltage	50 msec		
	В	NLSS Voltage	50 msec		
ſ	С	NHSS Voltage	50 msec		
ſ	D	Nominal Voltage	30 msec		
	Е	NLSS Voltage	30 msec		
	F	NHSS Voltage	30 msec		
	G	Nominal Voltage	10 msec		
	Н	NLSS Voltage	10 msec		
	Ι	NHSS Voltage	10 msec		
	J	Nominal Voltage	50 msec (repeated 3 times, separated by 0.5 sec )		
	K	Nominal Voltage	50 msec (followed by a normal voltage transient of 130 Vrms for 1 cycle and return to steady state voltage in 250 msec)		
	L	Nominal Voltage	50 msec (followed by a normal voltage transient of 70 Vrms for 1 cycle and return to steady state voltage in 107 msec)		

## TABLE SXF201-II. Test conditions for transfer interrupt for single phase, 60 Hz utilization equipment.



FIGURE SXF201-1. Power interrupt.

Test	Parameters					Performance	
Condition	Voltage	Frequ	lency	Time Duration		uration	Pass/Fail
				of Power		ower	
			]		Interrupt		
А	Vn	ms	Hz			msec	
В	Vn	ms	Hz			msec	
С	Vn	ms	Hz			msec	
D	Vn	ms	Hz			msec	
E	Vn	ms	Hz			msec	
F	Vn	ms	Hz			msec	
G	Vn	ms	Hz			msec	
Н	Vn	ms	Hz			msec	
Ι	Vn	ms	Hz			msec	
J	Vn	ms	Hz			msec	
	Vn	ms	Hz			msec	
	Overvoltage Transient						
K	Voltage Transient		Time at Voltage				
		Transient Level					
	V _{rms}		ms		msec		
	Vn	ms	Hz			msec	
	Overvoltage Transient						
L	Voltage Transient		Time at Voltage				
			Transient Level				
		V _{rms}			1	msec	

TABLE SXF201-III. Sample data sheet for SXF201 power interrupt for single phase, 60 Hz utilization equipment.

### METHOD SXF301 Abnormal Steady State Limits for Voltage and Frequency

POWER GROUP:	Single Phase, 60 Hz, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Abnormal
PARAMETER:	Abnormal Steady State Limits for Voltage and Frequency

Abnormal Steady State Limits for Voltage and Frequency

1. Scope.

1.1 Purpose. This test procedure is used to verify that single phase, 115 volt, 60 Hz power utilization equipment operates and maintains specified performance when provided power with voltage and frequency at the Abnormal Low Steady State (ALSS) limits and the Abnormal High Steady State (AHSS) limits as specified in the applicable edition(s) of MIL-STD-704.

2. Validation criteria. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for abnormal aircraft electrical conditions when supplied input power of voltage and frequency at the specified abnormal steady state limits of the applicable edition(s) of MIL-STD-704 and as noted in table SXF301-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the abnormal steady state voltage and frequency limits and should be not less than thirty (30) minutes for each of the test conditions. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must demonstrate re-start at the abnormal steady state voltage and frequency limits. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE SXF301-I. MIL-STD-704 abnormal limits for steady state voltage and frequency for single phase, 60 Hz utilization equipment.

Abnormal Limit	704A	704B	704C	704D	704E	704F
Voltage ALSS	N/A	N/A	N/A	N/A	N/A	100 V
Voltage AHSS	N/A	N/A	N/A	N/A	N/A	128 V
Frequency ALSS	N/A	N/A	N/A	N/A	N/A	59.5 Hz
Frequency AHSS	N/A	N/A	N/A	N/A	N/A	60.5 Hz
3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. True RMS voltmeter
- c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure SXF301-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SXF301-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through H noted in table SXF301-II, the UUT must remain for a length of time that confirms the utilization equipment can perform as specified at the abnormal steady state voltage and frequency limits and should be not less than thirty (30) minutes. At each test condition conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. For each test condition shut down the UUT and verify that the UUT can be re-started. After re-start conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Adjust the voltage to the nominal steady state voltage of 115 Vrms and adjust the frequency to the nominal steady state frequency of 60 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the voltage, frequency, time duration at test condition, successful/unsuccessful re-start and the performance of the UUT for each test condition in the data sheet shown in table SXF301-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Voltage	Frequency
А	Nominal Voltage	ALSS Frequency
В	Nominal Voltage	AHSS Frequency
С	ALSS Voltage	Nominal Frequency
D	ALSS Voltage	ALSS Frequency
Е	ALSS Voltage	AHSS Frequency
F	AHSS Voltage	Nominal Frequency
G	AHSS Voltage	ALSS Frequency
Н	AHSS Voltage	AHSS Frequency

# TABLE SXF301-II. Test conditions for abnormal steady state limits for voltage and frequency for single phase, 60 Hz utilization equipment.



55

FIGURE SXF301-1. Abnormal steady state limits for voltage and frequency.

TABLE SXF301-III.	Sample data sheet for SXF301	abnormal steady	state limits for	voltage and fre	quency for	<u>single pha</u>	<u>ise, 60 Hz</u>
	-	utilization equi	ipment.	-			

Test		Performance			
Condition	Voltage	Frequency	Time Duration	Re-Start	Pass/Fail
			at Condition	(Yes/No)	
A	V _{rms}	Hz	min		
В	V _{rms}	Hz	min		
С	V _{rms}	Hz	min		
D	V _{rms}	Hz	min		
E	V _{rms}	Hz	min		
F	V _{rms}	Hz	min		
G	V _{rms}	Hz	min		
Н	V _{rms}	Hz	min		

## METHOD SXF302 Abnormal Voltage Transients

POWER GROUP: Single Phase, 60 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION: Abn

Abnormal

PARAMETER: Abnormal Voltage Transients

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 volt, 60 Hz power utilization equipment operates and maintains specified performance when subjected to abnormal voltage transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for abnormal aircraft electrical conditions when subjected to voltage transients within the abnormal limits of the applicable edition(s) of MIL-STD-704 and as noted in table SXF302-I. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

 MIL-STD-704 limits for abnormal voltage transients for single phase, 60 Hz

 utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Abnormal Voltage Transients	N/A	N/A	N/A	N/A	N/A	figure 9 MIL-STD- 704F

3. <u>Apparatus</u>. The test equipment should be as follows:

a. Programmable AC power supply

- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SXF302-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SXF302-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

The UUT must be subjected to the voltage transients for each test condition A through K noted in table SXF302-II. The voltage must increase or decrease from steady state voltage to the voltage transient level within  $\frac{1}{2}$  cycle (8.33 milliseconds). The voltage must remain at the voltage transient level for the duration noted in table SXF302-II. The voltage must return to steady state over the time duration noted in table SXF302-II. For test condition E, three overvoltage transients of 180 Vrms for 1/2 cycle are performed, separated by 0.5 second. For test condition J, three under-voltage transients of 50 Vrms for 1/2 cycle are performed, separated by 0.5 seconds. For test condition K, an under-voltage transient of 50 Vrms for 1/2 cycle is immediately followed by an overvoltage transient of 180 Vrms for 1/2 cycle and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT automatically returns to specified performance for normal aircraft electrical conditions when the power returns to within normal limits, and has not suffered damage. Record the steady state voltage, steady state frequency, voltage transient level, time duration at voltage transient, oscilloscope trace, and the performance of the UUT for each test condition in the data sheet shown in table SXF302-III. Repeat for each mode of operation of the UUT.

TABLE SXF302-II.	Test conditions for abnormal voltage transients for single phase, 60 Hz
	utilization equipment.

Test Condition	Time From Steady State Voltage to Voltage	Voltage Transient Level Vrms	Duration at Voltage Transient Level milliseconds	Time From Voltage Transient Level to Steady State
	Transient Level			Voltage
	milliseconds			or
				Next Voltage
Orramialta da Transianta				Level
	< 8 222 msee	180 Vrms	1/2 cycle	< 8 222 msee
A	< 0.333 Illsec	180 VIIIIS	1/2 cycle	< 0.555 Ilisec
		147 Vrms	Decreasing	16.67 msec
В	then	147 VIIIIS	Decreasing	10.07 msec
	then	140 Vrms	Decreasing	2.0 sec
	< 0.222	115 Vrms	1 1	< 0.222
<u> </u>	< 8.333 msec	160 Vrms	l cycle	< 8.333 msec
D	< 8.333 msec	160 Vrms	l cycle	16.67 msec
D	then	140 Vrms	Decreasing	2.0 sec
		115 Vrms		
Е	< 8.333 msec	180 Vrms	1/2 cycle	< 8.333 msec
		(3 times)	every 0.5 sec	
Undervoltage Transients	r -			
F	< 8.333 msec	50 Vrms	1/2 cycle	< 8.333 msec
	< 8.333 msec	50 Vrms	1/2 cycle	16.67 msec
G	then	83 Vrms	Increasing	16.67 msec
6	then	90 Vrms	Increasing	2.0 sec
		115 Vrms		
Н	< 8.333 msec	70 Vrms	1 cycle	< 8.333 msec
	< 8.333 msec	70 Vrms	1 cycle	16.67 msec
Ι	then	90 Vrms	Increasing	2.0 sec
		115 Vrms		
T	< 8.333 msec	50 Vrms	1/2 cycle	< 8.333 msec
J		(3 times)	every 0.5 sec	
Combined Transient				
	< 8.333 msec	50 Vrms	1/2 cycle	< 8.333 msec
	< 8.333 msec	180 Vrms	1/2 cycle	16.67 msec
К	then	147 Vrms	Decreasing	16.67 msec
	then	140 Vrms	Decreasing	2.0 sec
		115 Vrms	<b>~</b>	



FIGURE SXF302-1. Abnormal voltage transients.

Test			Parameters			Performance
Condition	Steady State	Steady State	Voltage Transient	Time at Voltage	Oscilloscope Trace	Pass/Fail
	Voltage	Frequency	_	Transient Level		
А	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
В	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
С	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
D	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
Е	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
F	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
G	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
Н	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
Ι	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
J	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
K	V _{rms}	Hz	V _{rms}	msec	Attach Trace V _{rms} vs. Time	
ĸ			V _{rms}	msec		

TABLE SAF 302-III. Sample data sheet for SAF 302 autorniar voltage transferits for single phase, of hz utilization equipting	TABLE SXF302-III.	Sample data sheet for SXF302 abnormal	voltage transients for single phase	, 60 Hz utilization equipment
------------------------------------------------------------------------------------------------------------------------------	-------------------	---------------------------------------	-------------------------------------	-------------------------------

## METHOD SXF303 Abnormal Frequency Transients

POWER GROUP:	Single Phase, 60 Hz, 115 V
AIRCRAFT ELECTRICAL	

OPERATING CONDITION: Abnormal

PARAMETER:	Abnormal Frequency Transients
	1 2

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 volt, 60 Hz power utilization equipment operates and maintains specified performance when subjected to abnormal frequency transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for abnormal aircraft electrical conditions when subjected to frequency transients within the abnormal limits of the applicable edition(s) of MIL-STD-704 and as noted in table SXF303-I. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

## TABLE SXF303-I. MIL-STD-704 limits for abnormal frequency transients for single phase, 60 Hz utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Abnormal Frequency Transients	N/A	N/A	N/A	N/A	N/A	figure 11 MIL-STD- 704F
Abnormal Maximum Rate of Change of Frequency	N/A	N/A	N/A	N/A	N/A	150 Hz/sec

- 3. <u>Apparatus</u>. The test equipment should be as follows:
  - a. Programmable AC power supply
  - b. True RMS voltmeter
  - c. Frequency counter
  - d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SXF303-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SXF303-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions.

The UUT must be subjected to the frequency transients for each test condition A through E noted in table SXF303-II. The frequency must increase or decrease from steady state frequency to the frequency transient level over the duration noted; the frequency must remain at the frequency transient level for the duration noted; and the frequency must return from the frequency transient level over the duration noted. For test condition E, an underfrequency transient of 320 Hz is immediately followed by an overfrequency transient of 480 Hz. For each test condition, monitor the performance of the UUT during the frequency transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions, and has not suffered damage. Record the steady state voltage, steady state frequency, frequency transient level, time at frequency transient, oscilloscope trace (Hz vs. time), and the performance of the UUT for each test condition in the data sheet shown in table SXF303-III. Repeat for each mode of operation of the UUT.

Test Condition	Time From	Frequency	Duration at	Time From
	Steady State	Transient Level	Frequency	Frequency
	Frequency to	Hz	Transient Level	Transient Level
	Frequency			to Steady State
	Transient Level			Frequency
	milliseconds			milliseconds
Overfrequency Transients				
А	¹ / ₂ cycle	61 Hz	¹ / ₂ cycle	¹ / ₂ cycle
В	¹ / ₂ cycle	61 Hz	6.968 seconds	¹ / ₂ cycle
Underfrequency Transients				
С	¹ / ₂ cycle	50 Hz	¹ / ₂ cycle	¹ / ₂ cycle
D	¹ / ₂ cycle	50 Hz	6.968 seconds	¹ / ₂ cycle
Combined Transient				
E	¹ / ₂ cycle	50 Hz	¹ / ₂ cycle	¹ / ₂ cycle
E	¹ / ₂ cycle	then 61 Hz	¹ / ₂ cycle	¹ / ₂ cycle

 TABLE SXF303-II.
 Test conditions for MIL-STD-704 abnormal frequency transients for single phase, 60 Hz utilization equipment.



64

FIGURE SXF303-1. Abnormal frequency transients.

# TABLE SXF303-III. Sample data sheet for SXF303 abnormal frequency transients for MIL-STD-704A for single phase, 60 Hz utilization equipment.

Test			Paramet	ers			Performance
Condition	Steady State	Steady State	Frequency	Time at	Oscilloscope Trace		Pass/Fail
	Voltage	Frequency	Transient	Frequency			
А	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs. Time	
В	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs. Time	
С	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs. Time	
D	V _{rms}	Hz	Hz	sec	Attach Trace	Hz vs. Time	
E	V _{rms}	Hz	Hz	msec	Attach Trace	Hz vs. Time	
E			Hz	msec			

## METHOD SXF401 Emergency Steady State Limits for Voltage and Frequency

POWER GROUP:	Single Phase, 60 Hz, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Emergency
PARAMETER:	Emergency Steady State Limits for Voltage and Frequency

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 volt, 60 Hz power utilization equipment operates and maintains specified performance when provided power with voltage and frequency at the Emergency Low Steady State (ELSS) limits and the Emergency High Steady State (EHSS) limits as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. For MIL-STD-704F, the single phase, 115 volt, 60 Hz power utilization equipment normal steady state limits are the same as the emergency steady state limits. The emergency steady state limits for single phase, 115 Volt, 60 Hz equipment are noted in table SXF401-I. Performance of test method SXF102 will constitute performance of test method SXF401.

 MIL-STD-704 emergency limits for steady state voltage and frequency for single phase, 60 Hz utilization equipment.

Emergency Limit	704A	704B	704C	704D	704E	704F
Voltage ELSS	N/A	N/A	N/A	N/A	N/A	105 V
Voltage EHSS	N/A	N/A	N/A	N/A	N/A	125 V
Frequency ELSS	N/A	N/A	N/A	N/A	N/A	59.5 Hz
Frequency EHSS	N/A	N/A	N/A	N/A	N/A	60.5 Hz

## METHOD SXF501 No Tests

POWER GROUP:

Single Phase, 60 Hz, 115 V

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Starting

PARAMETER: No Tests

Starting operations are usually not applicable to AC utilization equipment.

## METHOD SXF601 Power Failure (Single Phase)

POWER GROUP: Single Phase, 60 Hz, 115 V AIRCRAFT ELECTRICAL

OPERATING CONDITION: Power Failure

PARAMETER: Power Failure (Single Phase)

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 Volt, 60 Hz power utilization equipment operates and maintains specified performance when subjected to power failures as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for power failure aircraft electrical conditions when subjected to power failures as specified by the applicable edition(s) of MIL-STD-704 and as noted in table SXF601-I. The utilization equipment must maintain the specified performance during the power failures. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

## MIL-STD-704 power failure limits for single phase, 60 Hz utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Power Failure	N/A	N/A	N/A	N/A	N/A	2 sec figure 9 MIL-STD- 704F

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable AC power supply
- b. True RMS voltmeter
- c. Frequency counter
- d. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure SXF601-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SXF601-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through C noted in table SXF601-II, perform a power failure (0 V) of the duration listed. The voltage must decrease from the steady state voltage to 0 Volts within ¹/₂ cycle (8.33 milliseconds), remain at 0 Volts for the duration listed for the test condition, and return from 0 Volts to the steady state voltage within ¹/₂ cycle (8.33 milliseconds). For each test condition, monitor the performance of the UUT according to the utilization equipment performance test procedures for power failure operation to verify that the UUT is providing specified performance for power failure aircraft electrical conditions. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the steady state voltage, steady state frequency, time duration of power failure, and the performance of the UUT for each test condition in the data sheet shown in table SXF601-III. Repeat each test condition 5 times. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

TABLE SXF601-II.	Test conditions for single phase power failures for single phase, 60 Hz
	utilization equipment.

Test Condition	Duration of Power Failure
А	100 msec
В	500 msec
C	2 seconds



70

FIGURE SXF601-1. Power failure.

TABLE SXF601-III. Sample data sheet for SXF601 power failure (single phase) for single phase, 60 Hz utilization equipment.

Test		Performance		
Condition	Voltage	Frequency	Time Duration	Pass/Fail
			of Power	
			Failure	
А	V _{rms}	Hz	msec	
В	V _{rms}	Hz	msec	
С	V _{rms}	Hz	sec	

## TEST METHOD SXF602 No Test Required

POWER GROUP:	Single Phase, 60 Hz, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Power Failure
PARAMETER:	No Test Required. Test number SXF602 is not used so that the Single Phase, 60 Hz, 115 V (SXF) test numbers coincide with the Three Phase, 115 V (TAC and TVF) test sequence numbers.

## METHOD SXF603 Phase Reversal (Single Phase)

POWER GROUP:	Single Phase, 60 Hz, 115 V
AIRCRAFT ELECTRICAL OPERATING CONDITION:	Power Failure

PARAMETER:

Phase Reversal (Single Phase)

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that single phase, 115 volt, 60 Hz power utilization equipment is not damaged by phase reversal or a positive physical means is employed to prevent phase reversal.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment is not damaged and does not cause an unsafe condition when the line and neutral connection are reversed for the applicable edition(s) of MIL-STD-704 and as noted in table SXF603-I. A positive physical means to prevent phase reversal may be used to fulfill this requirement.

 TABLE SXF603-I.
 MIL-STD-704 phase reversal requirement for single phase, 60 Hz

 utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Phase Reversal	N/A	N/A	N/A	N/A	N/A	Phase Reversal Does not Cause Damage

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable AC power supply
- b. True RMS voltmeter
- c. Frequency counter

4. <u>Test setup</u>. Configure the test setup as shown in figure SXF603-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. If a positive physical means is employed to prevent phase reversal, confirm that the line and neutral conductor cannot be reversed.

If the line and neutral conductor can be reversed, with the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SXF603-1 (line and neutral conductors reversed). Turn on the power source and adjust the voltage to the nominal

steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Energize the UUT. The UUT must remain for a length of time that confirms the utilization equipment is not damaged and does not cause an unsafe condition due to phase reversal and should be not less than thirty (30) minutes. Record the steady state voltage, steady state frequency, time duration at phase reversal test condition, and the performance of the UUT in the data sheet shown in table SXF603-II.

With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure SXF603-2 (line and neutral conductors connected properly). Turn on the power source and adjust the voltage to the nominal steady state voltage of 115 Vrms (line-to-neutral) and adjust the frequency to the nominal steady state frequency of 60 Hz. Energize the UUT. The UUT must remain for a length of time that confirms the utilization equipment was not damaged and does not cause an unsafe condition after the phase reversal and should be not less than thirty (30) minutes. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has returned to the performance specified for normal aircraft electrical conditions and has not suffered damage. Record the steady state voltage, steady state frequency, time duration at test condition, and the performance of the UUT in the data sheet shown in table SXF603-II. Repeat for each mode of operation of the UUT.



5. Phase Polarity is reversed.

75

FIGURE SXF603-1. Phase reversal.



appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

76

FIGURE SXF603-2. Correct phase connection.

Test	Parameters					Performance	
Condition							Yes/No
Phase Reversal	Phase Reversal Prevented by Positive Physical Means						
				If No	0		
	Vol	tage	Frequency Ti		Time Duration		Pass/Fail
			at Condition				
Phase		V _{rms}		Hz		min	
Reversal							
Correct Phase		V _{rms}		Hz		min	
Connection							

TABLE SXF603-II. Sample data sheet for SXF603 phase reversal for single phase, 60 Hz utilization equipment.

#### 6. NOTES

6.1 <u>Intended use</u>. This handbook should be used as guidance when establishing test requirements, for inclusion in performance specifications developed for the procurement of utilization equipment, to ensure compliance with the aircraft electrical power characteristics as specified by MIL-STD-704.

6.2 <u>Single phase test numbers</u>. There are no tests required for SXF103 and SXF602. This is done so that the single phase test numbers coincide with the three phase test numbers.

6.3 Subject term (keyword) listing.

Aircraft, electrical power Aircraft, electrical test Electrical operating areas Equipment, utilization Power groups Specification, utilization equipment

#### CONCLUDING MATERIAL

Custodians:

Army - AV Navy - AS Air Force - 11 Preparing Activity: Navy - AS

(Project No. SESS-0052)

Review Activities: Army - CR, MI, TE Navy - EC, MC, SA, SH, YD

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at <u>www.dodssp.daps.mil</u>.

NOT MEASUREMENT SENSITIVE

> MIL-HDBK-704-7 9 April 2004

## DEPARTMENT OF DEFENSE HANDBOOK

## GUIDANCE FOR TEST PROCEDURES FOR DEMONSTRATION OF UTILIZATION EQUIPMENT COMPLIANCE TO AIRCRAFT ELECTRICAL POWER CHARACTERISTICS 270 VDC (PART 7 OF 8 PARTS)



This Handbook is for guidance only. Do not cite this document as a requirement.

AMSC N/A

**AREA SESS** 

## FOREWORD

1. This handbook is approved for use by all Departments and Agencies of the Department of Defense.

2. This handbook provides guidance on test procedures for demonstration of 270 VDC utilization equipment to determine compliance with the applicable edition of MIL-STD-704.

3. MIL-HDBK-704-7 is Part 7 in a series of 8 Parts. Part 7 describes the test methods and procedures to demonstrate that 270 VDC utilization equipment is compatible with the electric power characteristics of MIL-STD-704. These series of handbooks and MIL-STD-704 are companion documents.

4. Comments, suggestions, or questions on this document should be addressed to Commander, Naval Air Systems Command, Code 4.1.4, Highway 547, Lakehurst, NJ 08733-5100 or email to <u>thomas.omara@navy.mil</u>. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at <u>www.dodssp.daps.mil/</u>.

## CONTENTS

## PARAGRAPH

## PAGE

	FOREWORD	. ii
1.	SCOPE	. 1
1.1	Scope	. 1
2.	APPLICABLE DOCUMENTS	. 1
2.1	General	. 1
2.2	Government documents	. 1
2.2.1	Specifications, standards and handbooks	. 1
3.	DEFINITIONS	. 1
3.1	Acronyms and definitions	. 1
4.	TEST METHODS INFORMATION	. 1
4.1	Demonstration of compatibility	. 1
4.1.1	Recording performance	. 1
4.2	Calibration of test equipment	. 1
4.3	Test methods	. 2
5.	TEST METHODS	. 4 . 5 10 14 21 26 37 42 46 56 60 65 69
6.	NOTES	74
6.1	Intended use	74
6.3	Subject term (keyword) listing	74
TABL HDC-	E I. Summary of 270VDC utilization equipment MIL-STD-704 compliance tests	. 3
CONC	CLUDING MATERIAL	74

## 1. SCOPE

1.1 <u>Scope</u>. This handbook provides, as guidance, test methods used to demonstrate that 270 VDC utilization equipment is compatible with the electric power characteristics of the applicable edition(s) of MIL-STD-704. This handbook is for guidance only and cannot be cited as a requirement.

## 2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed below are not necessarily all of the documents referenced herein, but are those needed to understand the information provided by this handbook.

## 2.2 Government documents.

2.2.1 <u>Specifications, standards, and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein.

## DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-704

DoD Interface Standard for Aircraft Electric Power Characteristics

(Copies of these documents are available online at <u>http://assist.daps.dla.mil/quicksearch</u> or <u>www.dodssp.daps.mil/</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

## 3. DEFINITIONS

3.1 <u>Acronyms and definitions</u>. The acronyms and definitions of MIL-STD-704 are applicable to this handbook.

## 4. TEST METHODS INFORMATION

4.1 <u>Demonstration of compatibility</u>. This section contains the test methods which will ensure that 270 VDC utilization equipment is compatible with the electric power characteristics of the applicable edition(s) of MIL-STD-704, by testing the Unit Under Test (UUT) in accordance with the test procedures as described in test methods HDC101 through HDC602.

4.1.1 <u>Recording performance</u>. In table HDC-I, record the edition(s) of MIL-STD-704 that defined the aircraft electric power characteristics used for testing and the performance of the UUT for each of the test methods.

4.2 <u>Calibration of test equipment.</u> Test equipment and accessories required for measurement in accordance with this handbook should be calibrated in accordance with an approved calibration program traceable to the National Institute for Standards and Technology.

The serial numbers, model, and calibration date of all test equipment should be included with the test data.

4.3 <u>Test methods</u>. The test methods listed in table HDC-I are provided in section 5 of this handbook.

# TABLE HDC-I. Summary of 270 VDC utilization equipment MIL-STD-704 compliance tests.

UUT:									
Compliance to MIL-STD-704 Edition(s):									
Test Dates:									
Test	Description	Performance	Comments						
Method		(Pass/Fail)							
Normal, Aircraft Electrical Operation									
HDC101	Load Measurements								
HDC102	Steady State Limits for Voltage								
HDC103	Voltage Distortion Spectrum								
HDC104	Total Ripple								
HDC105	Normal Voltage Transients								
Transfer, Aircraft Electrical Operation									
HDC201	Power Interrupt								
Abnormal, Aircraft Electrical Operation									
HDC301	Abnormal Steady State Limits for								
	Voltage								
HDC302	Abnormal Voltage Transients								
	(Overvoltage/Undervoltage)								
Emergen	cy, Aircraft Electrical Operation								
HDC401	Emergency Limits for Voltage								
Starting, Aircraft Electrical Operation									
HDC501	Starting Voltage Transients								
Power Failure, Aircraft Electrical Operation									
HDC601	Power Failure								
HDC602	Polarity Reversal								

5. TEST METHODS

## METHOD HDC101 Load Measurements

POWER GROUP:

270 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: Normal

PARAMETER:

Load Measurements

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that 270 volt DC power utilization equipment meets the load limits, inrush limits, current distortion limits and current spectrum limits that may be required by the utilization equipment performance specification document.

2. <u>Validation criteria</u>. If required by the utilization equipment performance specification document, the utilization equipment is considered to have passed if the utilization equipment is within the load limits, inrush current limits, the current distortion limit, and the current spectrum limits specified in the utilization equipment performance specification document. As noted in table HDC101-I, the load limits, inrush current limits, the current distortion limit, and the current spectrum limits are not specified in MIL-STD-704 versions A through F. The utilization equipment must not suffer damage or cause an unsafe condition.

Note: The utilization equipment performance specification document should include requirements that reduce the likelihood of the equipment having an adverse effect on the electrical power characteristics of the aircraft. Load, inrush currents, current distortion and current spectrum limits may be imposed to minimize undesirable effects to the electrical power characteristics. These limits should take into account the utilization equipment power draw, aircraft electrical system capacity and distribution characteristics, trade-offs with weight, volume, cost, and reliability that are specific to each type of equipment and aircraft.

 

 TABLE HDC101-I.
 MIL-STD-704 limits for load, inrush current, current distortion factor, and current spectrum for 270 volt DC utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Inrush Current	N/A ^{1/}					
Load (VA)	N/A ^{1/}					
Current Distortion Factor	N/A ^{1/}					
Current Spectrum	N/A ^{1/}					

1/. Limits for load, inrush current, current distortion factor, and current spectrum must be defined in the utilization equipment performance specification document and are unique to each equipment.

- 3. <u>Apparatus</u>. The test equipment should be as follows:
  - a. Adjustable DC power supply
  - b. True RMS voltmeter
  - c. Power meter
  - d. Spectrum analyzer
  - e. Distortion meter
  - f. Current transformer
  - g. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure HDC101-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT. The current measurement must be taken from the 270 volt DC conductor.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure HDC101-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 270 VDC. If the utilization equipment performance specification document:

a. Imposes inrush current limits, close the circuit breaker, energizing the UUT. Record the inrush current in the data sheet shown in table HDC101-II and compare with the limits of utilization equipment performance specification document. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Repeat for each mode of operation of the UUT.

b. Imposes load limits, energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the load (Volt-Amps) and the voltage in the data sheet shown in table HDC101-II and compare with the limits of utilization equipment performance specification document. Repeat for each mode of operation of the UUT.

c. Imposes current distortion limits, energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the current distortion factor in the data sheet shown in table HDC101-II and compare with the limits of utilization equipment performance specification document. Repeat for each mode of operation of the UUT.

d. Imposes current spectrum limits, energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment

performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the current spectrum (current amplitude vs. frequency) in the data sheet shown in table HDC101-II and compare with the limits of utilization equipment performance specification document. Repeat for each mode of operation of the UUT.


 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

 $\infty$ 

FIGURE HDC101-1. Normal operation - load and current distortion measurement.

Parameter	Measurement	Unit	Performance Pass/Fail
Inrush Current		Amps	
Voltage		VDC	N/A
Load (VA)		VA	
Total Current Distortion		% Current	
Total Current Distortion		Distortion	
Current Speetrum	Attach Spectrum Plat	Amplitude vs.	
Current Spectrum	Attach Spectrum Plot	Frequency	

TABLE HDC101-II. Sample data sheet for HDC101 load measurements.

#### METHOD HDC102 Steady State Limits for Voltage

POWER GROUP:

270 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: No

Normal

Steady State Limits for Voltage

1. <u>Scope</u>.

PARAMETER:

1.1 <u>Purpose</u>. This test procedure is used to verify that 270 volt DC power utilization equipment operates and maintains specified performance when provided power with voltage at that the Normal Low Steady State (NLSS) limits and the Normal High Steady State (NHSS) limits as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when supplied input power of voltage at the specified normal steady state limits of the applicable edition(s) of MIL-STD-704 and as noted in table HDC102-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage and frequency limits and should be, not less than thirty (30) minutes for each of the test conditions. The utilization equipment must demonstrate re-start at the steady state voltage limits. The utilization equipment must not suffer damage or cause an unsafe condition.

Note: If the utilization has exactly the same full performance requirements for abnormal steady state limits and emergency steady state limits as required for the normal aircraft electrical conditions, then performance of test methods HDC301 and HDC401 will constitute performance of HDC102.

Normal Limit	704A	704B	704C	704D	704E	704F
Voltage NLSS	N/A	250 VDC				
Voltage NHSS	N/A	280 VDC				

TABLE HDC102-I. MIL-STD-704 normal limits for steady state voltage.

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Adjustable DC power supply
- b. True RMS voltmeter

4. <u>Test setup</u>. Configure the test setup as shown in figure HDC102-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure HDC102-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 270 VDC. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through C noted in table HDC102-II, the UUT must remain for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage limits and should be not less than thirty (30) minutes. At each test condition conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. For each test condition shutdown the UUT and verify that the UUT can be re-started. After re-start conduct a performance test of the UUT according to the utilization equipment performance for normal aircraft electrical conditions. Record the VUT is providing specified performance of the UUT for each test condition, successful/unsuccessful re-start and the performance of the UUT for each test condition of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 270 VDC. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Voltage
А	Nominal Voltage
В	NLSS Voltage
С	NHSS Voltage

TABLE HDC102-II. Test conditions for steady state limits of DC voltage.



FIGURE HDC102-1. Normal operation - steady state limits for voltage.

Test		Performance																												
Condition	Vol	tage	Frequ	iency	Time Duration F			Pass/Fail																						
					at Condition		at Condition		at Condition		at Condition		at Condition		at Condition		at Condition		at Condition		at Condition		at Condition		at Condition		at Condition		(Yes/No)	
А		V _{dc}		Hz		min																								
В		V _{dc}		Hz		min																								
С		V _{dc}		Hz		min																								

# TABLE HDC102-III. Sample data sheet for HDC102 steady state limits for voltage.

#### METHOD HDC103 Voltage Distortion Spectrum

POWER GROUP:

270 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION:

Normal

Voltage Distortion Spectrum

1. <u>Scope</u>.

PARAMETER:

1.1 <u>Purpose</u>. This test procedure is used to verify that 270 volt DC power utilization equipment operates and maintains specified performance when subjected to voltage distortion of frequencies and amplitudes as specified by the voltage distortion spectrum in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to voltage distortions as specified by the voltage distortion spectrum in the applicable edition(s) of MIL-STD-704 and as noted in table HDC103-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when provided power having voltage distortion. The utilization equipment must not suffer damage or cause an unsafe condition.

Note: This test method subjects the UUT to voltage distortion having frequencies components from 50 Hz to 10 kHz. These voltage distortions simulate voltage distortions within aircraft due to the cumulative effects of generators, electrical distribution systems equipments, and aircraft loads. MIL-STD-461, (Requirements For The Control of Electromagnetic Interference Characteristics of Subsystems and Equipment), Test Method CS101, (Conducted Susceptibility, Power Leads, 30 Hz to 150 kHz) is a complimentary test. Power levels of the voltage distortions differ for the two test methods. Performance of Test Method HDC103 of this handbook does not relinquish the requirement to perform test Method CS101 of MIL-STD-461, and performance of Method CS101 of MIL-STD-461 does not relinquish the requirement to perform Test Method HDC103 of this handbook.

TABLE HDC103-I	MIL_STD_704	limits for	voltage	distortion a	meetrum
TADLE HDC103-I.	MIL-51D-704	minus ioi	vonage	uistortion :	spectrum

Limit	704A	704B	704C	704D	704E	704F
Voltage	N/A	figure 6	figure 9	figure 9	figure 13	figure 18
Spectrum		704B	704C	704D	704E	704F

### 3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable DC power supply
- b. Variable frequency power source
- c. Coupling transformer
- d. True RMS voltmeter
- e. Spectrum analyzer
- f. (2) Inductors, 50  $\mu$ H
- g. Capacitor, 10 µF
- h. Resistor, calibrated load

4. <u>Test setup (10 Hz and 25 Hz)</u>. Configure the test setup as shown in figure HDC103-1 voltage distortion spectrum setup for 10 Hz and 25 Hz. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test (10 Hz and 25 Hz)</u>. With the programmable DC power supply off, install the UUT and the stimulation and monitoring equipment into the test setup of figure HDC103-1. Turn on the programmable DC power supply and adjust the voltage to the nominal steady state voltage of 270 VDC. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For test condition A noted in table HDC103-II, set the DC programmable power supply to vary the amplitude of the DC voltage at a 10 Hz rate at an average DC voltage of 270 VDC to create a voltage distortion (ripple) for test condition A of the appropriate edition of MIL-STD-704. Remain for a length of time that confirms the utilization equipment can continuously operate with the voltage distortion and should be, not less than five (5) minutes. At each test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. For each test condition, record voltage, frequency of voltage distortion, amplitude of voltage distortion, time duration at test condition B by setting the DC programmable power supply to vary the amplitude of the DC voltage at a 25 Hz rate at an average DC voltage of 270 Vdc to create a voltage distortion (ripple) specified for test condition B of the appropriate edition of MIL-STD-704. Repeat for each mode of operation of the UUT.

6. <u>Test setup (50 Hz to 10 kHz)</u>. Configure the test setup as shown in figure HDC103-2. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

6.1 <u>Calibration (50 Hz to 10 kHz)</u>. Install a calibrated resistive load in the test setup shown in figure HDC103-2 in place of the UUT. The calibrated resistive load must be sized to draw the same current as the UUT. Turn on the programmable DC power supply and adjust the voltage to the nominal steady state voltage of 270 VDC. Set the variable frequency power source to output a sine wave and adjust the frequency and amplitude so that the voltage distortion

measured at the input to the calibrated resistive load conforms to each test condition C through K as noted in table HDC103-II of the applicable edition(s) of MIL-STD-704. Record the settings of the variable frequency power source for each test condition.

7. <u>Compliance test (50 Hz to 10 kHz</u>). With the programmable DC power supply off, install the UUT and the stimulation and monitoring equipment into the test setup of figure HDC103-2. Turn on the programmable DC power supply and adjust the voltage to the nominal steady state voltage of 270 VDC. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

Set the variable frequency power source to the settings recorded for test condition C of the calibration procedure. For each test condition, remain for a length of time that confirms the utilization equipment can continuously operate with the voltage distortion and should be, not less than five (5) minutes. At each test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. After each test condition, monitor the voltage distortion frequency and amplitude while slowly increasing the variable frequency power source frequency and adjusting the amplitude until the next test condition is reached. Do not exceed the voltage distortion spectrum limits. Repeat for each test condition C through K noted in table HDC103-II. For each test condition, record voltage, frequency of voltage distortion, amplitude of voltage distortion, time duration at test condition, and the performance of the UUT in the data sheet shown in table HDC103-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, turn the programmable DC power supply off and remove the coupling transformer from the circuit. Turn on the programmable DC power supply. Adjust the voltage to the nominal steady state voltage of 270 VDC. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

	-		
Test Condition	Frequency of	MIL-STD-704B,	MIL-STD-704E &
	Voltage Distortion	C, & D	F
		Amplitude of	Amplitude of
		Voltage Distortion	Voltage Distortion
		Voltage rms	Voltage rms
А	10 Hz	0.600 Vrms	0.316 Vrms
В	25 Hz	0.893 Vrms	0.500 Vrms
С	50 Hz	1.197 Vrms	0.562 Vrms
D	60 Hz	1.307 Vrms	0.775 Vrms
Е	250 Hz	2.430 Vrms	1.581 Vrms
F	1 kHz	4.439 Vrms	3.162 Vrms
G	1.7 kHz	5.591 Vrms	3.162 Vrms
Н	2 kHz	6.000 Vrms	3.162 Vrms
Ι	5 kHz	1.844 Vrms	3.162 Vrms
J	6.5 kHz	1.315 Vrms	2.433 Vrms
K	10 kHz	0.755 Vrms	1.581 Vrms

# TABLE HDC103-II. <u>Test conditions for voltage distortion spectrum</u>.



 Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

FIGURE HDC103-1. Normal operation - voltage distortion spectrum (10 Hz and 25 Hz).



Test		Parameters							
Condition	Voltage	Frequency of	Amplitude of	Time Duration	Pass/Fail				
		Voltage	Voltage	at Condition					
		Distortion	Distortion						
А	V _{DC}	Hz	V _{rms}	min					
В	V _{DC}	Hz	V _{rms}	min					
С	V _{DC}	Hz	V _{rms}	min					
D	V _{DC}	Hz	V _{rms}	min					
E	V _{DC}	Hz	V _{rms}	min					
F	V _{DC}	kHz	V _{rms}	min					
G	V _{DC}	kHz	V _{rms}	min					
Н	V _{DC}	kHz	V _{rms}	min					
Ι	V _{DC}	kHz	V _{rms}	min					
J	V _{DC}	kHz	V _{rms}	min					
K	V _{DC}	kHz	V _{rms}	min					

 TABLE HDC103-III.
 Sample data sheet for HDC103 voltage distortion spectrum.

#### METHOD HDC104 Total Ripple

POWER GROUP: 27

270 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: Normal

PARAMETER:

Total Ripple

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that 270 volt DC power utilization equipment operates and maintains specified performance when subjected to voltage having a ripple as specified by the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to ripple as specified by the applicable edition(s) of MIL-STD-704 and as noted in table HDC104-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when subjected to a distorted voltage waveform and should be not less than thirty (30) minutes. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE HDC104-I. MIL-STD-704 limits for ripple DC voltage distortion.

Limit	704A	704B	704C	704D	704E	704F
Voltage	N/A	6 Volts	6 Volts	6 Volts	6 Volts	6 Volts
Ripple		Peak to	Peak to	Peak to	Peak to	Peak to
		Average	Average	Average	Average	Average
		And	And	And	And	And
		figure 6	figure 9	figure 9	figure 13	figure 18
		MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-
		704B	704C	704D	704E	704F

3. <u>Apparatus</u>. The test should be as follows.

- a. Programmable DC power supply
- b. True RMS voltmeter
- c. Spectrum analyzer
- d. Distortion meter

4. <u>Test setup</u>. Configure the test setup as shown in figure HDC104-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

4.1 <u>Calibration</u>. Install a resistive load in the test setup shown in figure HDC104-1 in place of the UUT. The resistive load must be sized to draw the same current as the UUT. Set the programmable power supply to produce a DC voltage waveform having ripple as noted for test condition A in table HDC104-II for the applicable edition(s) of MIL-STD-704. The ripple should include all the frequencies components with amplitudes noted for test condition A. Turn on the power source and adjust the voltage to the nominal steady state voltage of 270 VDC. Confirm that the programmable power supply is producing a voltage waveform having ripple content listed in table HDC104-II. Record the settings of the programmable power supply. Repeat the process for test condition B in table HDC104-II.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure HDC104-1. Set the programmable power supply to the settings recorded during the calibration procedure for condition A. Turn on the power source and adjust the voltage to the nominal steady state voltage of 270 VDC. Energize the UUT. Measure the ripple frequencies spectrum and record the DC ripple frequency components and amplitudes. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Remain for a length of time that confirms the utilization equipment can continuously operate with the ripple voltage, and should be not less than thirty (30) minutes. Repeat for test condition B noted in table HDC104-II. For each test condition, and the performance of the UUT in the data sheet shown in table HDC104-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, set the programmable power supply to produce a DC waveform without ripple. Adjust the voltage to the nominal steady state voltage of 270 VDC. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Ripple	MIL-STD-704B, C, D, E,		
	Frequency	& F		
	Components	Vrms		
	1200 Hz	3.16 Vrms		
	2400 Hz	0.96 Vrms		
A	3600 Hz	1.56 Vrms		
	4800 Hz	0.48 Vrms		
	6000 Hz	0.78 Vrms		
	7200 Hz	0.24 Vrms		
	8400 Hz	0.36 Vrms		
	2400 Hz	3.16 Vrms		
	4800 Hz	0.96 Vrms		
	7200 Hz	1.56 Vrms		
В	9600 Hz	0.48 Vrms		
	12000 Hz	0.78 Vrms		
	14400 Hz	0.24 Vrms		
	16800 Hz	0.36 Vrms		

# TABLE HDC104-II. <u>Ripple frequency and amplitude</u>.



FIGURE HDC104-1. Normal operation - total ripple.

Test	Parameters					Performance
Condition	Voltage	Voltage I	Distortion	Time Duration at		Pass/Fail
		Fac	Factor		dition	
	Vdc		No		min	
			Units			
	Ripple Frequency	Ampli	tude of			
	Component	Rip	ople			
	Hz		Vrms			
А	Hz		Vrms			
	Hz		Vrms			
	Hz		Vrms			
	Hz		Vrms			
	Hz		Vrms			
	Hz		Vrms			
	Voltage	Voltage I	Distortion	Time D	uration at	Pass/Fail
		Factor		Con	dition	
	Vdc		No		min	
			Units			
	Ripple Frequency	Ampli	tude of			
	Component	Rip	ople			
В	Hz		Vrms			
	Hz		Vrms			
	Hz		Vrms			
	Hz		Vrms			
	Hz		Vrms			
	Hz		Vrms			
	Hz		Vrms			

# TABLE HDC104-III. Sample data sheet for HDC104 total ripple.

#### METHOD HDC105 Normal Voltage Transients

POWER GROUP:

270 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: Normal

1 (official

Normal Voltage Transients

1. <u>Scope</u>.

PARAMETER:

1.1 <u>Purpose</u>. This test procedure is used to verify that 270 volt DC power utilization equipment operates and maintains specified performance when subjected to normal voltage transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to voltage transients within the normal limits of the applicable edition(s) of MIL-STD-704 and as noted in table HDC105-I. The utilization equipment must maintain specified performance during and after the voltage transients. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE HDC105-I. MIL-STD-704 limits for normal voltage transients.

Limit	704A	704B	704C	704D	704E	704F
Normal	N/A	figure 9	figure 11	figure 11	figure 10	figure 16
Voltage		MIL-SID-	MIL-SID-	MIL-SID-	MIL-SID-	MIL-SID-
Transients		704B	704C	704D	704E	704F

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable DC power supply
- b. True RMS voltmeter
- c. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure HDC105-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure HDC105-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 270 VDC. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

5.1 Compliance test for MIL-STD-704B, C, and D. The UUT must be subjected to the voltage transients for each test condition A through V noted in table HDC105-II. The voltage must increase or decrease from steady state voltage as noted in table HDC105-II to the voltage transient level within 1 millisecond. The voltage must remain at the voltage transient level for the duration noted in table HDC105-II. The voltage must return to steady state over the time duration noted in table HDC105-II. For test condition E and J, three over-voltage transients of 475 Vdc for 10 milliseconds are performed, separated by 0.5 second. For test condition O and T, three under-voltage transients of 125 Vdc for 10 millisecond are performed, separated by 0.5 second. For test condition U and V, an under-voltage transient of 125 Vdc for 10 milliseconds is immediately followed by an over-voltage transient of 475 Vdc for 10 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal steady state limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltage, voltage transient (oscilloscope trace), and the performance of the UUT for each test condition in the data sheet shown in table HDC105-IV. Repeat for each mode of operation of the UUT. In addition, for MIL-STD-704B, C, and D test compliance perform the repetitive voltage transient test described in 5.3.

5.2 Compliance test for MIL-STD-704E & F. The UUT must be subjected to the voltage transients for each test condition AA through RR noted in table HDC105-III. The voltage must increase or decrease from steady state voltage as noted in table HDC105-III to the voltage transient level within 1 millisecond. The voltage must remain at the voltage transient level for the duration noted in table HDC105-III. The voltage must return to steady state over the time duration noted in table HDC105-III. For test condition EE and JJ, three over-voltage transients of 330 Vdc for 10 milliseconds are performed, separated by 0.5 second. For test condition MM and PP, three under-voltage transients of 200 Vdc for 10 milliseconds are performed, separated by 0.5 second. For test condition QQ and RR, an under-voltage transient of 200 Vdc for 10 milliseconds is immediately followed by an overvoltage transient of 330 Vdc for 20 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal steady state limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltage, voltage transient (oscilloscope trace), and the performance of the UUT for each test condition in the data sheet shown in table HDC105-V. Repeat for each mode of operation of the UUT. In addition, for MIL-STD-704E, & F test compliance perform the repetitive voltage transient test described in 5.3.

5.3 <u>Repetitive normal voltage transients test</u>. Program the power supply to provide a continually repeating voltage transient that decreases from 270 Vdc to 215 Vdc in 2.5 msec, then

increases to 315 Vdc over 30 msec, then decreases to 270 Vdc over 2.5 msec. The voltage transient is repeated every 0.5 second, see figure HDC105-2. The UUT must be subjected to the repetitive voltage transient for a length of time that confirms the utilization equipment can continuously operate and should be not less than thirty (30) minutes. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the voltage, voltage transient (oscilloscope trace), time duration at test condition, and the performance of the UUT in the data sheet shown in table HDC105-V. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 270 VDC. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

TABLE HDC105-II. Test conditions for WIL-STD-704B, C, and D normal voltage transients.
----------------------------------------------------------------------------------------

Test Condition	Steady State	Time From Steady State	Voltage Transient	Duration at	Time From Voltage
	Vdc	Voltage to	Level	Transient	Transient
	, ac	Voltage	Vdc	Level	Level to
		Transient	1 40	milliseconds	Steady State
		Level			Voltage
		milliseconds			milliseconds
Overvoltage Transients					
А	280 Vdc	< 1  msec	475 Vdc	10 msec	< 1  msec
В	280 Vdc	< 1  msec	475 Vdc	10 msec	40 msec
С	280 Vdc	< 1 msec	375 Vdc	30 msec	< 1 msec
D	280 Vdc	< 1 msec	375 Vdc	30 msec	20 msec
E	280 V.do	< 1  msec	475 Vdc	10 msec	< 1  msec
E	280 V de		(3 times)	Every 0.5 sec	
F	250 Vdc	< 1  msec	475 Vdc	10 msec	< 1  msec
G	250 Vdc	< 1  msec	475 Vdc	10 msec	44 msec
Н	250 Vdc	< 1 msec	375 Vdc	30 msec	< 1 msec
Ι	250 Vdc	< 1 msec	375 Vdc	30 msec	27 msec
т	250 V.do	< 1 msec	475 Vdc	10 msec	< 1 msec
J	230 V de		(3 times)	Every 0.5 sec	
Undervoltage Transients					
K	280 Vdc	< 1 msec	125 Vdc	50 msec	< 1 msec
L	280 Vdc	< 1 msec	125 Vdc	50 msec	63 msec
М	280 Vdc	< 1 msec	175 Vdc	70 msec	< 1  msec
N	280 Vdc	< 1 msec	175 Vdc	70 msec	43 msec
0	200 V.do	< 1 msec	125 Vdc	10 msec	< 1 msec
0	280 V dc		(3 times)	Every 0.5 sec	
Р	250 Vdc	< 1  msec	125 Vdc	50 msec	< 1  msec
Q	250 Vdc	< 1 msec	125 Vdc	50 msec	50 msec
R	250 Vdc	< 1 msec	175 Vdc	70 msec	< 1 msec
S	250 Vdc	< 1 msec	175 Vdc	70 msec	30 msec
T	250 V.1.	< 1 msec	125 Vdc	10 msec	< 1 msec
1	250 Vac		(3 times)	Every 0.5 sec	
Combined Transient					
ĪT	280 Vdc	< 1 msec	125 Vdc	10 msec	< 1 msec
0	then	< 1  msec	475 Vdc	10 msec	40 msec
V	250 Vdc	< 1  msec	125 Vdc	10 msec	< 1  msec
v	then	< 1  msec	475 Vdc	10 msec	44 msec

## TABLE HDC105-III. <u>Test conditions for MIL-STD-704E and F normal voltage transients</u>.

Test Condition	Steady State Voltage Vdc	Time From Steady State Voltage to Voltage Transient Level milliseconds	Voltage Transient Level Vdc	Duration at Voltage Transient Level milliseconds	Time From Voltage Transient Level to Steady State Voltage milliseconds
Overvoltage Transients					
AA	280 Vdc	< 1 msec	330 Vdc	20 msec	< 1 msec
BB	280 Vdc	< 1 msec	330 Vdc	20 msec	20 msec
CC	280 Vdc	< 1 msec	305 Vdc	30 msec	< 1 msec
DD	280 Vdc	< 1 msec	305 Vdc	30 msec	37.5 msec
EE	280 Vdc	< 1 msec	330 Vdc (3 times)	10 msec Every 0.5 msec	< 1 msec
FF	250 Vdc	< 1 msec	330 Vdc	20 msec	< 1 msec
GG	250 Vdc	< 1 msec	330 Vdc	20 msec	33 msec
HH	250 Vdc	< 1 msec	305 Vdc	30 msec	< 1 msec
II	250 Vdc	< 1 msec	305 Vdc	30 msec	21 msec
JJ	250 Vdc	< 1 msec	330 Vdc (3 times)	10 msec Every 0.5 msec	< 1 msec
Undervoltage Transients					
KK	280 Vdc	< 1  msec	200 Vdc	10 msec	< 1  msec
LL	280 Vdc	< 1  msec	200 Vdc	10 msec	49 msec
MM	280 Vdc	< 1 msec	200 Vdc (3 times)	10 msec Every 0.5 sec	< 1 msec
NN	250 Vdc	< 1 msec	200 Vdc	10 msec	< 1 msec
00	250 Vdc	< 1 msec	200 Vdc	10 msec	30 msec
РР	250 Vdc	< 1 msec	200 Vdc (3 times)	10 msec Every 0.5 sec	< 1 msec
Combined Transient					
QQ	280 Vdc then	< 1 msec < 1 msec	200 Vdc 330 Vdc	10 msec 20 msec	< 1 msec 20 msec
RR	250 Vdc then	< 1 msec < 1 msec	200 Vdc 330 Vdc	10 msec 20 msec	< 1 msec 33 msec



FIGURE HDC105-1. Normal operation - normal voltage transients.



FIGURE HDC105-2. Repetitive normal voltage transient.

Test		P	arameters			Performance
Condition	Steady State	Voltage Transient	Time at Voltage	Oscillosco	ope Trace	Pass/Fail
	Voltage	C	Transient Level			
А	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
В	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
С	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
D	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
Е	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
F	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
G	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
Н	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
Ι	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
J	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
K	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
L	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
М	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
Ν	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
0	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
Р	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
Q	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
R	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
S	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
Т	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
II	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
U		V _{DC}	msec			
V	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
v		V _{DC}	msec			

TABLE HDC105-IV. Sample data sheet for HDC105 normal voltage transients for MIL-STD-704A, B, C, & D.

Test		Parameters							
Condition	Steady State		Voltage T	Voltage Transient Time at Voltage		Oscilloscope Trace		Pass/Fail	
	Volt	age			Transien	t Level			
		V _{DC}		V _{DC}		msec	Attach Trace	V _{DC} vs.	
								Time	
D				V _{DC}		msec			
Repetitive	Time D	uration							
Iransient	At Test								
	Condition								
		min							

TABLE HDC105-IV. Sample data sheet for HDC105 normal voltage transients for MIL-STD-704A, B, C, & D. - Continued

Test	Parameters					Performance
Condition	Steady State	Voltage Transient	Time at Voltage	Oscilloscope	e Trace	Pass/Fail
	Voltage		Transient Level	1		
AA	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
BB	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
CC	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
DD	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
EE	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
FF	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
GG	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
HH	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
II	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
JJ	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
KK	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
LL	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
MM	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
NN	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
00	V _{DC}	V _{DC}	msec			
PP	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
00	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
QQ		V _{DC}	msec			
	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs.	
RR					Time	
		V _{DC}	msec			

|--|

Test		Parameters							
Condition	Steady State		Voltage Transient		Time at Voltage		Oscilloscope Trace		Pass/Fail
	Volt	age			Transier	t Level			
		V _{DC}		V _{DC}		msec	Attach Trace	V _{DC} vs.	
								Time	
Donotitivo				V _{DC}		msec			
Transient	Time Duration								
Transfent	At Test								
	Condition								
		min							

TABLE HDC105-V. Sample data sheet for HDC105 normal voltage transients for MIL-STD-704E, & F. - Continued

#### METHOD HDC201 Power Interrupt

POWER GROUP:

270 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: Transfer Interrupt

PARAMETER:

Power Interrupt

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that 270 volt DC power utilization equipment operates and maintains specified performance when subjected to power interrupts as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for transfer aircraft electrical conditions when subjected to power interrupts as specified by the applicable edition(s) of MIL-STD-704 and as noted in table HDC201-I. The utilization equipment must maintain the specified performance during power interrupts. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

	TABLE HDC201-I.	MIL-STD-704	power transfer !	limits.
--	-----------------	-------------	------------------	---------

Limit	704A	704B	704C	704D	704E	704F
Power	N/A	50 msec				
Interrupt						
Voltage	N/A	250 Vdc				
NLSS						
Voltage	N/A	280 Vdc				
NHSS						

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable DC power supply
- b. True RMS voltmeter
- c. Oscilloscope
- d. Resistive dummy load

4. <u>Test setup</u>. Configure the test setup as shown in figure HDC201-1. The dummy resistive load placed in parallel to the UUT should be sized to draw three times the steady state current of the UUT up to a maximum 25 kW dummy load. Note: This is done to ensure that the UUT test

does not lose stored energy to other aircraft loads during power interrupts. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure HDC201-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 270 Vdc. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through K noted in table HDC201-II, adjust the voltage to the steady state voltage listed. Perform a power interrupt (0 V) of the duration listed. The voltage must decrease from the steady state voltage to 0 Volts within 0.25 milliseconds, remain at 0 Volts for the duration listed for the test condition, and return from 0 Volts to the steady state voltage within 0.25 milliseconds. For test condition J, three 50 millisecond power interrupts are performed, separated by 0.5 seconds. For test condition K a normal overvoltage transient follows the power interrupt. The normal voltage transient is 330 Vdc for 20 milliseconds and returns to nominal voltage over the next 20 milliseconds. For test condition L a normal undervoltage transient follows the power interrupt. The normal voltage transient is 200 Vdc for 10 milliseconds and returns to nominal voltage over the next 30 milliseconds. For each test condition, monitor the performance of the UUT according to the utilization equipment performance test procedures for power transfer operation to verify that the UUT is providing specified performance for transfer aircraft electrical conditions. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltage, time duration of power interrupt, and the performance of the UUT for each test condition in the data sheet shown in table HDC201-III. Repeat each test condition 5 times. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 270 VDC. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Steady State Voltage	Duration of Interrupt
А	Nominal Voltage	50 msec
В	NLSS Voltage	50 msec
С	NHSS Voltage	50 msec
D	Nominal Voltage	30 msec
Е	NLSS Voltage	30 msec
F	NHSS Voltage	30 msec
G	Nominal Voltage	10 msec
Н	NLSS Voltage	10 msec
Ι	NHSS Voltage	10 msec
J	Nominal Voltage	50 msec (repeated 3 times, separated by 0.5 sec )
K	Nominal Voltage	50 msec (followed by a normal voltage transient of 330 Vdc for 20 msec and return to steady state voltage in 20 msec)
L	Nominal Voltage	50 msec (followed by a normal voltage transient of 200 Vdc for 10 msec and return to steady state voltage in 30 msec)

# TABLE HDC201-II. <u>Test conditions for transfer interrupt</u>.



FIGURE HDC201-1. Transfer interrupt - power interrupt.

Test	Parameters				Performance
Condition	Voltage		Time Duration		Pass/Fail
	_		of Po	ower	
			Inter	rupt	
А		V _{DC}		msec	
В		V _{DC}		msec	
С		V _{DC}		msec	
D		V _{DC}		msec	
E		V _{DC}		msec	
F		V _{DC}		msec	
G		V _{DC}		msec	
Н		V _{DC}		msec	
Ι		V _{DC}		msec	
J		V _{DC}		msec	
		V _{DC}		msec	
	Overvoltag		e Transie	ent	
	Voltage		Tim	ie at	
K	Tran	sient	Vol	tage	
			Tran	sient	
	Level		vel		
		V _{DC}		msec	
		V _{DC}		msec	
	Overvoltag		e Transient		
	Voltage		Time at		
L	Tran	sient	Voltage		
			Transient		
			Le	vel	
		V _{DC}		msec	

 TABLE HDC201-III.
 Sample data sheet for HDC201 power interrupt.

#### METHOD HDC301 Steady State Limits for Voltage

POWER GROUP:

270 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: Abnorn

Abnormal Operation

Steady State Limits for Voltage

1. <u>Scope</u>.

PARAMETER:

1.1 <u>Purpose</u>. This test procedure is used to verify that 270 volt DC power utilization equipment operates and maintains specified performance when provided power with voltage at that the Abnormal Low Steady State (ALSS) limits and the Abnormal High Steady State (AHSS) limits as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for abnormal aircraft electrical conditions when supplied input power of voltage at the specified abnormal steady state limits of the applicable edition(s) of MIL-STD-704 and as noted in table HDC301-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage and should be not less than thirty (30) minutes for each of the test conditions. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must demonstrate re-start at the abnormal steady state voltage limits. Unless otherwise specified in the utilization equipment performance specification document, the utilization must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

Abnormal Limit	704A	704B	704C	704D	704E	704F
Voltage NLSS	N/A	245 Vdc	245 Vdc	245 Vdc	240 Vdc	240 Vdc
Voltage NHSS	N/A	285 Vdc	285 Vdc	285 Vdc	290 Vdc	290 Vdc

TABLE HDC301-I. MIL-STD-704 abnormal limits for steady state voltage.

3. <u>Apparatus</u>. The test equipment should be as follows:

a. Adjustable DC power supply

b. True RMS voltmeter

4. <u>Test setup</u>. Configure the test setup as shown in figure HDC301-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure HDC301-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 270 VDC. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A and B noted in table HDC301-II, the UUT must remain for a length of time that confirms the utilization equipment can perform as specified at the abnormal steady state voltage limits and should be not less than thirty (30) minutes. At each test condition conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. For each test condition shutdown the UUT and verify that the UUT can be re-started. After re-start conduct a performance test of the UUT according to the utilization equipment performance for abnormal aircraft electrical conditions. Adjust the VUT is providing specified performance for abnormal steady state voltage of 270VDC. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the voltage, time duration at test condition in the data sheet shown in table HDC301-III. Repeat for each mode of operation of the UUT.

Test Condition	Voltage		
А	ALSS Voltage		
В	AHSS Voltage		

TABLE HDC301-II. <u>Test conditions for abnormal steady state limits of DC voltage</u>.


FIGURE HDC301-1. Abnormal operation - steady state limits for voltage.

Test			Parameters			Performance
Condition	Volt	tage	Time Duration		Re-Start	Pass/Fail
			at Test		(Yes/No)	
			Condition			
А		V _{DC}		min		
В		V _{DC}		min		

TABLE HDC301-III.	Sample data sheet for HDC301 abnormal steady state limits for voltage.

#### METHOD HDC302 Abnormal Voltage Transients

POWER GROUP:270 Volt DCAIRCRAFT ELECTRICAL<br/>OPERATING CONDITION:Abnormal Operation

PARAMETER: Abnormal Voltage Transients

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that 270 volt DC power utilization equipment operates and maintains specified performance when subjected to abnormal voltage transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for abnormal aircraft electrical conditions when subjected to voltage transients within the abnormal limits of the applicable edition(s) of MIL-STD-704 and as noted in table HDC302-I. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE HDC302-I. MIL-STD-704 limits for abnormal voltage transients.

Limit	704A	704B	704C	704D	704E	704F
Abnormal Voltage	N/A	figure 10 MIL-STD-	figure 13 MIL-STD-	figure 13 MIL-STD-	figure 12 MIL-STD-	figure 17 MIL-STD-
Transients		704B	704C	704D	704E	704F

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable DC power supply
- b. True RMS voltmeter
- c. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure HDC302-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure HDC302-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 270 VDC. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

5.1 Compliance test for MIL-STD-704B, C, & D. The UUT must be subjected to the voltage transients for each test condition A through N noted in table HDC302-II. The voltage must increase or decrease from steady state voltage as noted in table HDC302-II to the voltage transient level within 1 millisecond. The voltage must remain at the voltage transient level for the duration noted in table HDC302-II. The voltage must return to steady state over the time duration noted in table HDC302-II. For test condition C and F, three over-voltage transients of 475 Vdc for 10 milliseconds are performed, separated by 0.5 seconds. For test condition I and L, three under-voltage transients of 65 Vdc for 10 milliseconds are performed, separated by 0.5 second. For test condition M and N, an under-voltage transient of 65 Vdc for 10 milliseconds is immediately followed by an over-voltage transient of 475 Vdc for 27 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT automatically returns to specified performance for normal aircraft electrical conditions when the power returns to within normal limits. Record the steady state voltage, voltage transient (oscilloscope trace), and the performance of the UUT for each test condition in the data sheet shown in table HDC302-IV. Repeat for each mode of operation of the UUT.

5.2 Compliance test for MIL-STD-704E & F. The UUT must be subjected to the voltage transients for each test condition AA through NN noted in table HDC302-III. The voltage must increase or decrease from steady state voltage as noted in table HDC302-III to the voltage transient level within 1 millisecond. The voltage must remain at the voltage transient level for the duration noted in table HDC302-III. The voltage must return to steady state over the time duration noted in table HDC302-III. For test condition CC and FF, three over-voltage transients of 350 Vdc for 50 milliseconds are performed, separated by 0.5 second. For test condition II and LL, three under-voltage transients of 180 Vdc for 50 milliseconds are performed, separated by 0.5 second. For test condition MM and NN, an under-voltage transient of 180 Vdc for 10 milliseconds is immediately followed by an over-voltage transient of 350 Vdc for 50 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT automatically returns to specified performance for normal aircraft electrical conditions when the power returns to within normal limits. Record the steady state voltage, voltage transient (oscilloscope trace), and the performance of the UUT for each test condition in the data sheet shown in table HDC302-V. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 270 VDC. Conduct a performance test of the UUT according to the utilization equipment

performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Steady State Voltage Vdc	Time From Steady State Voltage to Voltage Transient Level milliseconds	Voltage Transient Level Vdc	Duration at Voltage Transient Level milliseconds	Time From Voltage Transient Level to Steady State Voltage or Next Voltage Level
Overvoltage Transients					
А	280 Vdc	< 1  msec	475 Vdc	27 msec	< 1  msec
		< 1  msec	475 Vdc	27 msec	9 msec
		then	430 Vdc	decreasing	10 msec
	280 Vdc	then	400 Vdc	decreasing	25 msec
D		then	360 Vdc	decreasing	30 msec
D		then	340 Vdc	decreasing	50 msec
		then	320 Vdc	decreasing	150 msec
		then	300 Vdc	decreasing	400 msec
		then	280 Vdc		
C	280 Vdc	< 1 msec	475 Vdc	10 msec	< 1 msec
C	280 Vuc		(3 times)	Every 0.5 sec	
D	250 Vdc	< 1  msec	475 Vdc	27 msec	< 1  msec
		< 1  msec	475 Vdc	27 msec	9 msec
		then	430 Vdc	decreasing	10 msec
		then	400 Vdc	decreasing	25 msec
E	250 Vdc	then	360 Vdc	decreasing	30 msec
	250 V de	then	340 Vdc	decreasing	50 msec
		then	320 Vdc	decreasing	150 msec
		then	300 Vdc	decreasing	2.7 sec
		then	250 Vdc		
E	250 Vdo	< 1 msec	475 Vdc	10 msec	< 1 msec
Γ	230 v uč		(3 times)	Every 0.5 sec	

TABLE HDC302-II. Test conditions for MIL-STD-704B, C, and D abnormal voltage transients.

# TABLE HDC302-II.Test conditions for MIL-STD-704B, C, and D abnormal voltage transients.- Continued

Test Condition	Steady State Voltage Vdc	Time From Steady State Voltage to Voltage Transient Level milliseconds	Voltage Transient Level Vdc	Duration at Voltage Transient Level milliseconds	Time From Voltage Transient Level to Steady State Voltage or Next Voltage Level
Undervoltage Transients					
G	280 Vdc	< 1 msec	65 Vdc	27 msec	< 1 msec
		< 1  msec	65 Vdc	27 msec	9 msec
		then	110 Vdc	increasing	10 msec
	280 Vdc	then	140 Vdc	increasing	25 msec
Ч		then	180 Vdc	increasing	30 msec
11		then	200 Vdc	increasing	50 msec
		then	220 Vdc	increasing	150 msec
		then	240 Vdc	increasing	2.7 sec
		then	280 Vdc		
Т	280 Vdc	< 1  msec	65 Vdc	10 msec	< 1  msec
1	200 Vuc		(3 times)	Every 0.5 sec	
J	250 Vdc	< 1  msec	65 Vdc	27 msec	< 1  msec
		< 1  msec	65 Vdc	27 msec	9 msec
		then	110 Vdc	increasing	10 msec
		then	140 Vdc	increasing	25 msec
K	250 Vdc	then	180 Vdc	increasing	30 msec
K	250 V de	then	200 Vdc	increasing	50 msec
		then	220 Vdc	increasing	150 msec
		then	240 Vdc	increasing	400 msec
		then	250 Vdc		
Т	250 Vda	< 1 msec	65 Vdc	10 msec	< 1 msec
L	230 V UC		(3 times)	Every 0.5 sec	

# TABLE HDC302-II.Test conditions for MIL-STD-704B, C, and D abnormal voltage transients.- Continued

Test Condition	Steady State Voltage Vdc	Time From Steady State Voltage to Voltage Transient Level milliseconds	Voltage Transient Level Vdc	Duration at Voltage Transient Level milliseconds	Time From Voltage Transient Level to Steady State Voltage or Next Voltage Level
Combined Transient					
		< 1  msec	65 Vdc	10 msec	< 1  msec
		< 1  msec	475 Vdc	27 msec	9 msec
		then	430 Vdc	decreasing	10 msec
		then	400 Vdc	decreasing	25 msec
М	280 Vdc	then	360 Vdc	decreasing	30 msec
		then	340 Vdc	decreasing	50 msec
		then	320 Vdc	decreasing	150 msec
		then	300 Vdc	decreasing	400 msec
		then	280 Vdc		
		< 1 msec	65 Vdc	10 msec	< 1 msec
		< 1  msec	475 Vdc	27 msec	9 msec
		then	430 Vdc	decreasing	10 msec
		then	400 Vdc	decreasing	25 msec
Ν	250 Vdc	then	360 Vdc	decreasing	30 msec
		then	340 Vdc	decreasing	50 msec
		then	320 Vdc	decreasing	150 msec
		then	300 Vdc	decreasing	2.7 sec
		then	250 Vdc		

## TABLE HDC302-III. Test conditions for MIL-STD-704E and F abnormal voltage transients.

Test Condition	Steady State Voltage Vdc	Time From Steady State Voltage to Voltage Transient Level milliseconds	Voltage Transient Level Vdc	Duration at Voltage Transient Level milliseconds	Time From Voltage Transient Level to Steady State Voltage or Next Voltage Level
Overvoltage Transients	F				
AA	280 Vdc	< 1  msec	350 Vdc	50 msec	< 1  msec
		< 1  msec	350 Vdc	50 msec	10 msec
		then	340 Vdc	decreasing	15 msec
BB	280 Vdc	then	330 Vdc	decreasing	25 msec
22	200 1 40	then	320 Vdc	decreasing	190 msec
		then	300 Vdc	decreasing	1.71 sec
			280 Vdc		
CC	280 Vdc	< 1  msec	350 Vdc	50 msec	< 1  msec
	200 V de		(3 times)	Every 0.5 sec	
DD	250 Vdc	< 1 msec	350 Vdc	50 msec	< 1  msec
		< 1 msec	350 Vdc	50 msec	10 msec
		then	340 Vdc	decreasing	15 msec
FF	250 Vdc	then	330 Vdc	decreasing	25 msec
	250 V de	then	320 Vdc	decreasing	190 msec
		then	300 Vdc	decreasing	6.7 sec
		then	250 Vdc		
FF	250 V.do	< 1 msec	350 Vdc	50 msec	< 1 msec
1.1.	230 V de		(3 times)	Every 0.5 sec	
Undervoltage Transients					
GG	280 Vdc	< 1 msec	180 Vdc	50 msec	< 1  msec
		< 1  msec	180 Vdc	50 msec	10 msec
		then	190 Vdc	increasing	15 msec
ш	280 V.do	then	200 Vdc	increasing	25 msec
1111	280 V UC	then	210 Vdc	increasing	190 msec
		then	230 Vdc	increasing	6.7 sec
		then	280 Vdc		
н	200 174	< 1 msec	180 Vdc	50 msec	< 1  msec
11	280 V dc		(3 times)	Every 0.5 sec	
JJ	250 Vdc	< 1 msec	180 Vdc	50 msec	< 1 msec
		< 1 msec	180 Vdc	50 msec	10 msec
		then	190 Vdc	increasing	15 msec
VV	250 V.do	then	200 Vdc	increasing	25 msec
KK	230 V dc	then	210 Vdc	increasing	190 msec
		then	230 Vdc	increasing	1.71 sec
		then	250 Vdc		
	250 171	< 1 msec	180 Vdc	50 msec	< 1 msec
LL	250 Vdc		(3 times)	Every 0.5 sec	

# TABLE HDC302-III. Test conditions for MIL-STD-704E and F abnormal voltage transients. Continued

Test Condition	Steady State Voltage Vdc	Time From Steady State Voltage to Voltage Transient Level milliseconds	Voltage Transient Level Vdc	Duration at Voltage Transient Level milliseconds	Time From Voltage Transient Level to Steady State Voltage or Next Voltage Level
Combined Transient					
ММ	280 Vdc	< 1 msec < 1 msec then then then then	180 Vdc           350 Vdc           340 Vdc           330 Vdc           320 Vdc           300 Vdc           280 Vdc	10 msec 50 msec decreasing decreasing decreasing decreasing	< 1 msec 10 msec 15 msec 25 msec 190 msec 1.71 sec
NN	250 Vdc	< 1 msec < 1 msec then then then then then	180 Vdc           350 Vdc           340 Vdc           330 Vdc           320 Vdc           300 Vdc           250 Vdc	10 msec 50 msec decreasing decreasing decreasing decreasing	< 1 msec 10 msec 15 msec 25 msec 190 msec 6.7 sec



53

FIGURE HDC302-1. Abnormal operation - abnormal voltage transients.

Test		Pa	rameters			Performance
Condition	Steady State	Voltage Transient	Time at Voltage	Oscillos	cope Trace	Pass/Fail
	Voltage	_	Transient Level		-	
А	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
В	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
С	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
D	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
E	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
F	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
G	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
Н	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
Ι	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
J	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
K	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
L	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
М	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
IVI		V _{DC}	msec			
N	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
1N		V _{DC}	msec			

TABLE HDC302-IV. Sample data sheet for HDC302 abnormal voltage transients for MIL-STD-704 B, C, & D.

Test		Pa	rameters			Performance
Condition	Steady State	Voltage Transient	Time at Voltage	Oscillos	cope Trace	Pass/Fail
	Voltage	_	Transient Level		-	
AA	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
BB	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
CC	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
DD	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
EE	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
FF	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
GG	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
HH	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
II	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
JJ	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
KK	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
LL	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
ММ	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs. Time	
101101		V _{DC}	msec			
NINI	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs. Time	
1111		V _{DC}	msec			

TABLE HDC302-V. Sample data sheet for HDC302 abnormal voltage transients for MIL-STD-704E, & F.

#### METHOD HDC401 Steady State Limits for Voltage

POWER GROUP:

270 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: Emergency

**Emergency Operation** 

PARAMETER: Steady State Limits for Voltage

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that 270 volt DC power utilization equipment operates and maintains specified performance when provided power with voltage at that the Emergency Low Steady State (ELSS) limits and the Emergency High Steady State (EHSS) limits as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for emergency aircraft electrical conditions when supplied input power of voltage at the specified emergency steady state limits of the applicable edition(s) of MIL-STD-704 and as noted in table HDC401-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage and should be not less than thirty (30) minutes for each of the test conditions. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must demonstrate re-start at the emergency steady state voltage limits. Unless otherwise specified in the utilization equipment performance specification document, the utilization must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

Emergency Limit	704A	704B	704C	704D	704E	704F
Voltage ELSS	N/A	240 Vdc	240 Vdc	240 Vdc	250 Vdc	250 Vdc
Voltage EHSS	N/A	290 Vdc	290 Vdc	290 Vdc	280 Vdc	280 Vdc

TABLE HDC401-I. MIL-STD-704 emergency limits for steady state voltage.

3. <u>Apparatus</u>. The test equipment should be as follows:

a. Adjustable DC power supply

b. True RMS voltmeter

4. <u>Test setup</u>. Configure the test setup as shown in figure HDC401-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure HDC401-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 270 VDC. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A and B noted in table HDC401-II, the UUT must remain for a length of time that confirms the utilization equipment can perform as specified at the emergency steady state voltage limits and should be not less than thirty (30) minutes. At each test condition conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for emergency aircraft electrical conditions. For each test condition shutdown the UUT and verify that the UUT can be re-started. After re-start conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for emergency aircraft electrical conditions. Adjust the voltage to the nominal steady state voltage of 270VDC. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the voltage, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table HDC401-III. Repeat for each mode of operation of the UUT.

TABLE HDC401-II. Test conditions for emergency steady state limits of DC voltage.

Test Condition	Voltage
А	ELSS Voltage
В	EHSS Voltage



FIGURE HDC401-1. Emergency operation - steady state limits for voltage.

Test	Paran	Performance	
Condition	Voltage	Time Duration	Pass/Fail
		at Test	
		Condition	
А	V _{DC}	min	
В	V _{DC}	min	

TABLE HDC401-III. Sample data sheet for HDC401 emergency steady state limits for voltage and frequency.

### METHOD HDC501 Starting Voltage Transients

POWER GROUP: 270 Volt DC AIRCRAFT ELECTRICAL

OPERATING CONDITION: Starting Operation

PARAMETER: Starting Voltage Transients

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that 270 volt DC power utilization equipment operates and maintains specified performance when subjected to starting voltage transients as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for starting aircraft electrical conditions when subjected to starting voltage transients for the applicable edition(s) of MIL-STD-704 and as noted in table HDC501-I. Unless otherwise specified in the utilization equipment performance specification document must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE HDC501-I. MIL-STD-704 limits for starting voltage transients.

Limit	704A	704B	704C	704D	704E	704F
Starting Voltage Transients	N/A	Use Limits of 704 C	155 Vdc to 280 Vdc	115 Vdc to 280 Vdc	115 Vdc to 280 Vdc	115 Vdc to 280 Vdc

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable DC power supply
- b. True RMS voltmeter
- c. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure HDC501-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure HDC501-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 270 VDC. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

5.1 <u>Compliance test for MIL-STD-704B and C</u>. The UUT must be subjected to the starting voltage transients described in table HDC501-II (test condition A). The voltage must decrease from steady state voltage to 155 Vdc within 1 millisecond. The voltage must return to steady state at a constant rate over 30 seconds. Monitor the performance of the UUT during the starting voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for starting aircraft electrical conditions. Repeat the test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT automatically returns to specified performance for normal aircraft electrical conditions when the power returns to within normal limits. Record the steady state voltage, voltage transient (oscilloscope trace), and the performance of the UUT in the data sheet shown in table HDC501-IV. Repeat for each mode of operation of the UUT.

5.2 <u>Compliance test for MIL-STD-704D, E, and F</u>. The UUT must be subjected to the starting voltage transients described in table HDC501-III (test condition AA). The voltage must decrease from steady state voltage to 115 Vdc within 1 millisecond. The voltage must return to steady state at a constant rate over 30 seconds. Monitor the performance of the UUT during the starting voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for starting aircraft electrical conditions. Repeat the test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT automatically returns to specified performance for normal aircraft electrical conditions when the power returns to within normal limits. Record the steady state voltage, voltage transient (oscilloscope trace), and the performance of the UUT in the data sheet shown in table HDC501-IV. Repeat for each mode of operation of the UUT.

Test Condition	Steady State Voltage Vdc	Time From Steady State Voltage to	Voltage Transient Level	Time From Voltage Transient
		Voltage Transient Level	Vdc	Level to Steady State
		milliseconds		Voltage
А	280 Vdc	< 1 msec	155 Vdc	30 sec

TABLE HDC501-II. Test conditions for MIL-STD-704B and C starting voltage transients.

Test Condition	Steady State Voltage Vdc	Time From Steady State Voltage to Voltage Transient Level milliseconds	Voltage Transient Level Vdc	Time From Voltage Transient Level to Steady State Voltage
AA	280 Vdc	< 1 msec	115 Vdc	30 sec

## TABLE HDC501-III. <u>Test conditions for MIL-STD-704D, E, and F starting voltage transients</u>.



63

FIGURE HDC501-1. Starting operation - starting voltage.

Test	Parameters								Performance
Condition	Steady	v State	Voltage Transient		Time to 1	Return to	Oscilloscope Trace		Pass/Fail
	Voltage				Steady State				
					Voltage				
		V _{DC}		V _{DC}		sec	Attach Trace	$V_{DC}$ vs. Time	

TABLE HDC501-IV. Sample data sheet for HDC501 starting voltage transients for MIL-STD-704B, C, D, E, & F.

## METHOD HDC601 Power Failure

POWER GROUP: 270 Volt DC

270 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: Power Failure

PARAMETER:

Power Failure

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that 270 volt DC power utilization equipment operates and maintains specified performance when subjected to Power Failures as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for power failure aircraft electrical conditions when subjected to power failures as specified by the applicable edition(s) of MIL-STD-704 and as noted in table HDC601-I. The utilization equipment must maintain the specified performance during power failures. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE HDC601-I. MIL-STD-704 Power failure limits.

Limit	704A	704B	704C	704D	704E	704F
Power	N/A	7 sec				
Failure		figure 10	figure 13	figure 13	figure 12	figure 17
		MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-
		704B	704C	704D	704E	704F

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable DC power supply
- b. True RMS voltmeter
- c. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure HDC601-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure HDC601-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 270 VDC. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to

the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through D noted in table HDC601-II, perform a power failure (0 V) of the duration listed. The voltage must decrease from the steady state voltage to 0 volts within 0.25 milliseconds, remain at 0 volts for the duration listed for the test condition, and return from 0 volts to the steady state voltage within 0.25 milliseconds. For each test condition, monitor the performance of the UUT according to the utilization equipment performance test procedures for power failure operation to verify that the UUT is providing specified performance for power failure aircraft electrical conditions. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the steady state voltage, time duration of power failure, and the performance of the UUT for each test condition in the data sheet shown in table HDC601-III. Repeat each test condition 5 times. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 270 VDC. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Duration of Power Failure
А	100 msec
В	500 msec
С	3 seconds
D	7 seconds

TABLE HDC601-II. Test conditions for power failures.



FIGURE HDC601-1. Power Failure.

Test	Paran	Performance	
Condition	Voltage	Time Duration	Pass/Fail
	C	of Power	
		Failure	
А	V _{DC}	msec	
В	V _{DC}	msec	
С	V _{DC}	sec	
D	V _{DC}	sec	

## TABLE HDC601-III. Sample data sheet for HDC601 power failure.

### METHOD HDC602 Phase Reversal

POWER GROUP: 270 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: Power Failure

PARAMETER: Phase Reversal

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that 270 volt DC power utilization equipment is not damaged by phase reversal or a positive physical means is employed to prevent phase reversal.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment is not damaged and does not cause an unsafe condition when the positive and negative connection are reversed for the applicable edition(s) of MIL-STD-704 and as noted in table HDC602-I. A positive physical means to prevent phase reversal may be used to fulfill this requirement.

TABLE HDC602-I. MIL-STD-704 phase reversal requirement.

Limit	704A	704B	704C	704D	704E	704F
Phase Reversal	N/A	N/A	N/A	N/A	N/A	Phase Reversal Does not Cause Damage

3. <u>Apparatus</u>. The test equipment should be as follows:

a. Adjustable DC power supply

b. True RMS voltmeter

4. <u>Test setup</u>. Configure the test setup as shown in figure HDC602-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. If a positive physical means is employed to prevent phase reversal, confirm that the positive and negative conductors cannot be reversed.

If the positive and negative conductors can be reversed, with the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure HDC602-1 (positive and negative conductors reversed). Turn on the power source and adjust the voltage to the nominal steady state voltage of 270 VDC. Energize the UUT. The UUT must remain for a length of time that confirms the utilization equipment is not damaged and does not cause an

unsafe condition due to phase reversal and should be not less than thirty (30) minutes. Record the steady state voltage, time duration at phase reversal test condition, and the performance of the UUT in the data sheet shown in table HDC602-II. Repeat for each mode of operation of the UUT.

With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure HDC602-2 (positive and negative conductors connected properly). Turn on the power source and adjust the voltage to the nominal steady state voltage of 270VDC. Energize the UUT. The UUT must remain for a length of time that confirms the utilization equipment was not damaged and does not cause an unsafe condition after the phase reversal and should be not less than thirty (30) minutes. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has returned to the performance specified for normal aircraft electrical conditions and has not suffered damage. Record the steady state voltage, time duration at test condition, and the performance of the UUT in the data sheet shown in table HDC602-II. Repeat for each mode of operation of the UUT.



5. Phase Polarity is reversed.

 $\overline{21}$ 

FIGURE HDC602-1. Phase reversal.



FIGURE HDC602-2. Correct phase connection.

Test	Parameters			Performance	
Condition	T drameters			Yes/No	
Phase Reverse	al Preven				
	Me				
If No					
	Vol	tage	Time Duration		Pass/Fail
			at Cor	ndition	
Phase		V _{dc}		min	
Reversal					
Correct Phase		$V_{dc}$		min	
Connection					

## TABLE HDC602-II. Sample data sheet for HDC602 phase reversal.

#### 6. NOTES

6.1 <u>Intended use</u>. This handbook should be used as guidance when establishing test requirements, for inclusion in performance specifications developed for the procurement of utilization equipment, to ensure compliance with the aircraft electrical power characteristics as specified by MIL-STD-704.

6.2 Subject term (keyword) listing.

Aircraft, electrical power Aircraft, electrical test Electrical operating areas Equipment, utilization Power groups Specification, utilization equipment

## CONCLUDING MATERIAL

Custodians: Army - AV Navy - AS Air Force - 11 Preparing Activity: Navy - AS

(Project No. SESS-0053)

Review Activities: Army - CR, MI, TE Navy - EC, MC, SA, SH, YD

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at <u>www.dodssp.daps.mil</u>.

NOT MEASUREMENT SENSITIVE

MIL-HDBK-704-8 9 April 2004

# DEPARTMENT OF DEFENSE HANDBOOK

# GUIDANCE FOR TEST PROCEDURES FOR DEMONSTRATION OF UTILIZATION EQUIPMENT COMPLIANCE TO AIRCRAFT ELECTRICAL POWER CHARACTERISTICS 28 VDC (PART 8 OF 8 PARTS)



This Handbook is for guidance only. Do not cite this document as a requirement.

AMSC N/A

**AREA SESS** 

### FOREWORD

1. This handbook is approved for use by all Departments and Agencies of the Department of Defense.

2. This handbook provides guidance on test procedures for demonstration of 28 VDC utilization equipment to determine compliance with the applicable edition of MIL-STD-704.

3. MIL-HDBK-704-8 is Part 8 in a series of 8 Parts. Part 8 describes the test methods and procedures to demonstrate that 28 VDC utilization equipment is compatible with the electric power characteristics of MIL-STD-704. These series of handbooks and MIL-STD-704 are companion documents.

4. Comments, suggestions, or questions on this document should be addressed to Commander, Naval Air Systems Command, Code 4.1.4, Highway 547, Lakehurst, NJ 08733-5100 or email to <u>thomas.omara@navy.mil</u>. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at <u>www.dodssp.daps.mil</u>.

## CONTENTS

PAR/	AGRAPH	PAGE
	FOREWORD	ii
1.	SCOPE	1
1.1	Scope	1
2.	APPLICABLE DOCUMENTS	1
2.1	General	1
2.2	Government documents	1
2.2.1	Specifications, standards and handbooks	1
3.	DEFINITIONS	1
3.1	Acronyms and definitions	1
4.	TEST METHODS INFORMATION	1
4.1	Demonstration of compatibility	1
4.1.1	Recording performance	1
4.2	Calibration of test equipment	1
4.3	Test methods	2
5.	TEST METHODS	3
	METHOD LDC101 Load Measurements	4
	METHOD LDC102 Steady State Limits for Voltage	9
	METHOD LDC103 Voltage Distortion Spectrum	13
	METHOD LDC104 Total Ripple	20
	METHOD LDC105 Normal Voltage Transients	25
	METHOD LDC201 Power Interrupt	36
	METHOD LDC301 Steady State Limits for Voltage	41
	METHOD LDC302 Abnormal Voltage Transients	45
	METHOD LDC401 Steady State Limits for Voltage	57
	METHOD LDC501 Starting Voltage Transients	61
	METHOD LDC601 Power Failure	66
	METHOD LDC602 Phase Reversal	70
6.	NOTES	75
6.1	Intended use	75
6.3	Subject term (keyword) listing	75
TABI		-
LDC-	-I. Summary of 28 VDC utilization equipment MIL-STD-704 compliance tests	2
CON	CLUDING MATERIAL	75

## 1. SCOPE

1.1 <u>Scope</u>. This handbook provides, as guidance, test methods used to demonstrate that 28 VDC utilization equipment is compatible with the electric power characteristics of the applicable edition(s) of MIL-STD-704. This handbook is for guidance only and cannot be cited as a requirement.

## 2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed below are not necessarily all of the documents referenced herein, but are those needed to understand the information provided by this handbook.

2.2 Government documents.

2.2.1 <u>Specifications, standards, and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein.

## DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-704

DoD Interface Standard for Aircraft Electric Power Characteristics

(Copies of these documents are available online at <u>http://assist. daps.dla.mil/quicksearch</u> or <u>www.dodssp.daps.mil/</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

## 3. DEFINITIONS

3.1 <u>Acronyms and definitions</u>. The acronyms and definitions of MIL-STD-704 are applicable to this handbook.

4. TEST METHODS INFORMATION

4.1 <u>Demonstration of compatibility</u>. This section contains the test methods which will ensure that 28 VDC utilization equipment is compatible with the electric power characteristics of the applicable edition(s) of MIL-STD-704, by testing the Unit Under Test (UUT) in accordance with the test procedures as described in test methods LDC101 through LDC602.

4.1.1 <u>Recording performance</u>. In table LDC-I, record the edition(s) of MIL-STD-704 that defined the aircraft electric power characteristics used for testing and the performance of the UUT for each of the test methods.

4.2 <u>Calibration of test equipment</u>. Test equipment and accessories required for measurement in accordance with this handbook should be calibrated in accordance with an approved calibration program traceable to the National Institute for Standards and Technology.

The serial numbers, model, and calibration date of all test equipment should be included with the test data.

4.3 <u>Test methods</u>. The test methods listed in table LDC-I are provided in section 5 of this handbook.

TABLE LDC-I. Summary of 28 VDC utilization equipment MIL-STD-704 compliance tests.

UUT:								
Complian	ce to MIL-STD-704 Edition(s):							
<b>Test Date</b>	s:							
Test	Description	Performance	Comments					
Method		(Pass/Fail)						
Normal, A	Aircraft Electrical Operation							
LDC101	Load Measurements							
LDC102	Steady State Limits for Voltage							
LDC103	Voltage Distortion Spectrum							
LDC104	Total Ripple							
LDC105	Normal Voltage Transients							
Transfer,	Aircraft Electrical Operation							
LDC201	Power Interrupt							
Abnorma	l, Aircraft Electrical Operation							
LDC301	Abnormal Steady State Limits for							
	Voltage							
LDC302	Abnormal Voltage Transients							
	(Overvoltage/Undervoltage)							
Emergen	cy, Aircraft Electrical Operation							
LDC401	Emergency Limits for Voltage							
Starting,	Aircraft Electrical Operation							
LDC501	Starting Voltage Transients							
<b>Power Fa</b>	Power Failure, Aircraft Electrical Operation							
LDC601	Power Failure							
LDC602	Polarity Reversal							
5. TEST METHODS

#### METHOD LDC101 Load Measurements

POWER GROUP:

28 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: Normal

PARAMETER:

Load Measurements

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that 28 volt DC power utilization equipment meets the load limits, inrush limits, current distortion limits and current spectrum limits that may be required by the utilization equipment performance specification document.

2. <u>Validation criteria</u>. If required by the utilization equipment performance specification document, the utilization equipment is considered to have passed if the utilization equipment is within the load limits, inrush current limits, the current distortion limit, and the current spectrum limits specified in the utilization equipment performance specification document. As noted in table LDC101-I, the load limits, inrush current limits, the current distortion limit, and the current spectrum limits are not specified in MIL-STD-704 versions A through F. The utilization equipment must not suffer damage or cause an unsafe condition.

Note: The utilization equipment performance specification document should include requirements that reduce the likelihood of the equipment having an adverse effect on the electrical power characteristics of the aircraft. Load, inrush currents, current distortion and current spectrum limits may be imposed to minimize undesirable effects to the electrical power characteristics. These limits should take into account the utilization equipment power draw, aircraft electrical system capacity and distribution characteristics, trade-offs with weight, volume, cost, and reliability that are specific to each type of equipment and aircraft.

 MIL-STD-704 limits for load, inrush current, current distortion factor, and current spectrum for 28 volt DC utilization equipment.

Limit	704A	704B	704C	704D	704E	704F
Inrush	N/A ^{1/}					
Current						
Load ( <del>VA)</del>	N/A ^{1/}					
Current	N/A ^{1/}					
Distortion						
Factor						
Current	N/A ^{1/}					
Spectrum						

1/. Limits for Load, Inrush Current, Current Distortion Factor, and Current Spectrum must be defined in the utilization equipment performance specification document and are unique to each equipment.

- 3. <u>Apparatus</u>. The test equipment should be as follows:
  - a. Adjustable DC power supply
  - b. True RMS voltmeter
  - c. Power meter
  - d. Spectrum analyzer
  - e. Distortion meter
  - f. Current transformer
  - g. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure LDC101-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT. The current measurement must be taken from the 28 volt DC conductor.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure LDC101-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 28 VDC. If the utilization equipment performance specification document:

a. Imposes inrush current limits, close the circuit breaker, energizing the UUT. Record the inrush current in the data sheet shown in table LDC101-II and compare with the limits of utilization equipment performance specification document. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Repeat for each mode of operation of the UUT.

b. Imposes load limits, energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the load (Volt-Amps) and the voltage in the data sheet shown in table LDC101-II and compare with the limits of utilization equipment performance specification document. Repeat for each mode of operation of the UUT.

c. Imposes current distortion limits, energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the current distortion factor in the data sheet shown in table LDC101-II and compare with the limits of utilization equipment performance specification document. Repeat for each mode of operation of the UUT.

d. Imposes current spectrum limits, energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for

normal aircraft electrical conditions. Record the current spectrum (current amplitude vs. frequency) in the data sheet shown in table LDC101-II and compare with the limits of utilization equipment performance specification document. Repeat for each mode of operation of the UUT.



4. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

 $\neg$ 

FIGURE LDC101-1. Normal operation - load and current distortion measurement.

Parameter	Measurement	Unit	Performance
			Pass/Fail
Inrush Current		Amps	
Voltage		V _{dc}	N/A
Load (VA)		VA	
Total Current Distortion		% Current	
Total Current Distortion		Distortion	
Current Speetrum	Attach Speatrum Diat	Amplitude vs.	
Current Spectrum	Attach spectrum Plot	Frequency	

# TABLE LDC101-II. Sample data sheet for LDC101 load measurements.

#### METHOD LDC102 Steady State Limits for Voltage

POWER GROUP:

28 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: Normal

PARAMETER:

Steady State Limits for Voltage

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that 28 volt DC power utilization equipment operates and maintains specified performance when provided power with voltage at that the Normal Low Steady State (NLSS) limits and the Normal High Steady State (NHSS) limits as specified in the applicable edition(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when supplied input power of voltage at the specified normal steady state limits of the applicable editions(s) of MIL-STD-704 and as noted in table LDC102-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage and frequency limits and should be not less than thirty (30) minutes for each of the test conditions. The utilization equipment must demonstrate re-start at the steady state voltage limits. The utilization equipment must not suffer damage or cause an unsafe condition.

Note: If the utilization has exactly the same full performance requirements for abnormal steady state limits and emergency steady state limits as required for the normal aircraft electrical conditions, then performance of test methods LDC301 and LDC401 will constitute performance of LDC102.

Normal Limit	704A	704B	704C	704D	704E	704F
Voltage NLSS	24 Vdc	22 Vdc	22 Vdc	22 Vdc	22 Vdc	22 Vdc
Voltage NHSS	28.5 Vdc	29 Vdc				

TABLE LDC102-I. MIL-STD-704 normal limits for steady state voltage.

3. <u>Apparatus</u>. The test equipment should be as follows:

a. Adjustable DC power supply

b. True RMS voltmeter

4. <u>Test setup</u>. Configure the test setup as shown in figure LDC102-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure LDC102-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 28 VDC. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through C noted in table LDC102-II, the UUT must remain for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage limits and should be not less than thirty (30) minutes. At each test condition conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. For each test condition shutdown the UUT and verify that the UUT can be re-started. After re-start conduct a performance test of the UUT according to the utilization equipment performance for normal aircraft electrical conditions. Record the VUT is providing specified performance of the UUT for each test condition, successful/unsuccessful re-start and the performance of the UUT for each test condition of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 28 VDC. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Voltage
А	Nominal Voltage
В	NLSS Voltage
С	NHSS Voltage

TABLE LDC102-II. Test conditions for steady state limits of DC voltage.



FIGURE LDC102-1. Normal operation - steady state limits for voltage.

Test	Parameters								Performance						
Condition	Volt	age	Frequ	iency	Time Duration		Time Duration		Re-Start	t.	Pass/Fail				
					at Condition		at Condition		at Condition		at Condition		(Yes/No)	)	
А		V _{dc}		Hz		min									
В		V _{dc}		Hz		min									
С		V _{dc}		Hz		min									

# TABLE LDC102-III. Sample data sheet for LDC102 steady state limits for voltage.

#### METHOD LDC103 Voltage Distortion Spectrum

POWER GROUP:

28 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: Normal

Voltage Distortion Spectrum

1. <u>Scope</u>.

PARAMETER:

1.1 <u>Purpose</u>. This test procedure is used to verify that 28 volt DC power utilization equipment operates and maintains specified performance when subjected to voltage distortion of frequencies and amplitudes as specified by the voltage distortion spectrum in the applicable editions(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to voltage distortions as specified by the voltage distortion spectrum in the applicable editions(s) of MIL-STD-704 and as noted in table LDC103-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when provided power having voltage distortion. The utilization equipment must not suffer damage or cause an unsafe condition.

Note: This test method subjects the UUT to voltage distortion having frequencies components from 10 Hz to 10 kHz. These voltage distortions simulate voltage distortions within aircraft due to the cumulative effects of generators, electrical distribution systems equipments, and aircraft loads. MIL-STD-461, (Requirements For The Control of Electromagnetic Interference Characteristics of Subsystems and Equipment), Test Method CS101, (Conducted Susceptibility, Power Leads, 30 Hz to 150 kHz) is a complimentary test. Power levels of the voltage distortions differ for the two test methods. Performance of Test Method LDC103 of this handbook does not relinquish the requirement to perform test Method CS101 of MIL-STD-461, and performance of Method CS101 of MIL-STD-461 does not relinquish the requirement to perform Test Method LDC103 of this handbook.

TABLE LDC103-I.	MIL-STD-704	limits for voltage	distortion spectrum
		11	

Limit	704A	704B	704C	704D	704E	704F
Voltage	Figure 7	Figure 6	Figure 9	Figure 9	Figure 8	Figure 15
Distortion	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-
Spectrum	704A	704B	704C	704D	704E	704F

## 3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable DC power supply
- b. Variable frequency power source
- c. Coupling transformer
- d. True RMS voltmeter
- e. Spectrum analyzer
- f. (2) Inductors, 50  $\mu$ H
- g. Capacitor, 10 µF
- h. Resistor, calibrated load

4. <u>Test setup (10 Hz and 25 Hz)</u>. Configure the test setup as shown in figure LDC103-1 voltage distortion spectrum setup for 10 Hz and 25 Hz. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test (10 Hz and 25 Hz)</u>. With the programmable DC power supply off, install the UUT and the stimulation and monitoring equipment into the test setup of figure LDC103-1. Turn on the programmable DC power supply and adjust the voltage to the nominal steady state voltage of 28 VDC. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For test condition A noted in table LDC103-II, set the DC programmable power supply to vary the amplitude of the DC voltage at a 10 Hz rate at an average DC voltage of 28 VDC to create a voltage distortion (ripple) for test condition A of the appropriate edition of MIL-STD-704. Remain for a length of time that confirms the utilization equipment can continuously operate with the voltage distortion and should be not less than five (5) minutes. At each test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. For each test condition, record voltage, frequency of voltage distortion, amplitude of voltage distortion, time duration at test condition B by setting the DC programmable power supply to vary the amplitude of the DC voltage at a 25 Hz rate at an average DC voltage of 28 VDC to create a voltage distortion (ripple) specified for test condition B of the appropriate edition of MIL-STD-704. Repeat for each mode of operation of the UUT.

6. <u>Test setup (50 Hz to 10 kHz)</u>. Configure the test setup as shown in figure LDC103-2. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

6.1 <u>Calibration (50 Hz to 10 kHz</u>). Install a calibrated resistive load in the test setup shown in figure LDC103-2 in place of the UUT. The calibrated resistive load must be sized to draw the same current as the UUT. Turn on the programmable DC power supply and adjust the voltage to the nominal steady state voltage of 28 VDC. Set the variable frequency power source to output a sine wave and adjust the frequency and amplitude so that the voltage distortion measured at the

input to the calibrated resistive load conforms to each test condition C through K as noted in table LDC103-II of the applicable editions(s) of MIL-STD-704. Record the settings of the variable frequency power source for each test condition.

7. <u>Compliance test (50 Hz to 10 kHz</u>). With the programmable DC power supply off, install the UUT and the stimulation and monitoring equipment into the test setup of figure LDC103-2. Turn on the programmable DC power supply and adjust the voltage to the nominal steady state voltage of 28 VDC. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

Set the variable frequency power source to the settings recorded for test condition C of the calibration procedure. For each test condition, remain for a length of time that confirms the utilization equipment can continuously operate with the voltage distortion and should be, not less than five (5) minutes. At each test condition, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. After each test condition, monitor the voltage distortion frequency and amplitude while slowly increasing the variable frequency power source frequency and adjusting the amplitude until the next test condition is reached. Do not exceed the voltage distortion spectrum limits. Repeat for each test condition C through K noted in table LDC103-II. For each test condition, record voltage, frequency of voltage distortion, amplitude of voltage distortion, time duration at test condition, and the performance of the UUT in the data sheet shown in table LDC103-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, turn the programmable DC power supply off and remove the coupling transformer from the circuit. Turn on the programmable DC power supply. Adjust the voltage to the nominal steady state voltage of 28 VDC. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Frequency of	MIL-STD-704A	MIL-STD-704B,	MIL-STD-704E &
	Voltage Distortion	Amplitude of	C, & D	F
		Voltage Distortion	Amplitude of	Amplitude of
		Voltage rms	Voltage Distortion	Voltage Distortion
			Voltage rms	Voltage rms
А	10 Hz	0.900 Vrms	0.100 Vrms	0.100 Vrms
В	25 Hz	0.900 Vrms	0.158 Vrms	0.158 Vrms
С	50 Hz	0.400 Vrms	0.200 Vrms	0.223 Vrms
D	60 Hz	0.320 Vrms	0.224 Vrms	0.245 Vrms
Е	250 Hz	0.320 Vrms	0.398 Vrms	0.500 Vrms
F	1 kHz	0.790 Vrms	0.707 Vrms	1.000 Vrms
G	1.7 kHz	1.000 Vrms	0.891 Vrms	1.000 Vrms
Н	2 kHz	1.000 Vrms	1.000 Vrms	1.000 Vrms
Ι	5 kHz	1.000 Vrms	0.316 Vrms	1.000 Vrms
J	6.5 kHz	1.000 Vrms	0.707 Vrms	0.707 Vrms
K	10 kHz	0.400 Vrms	0.125 Vrms	0.500 Vrms

# TABLE LDC103-II. <u>Test conditions for voltage distortion spectrum</u>.



FIGURE LDC103-1. Normal operation - voltage distortion spectrum (10 Hz and 25 Hz).



4. Stimulation and Monitoring Equipment are user defined. This functional block shall provide appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)

18

5. CAUTION: Verify suitability of variable frequency power source and coupling transformer for distortion spectrum testing.

FIGURE LDC103-2. Normal operation - voltage distortion spectrum (50 Hz and 10 kHz).

Test		Parameters						
Condition	Voltage	Frequency of	Amplitude of	Time Duration	Pass/Fail			
		Voltage	Voltage	at Condition				
		Distortion	Distortion					
А	V _{DC}	Hz	V _{rms}	min				
В	V _{DC}	Hz	V _{rms}	min				
С	V _{DC}	Hz	V _{rms}	min				
D	V _{DC}	Hz	V _{rms}	min				
E	V _{DC}	Hz	V _{rms}	min				
F	V _{DC}	kHz	V _{rms}	min				
G	V _{DC}	kHz	V _{rms}	min				
Н	V _{DC}	kHz	V _{rms}	min				
Ι	V _{DC}	kHz	V _{rms}	min				
J	V _{DC}	kHz	V _{rms}	min				
K	V _{DC}	kHz	V _{rms}	min				

TABLE LDC103-III. Sample data sheet for LDC103 voltage distortion spectrum.

### METHOD LDC104 Total Ripple

POWER GROUP: LDC104

AIRCRAFT ELECTRICAL OPERATING CONDITION: Nor

Normal

PARAMETER:

Total Ripple

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that 28 volt DC power utilization equipment operates and maintains specified performance when subjected to voltage having a ripple as specified by the applicable editions(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to ripple as specified by the applicable editions(s) of MIL-STD-704 and as noted in table LDC104-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can operate continuously when subjected to a distorted voltage waveform and should be not less than thirty (30) minutes. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE LDC104-I. MIL-STD-704 limits for ripple DC voltage distortion.

Limit	704A	704B	704C	704D	704E	704F
Voltage	2 Volts	1.5 Volts	1.5 Volts	1.5 Volts	1.5 Volts	1.5 Volts
Ripple	Peak to	Peak to	Peak to	Peak to	Peak to	Peak to
	Mean	Average	Average	Average	Average	Average
	And	And	And	And	And	And
	Figure 7	Figure 6	Figure 9	Figure 9	Figure 8	Figure 15
	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-
	704A	704B	704C	704D	704E	704F

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable DC power supply
- b. True RMS voltmeter
- c. Spectrum analyzer
- d. Distortion meter

4. <u>Test setup</u>. Configure the test setup as shown in figure LDC104-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

4.1 <u>Calibration</u>. Install a resistive load in the test setup shown in figure LDC104-1 in place of the UUT. The resistive load must be sized to draw the same current as the UUT. Set the programmable power supply to produce a DC voltage waveform having ripple as noted for test condition A in table LDC104-II for the applicable editions(s) of MIL-STD-704. The ripple should include all the frequencies components with amplitudes noted for test condition A. Turn on the programmable DC power supply and adjust the voltage to the nominal steady state voltage of 28 VDC. Confirm that the programmable power supply is producing a voltage waveform having ripple content listed in table LDC104-II. Record the settings of the programmable power supply. Repeat the process for test condition B in table LDC104-II.

5. <u>Compliance test</u>. With the programmable DC power supply off, install the UUT and the stimulation and monitoring equipment into the test setup of figure LDC104-1. Set the programmable power supply to the settings recorded during the calibration procedure for condition A. Turn on the programmable DC power supply and adjust the voltage to the nominal steady state voltage of 28 VDC. Energize the UUT. Measure the ripple frequencies spectrum and record the DC ripple frequency components and amplitudes. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Remain for a length of time that confirms the utilization equipment can continuously operate with the ripple voltage, and should be not less than thirty (30) minutes. Repeat for test condition B noted in table LDC104-II. For each test condition, record the voltage, distortion factor, frequency spectrum of ripple, time duration at test condition, and the performance of the UUT in the data sheet shown in table LDC104-III. Repeat for each mode of operation of the UUT.

After all test conditions are complete, set the programmable power supply to produce a DC waveform without ripple. Adjust the voltage to the nominal steady state voltage of 28 VDC. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

			-
Test Condition	Ripple	MIL-STD-704A	MIL-STD-704B, C, D, E,
	Frequency	Amplitude of Ripple	& F
	Components	Component	Vrms
		Vrms	
	1200 Hz	1.00 Vrms	0.80 Vrms
	2400 Hz	0.20 Vrms	0.16 Vrms
	3600 Hz	0.33 Vrms	0.26 Vrms
А	4800 Hz	0.10 Vrms	0.08 Vrms
	6000 Hz	0.16 Vrms	0.13 Vrms
	7200 Hz	0.05 Vrms	0.04 Vrms
	8400 Hz	0.08 Vrms	0.06 Vrms
	2400 Hz	0.80 Vrms	0.80 Vrms
	4800 Hz	0.16 Vrms	0.16 Vrms
	7200 Hz	0.26 Vrms	0.26 Vrms
В	9600 Hz	0.08 Vrms	0.08 Vrms
	12000 Hz	0.13 Vrms	0.13 Vrms
	14400 Hz	0.04 Vrms	0.04 Vrms
	16800 Hz	0.06 Vrms	0.06 Vrms

# TABLE LDC104-II. <u>Ripple frequency and amplitude</u>.



FIGURE LDC104-1. Normal operation - total ripple.

Test			Paran	neters		Performance	
Condition	Voltage	e	Voltage Distortion		Time Duration at		Pass/Fail
	_		Factor		Condition		
		Vdc		No		min	
				Units			
	Ripple Frequ	uency	Amplit	tude of			
	Compone	ent	Rip	ple			
		Hz		Vrms			
А		Hz		Vrms			
		Hz		Vrms			
		Hz		Vrms			
		Hz		Vrms			
		Hz		Vrms			
		Hz		Vrms			
	Voltage	e	Voltage I	Distortion	Time Du	uration at	Pass/Fail
			Fac	etor	Conc	dition	
		Vdc		No		min	
				Units			
	Ripple Frequ	uency	Amplit	tude of			
	Compone	ent	Rip	ple			
В		Hz		Vrms			
		Hz		Vrms			
		Hz		Vrms			
		Hz		Vrms			
		Hz		Vrms			
		Hz		Vrms			
		Hz		Vrms			

# TABLE LDC104-III. Sample data sheet for LDC104 total ripple.

#### METHOD LDC105 Normal Voltage Transients

POWER GROUP: 2

28 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: Normal

Normal Voltage Transients

1. Scope.

**PARAMETER:** 

1.1 <u>Purpose</u>. This test procedure is used to verify that 28 volt DC power utilization equipment operates and maintains specified performance when subjected to normal voltage transients as specified in the applicable editions(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for normal aircraft electrical conditions when subjected to voltage transients within the normal limits of the applicable editions(s) of MIL-STD-704 and as noted in table LDC105-I. The utilization equipment must maintain specified performance during and after the voltage transients. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE LDC105-I. MIL-STD-704 limits for normal voltage transients.

Limit	704A	704B	704C	704D	704E	704F
Normal	Figure 9	Figure 7	Figure 10	Figure 10	Figure 9	Figure 13
Voltage	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-
Transients	704A	704B	704C	704D	704E	704F
	Locus of					
	Equivalent					
	Step					
	Function					
	Curves 2					
	and 3					

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable DC power supply
- b. True RMS voltmeter
- c. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure LDC105-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure LDC105-1. Turn on the power source and

adjust the voltage to the nominal steady state voltage of 28 VDC. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

5.1 <u>Compliance test for MIL-STD-704A</u>. The UUT must be subjected to the voltage transients for each test condition A through V noted in table LDC105-II. The voltage must increase or decrease from steady state voltage as noted in table LDC105-II to the voltage transient level within 1 milliseconds. The voltage must remain at the voltage transient level for the duration noted in table LDC105-II. The voltage must return to steady state over the time duration noted in table LDC105-II. For test condition E and J, three over-voltage transients of 70 Vdc for 12 milliseconds are performed, separated by 0.5 second. For test condition O and T, three under-voltage transients of 8 Vdc for 12 milliseconds are performed, separated by 0.5 second. For test condition U and V, an under-voltage transient of 8 Vdc for 10 milliseconds is immediately followed by an over-voltage transient of 70 Vdc for 15 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal steady state limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltage, voltage transient (oscilloscope trace), and the performance of the UUT for each test condition in the data sheet shown in table LDC105-IV. Repeat for each mode of operation of the UUT. In addition, for MIL-STD-704A test compliance perform the repetitive voltage transient test described below.

5.2 Compliance test for MIL-STD-704B, C, D, E, & F. The UUT must be subjected to the voltage transients for each test condition AA through RR noted in table LDC105-III. The voltage must increase or decrease from steady state voltage as noted in table LDC105-III to the voltage transient level within 1 milliseconds. The voltage must remain at the voltage transient level for the duration noted in table LDC105-III. The voltage must return to steady state over the time duration noted in table LDC105-III. For test condition EE and JJ, three over-voltage transients of 50 Vdc for 10 milliseconds are performed, separated by 0.5 second. For test condition MM and PP, three under-voltage transients of 18 Vdc for 10 milliseconds are performed, separated by 0.5 second. For test condition QQ and RR, an under-voltage transient of 18 Vdc for 10 milliseconds is immediately followed by an overvoltage transient of 50 Vdc for 12.5 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal steady state limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltage, voltage transient (oscilloscope trace), and the performance of the UUT for each test condition in the data sheet shown in table LDC105-V. Repeat for each mode of operation of the UUT. In

addition, for MIL-STD-704B, C, D, E, & F test compliance perform the repetitive voltage transient test described below.

5.3 <u>Repetitive normal voltage transients test</u>. Program the power supply to provide a continually repeating voltage transient that decreases from 28.5 Vdc to 18 Vdc in 2.5 msec, then increases to 45 Vdc over 30 msec, then decreases to 28.5 Vdc over 2.5 msec. The voltage transient is repeated every 0.5 second, see figure LDC105-2. The UUT must be subjected to the repetitive voltage transient for a length of time that confirms the utilization equipment can continuously operate and should be not less than thirty (30) minutes. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the voltage, voltage transient (oscilloscope trace), time duration at test condition, and the performance of the UUT in the data sheet shown in table LDC105-V. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 28 Vdc. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

## TABLE LDC105-II. Test conditions for MIL-STD-704A normal voltage transients.

Test Condition	Steady State Voltage Vdc	Time From Steady State Voltage to Voltage	Voltage Transient Level Vdc	Duration at Voltage Transient Level	Time From Voltage Transient Level to
		Transient		milliseconds	Steady State
		Level			Voltage
		milliseconds			milliseconds
Overvoltage Transients	20.5.1/1	< 1	70 1/1	20	< 1
A	28.5 Vdc	< 1 msec	70 Vdc	20 msec	< 1 msec
В	28.5 Vdc	< 1 msec	/0 Vdc	15 msec	9 msec
	28.5 Vdc	< 1 msec	50 Vdc	75 msec	< 1 msec
D	28.5 Vdc	< 1 msec	50 Vdc	55 msec	40 msec
Е	28.5 Vdc	< 1  msec	70  Vdc	12 msec	< 1  msec
Г	24 37.1-	< 1	(3 times)	Every 0.5 sec	< 1
F	24 V dc	< 1 msec	70 V dc	20 msec	< 1 msec
G	24 V dc	< 1 msec	70 Vdc	15 msec	10 msec
H	24 Vdc	< 1 msec	50 Vdc	75 msec	< 1 msec
I	24 Vdc	< 1 msec	50 Vdc	55 msec	48 msec
J	24 Vdc	< 1 msec	70 Vdc (3 times)	12 msec Every 0.5 sec	< 1 msec
Undervoltage Transients				<u> </u>	
K	28.5 Vdc	< 1 msec	8 Vdc	50 msec	< 1 msec
L	28.5 Vdc	< 1 msec	8 Vdc	38 msec	23 msec
М	28.5 Vdc	< 1 msec	14 Vdc	170 msec	< 1 msec
N	28.5 Vdc	< 1 msec	14 Vdc	128 msec	83 msec
0	28.5 Vdc	< 1 msec	8 Vdc (3 times)	12 msec Every 0.5	< 1 msec
Р	24 Vdc	< 1 msec	8 Vdc	50 msec	< 1 msec
Q	24 Vdc	< 1 msec	8 Vdc	38 msec	18 msec
R	24 Vdc	< 1 msec	14 Vdc	170 msec	< 1 msec
S	24 Vdc	< 1 msec	14 Vdc	128 msec	57 msec
т	24 V.J.	< 1 msec	8 Vdc	12 msec	< 1 msec
1	24 V dc		(3 times)	Every 0.5	
Combined Transient					
I	28.5 Vdc	< 1  msec	8 Vdc	10 msec	< 1  msec
0	then	< 1 msec	70 Vdc	15 msec	9 msec
V	24 Vdc	< 1  msec	8 Vdc	10 msec	< 1  msec
ř	then	< 1  msec	70 Vdc	15 msec	10 msec

# TABLE LDC105-III. Test conditions for MIL-STD-704B, C, D, E and F normal voltage transients.

Test Condition	Steady State Voltage Vdc	Time From Steady State Voltage to Voltage Transient Level milliseconds	Voltage Transient Level Vdc	Duration at Voltage Transient Level milliseconds	Time From Voltage Transient Level to Steady State Voltage milliseconds
Overvoltage Transients					
AA	29 Vdc	< 1 msec	50 Vdc	12.5 msec	< 1 msec
BB	29 Vdc	< 1 msec	50 Vdc	12.5 msec	70 msec
CC	29 Vdc	< 1 msec	40 Vdc	45 msec	< 1  msec
DD	29 Vdc	< 1 msec	40 Vdc	45 msec	37.5 msec
EE	29 Vdc	< 1 msec	50 Vdc (3 times)	10 msec Every 0.5 msee	< 1 msec
FF	22 Vdc	< 1 msec	50 Vdc	12.5 msec	< 1 msec
GG	22 Vdc	< 1 msec	50 Vdc	12.5 msec	95 msec
HH	22 Vdc	< 1 msec	40 Vdc	45 msec	< 1 msec
II	22 Vdc	< 1 msec	40 Vdc	45 msec	62.5 msec
JJ	22 Vdc	< 1 msec	50 Vdc (3 times)	10 msec Every 0.5 <del>msec</del>	< 1 msec
Undervoltage Transients					
KK	29 Vdc	< 1  msec	18 Vdc	15 msec	< 1  msec
LL	29 Vdc	< 1  msec	18 Vdc	15 msec	234 msec
MM	29 Vdc	< 1 msec	18 Vdc (3 times)	10 msec Every 0.5 sec	< 1 msec
NN	22 Vdc	< 1 msec	18 Vdc	15 msec	< 1 msec
00	22 Vdc	< 1 msec	18 Vdc	15 msec	85 msec
РР	22 Vdc	< 1 msec	18 Vdc (3 times)	10 msec Every 0.5 sec	< 1 msec
Combined Transient					
00	29 Vdc	< 1 msec	18 Vdc	10 msec	< 1 msec
<u> </u>	then	< 1 msec	50Vdc	12.5 msec	70 msec
<u> </u>	22 Vdc	< 1 msec	18 Vdc	10 msec	< 1 msec
NK NK	then	< 1  msec	50Vdc	12.5 msec	62.5 msec



FIGURE LDC105-1. Normal operation - normal voltage transients.

appropriate inputs (stimulations) and monitor UUT outputs (e.g.: RPM, signals, data, etc.)



FIGURE LDC105-2. Repetitive normal voltage transient.

Test	Parameters					
Condition	Steady State	Voltage Transient	Time at Voltage	Oscillosc	cope Trace	Pass/Fail
	Voltage		Transient Level		-	
А	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
В	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
С	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
D	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
Е	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs Time	
F	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs Time	
G	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs Time	
Н	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs Time	
Ι	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs Time	
J	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs Time	
K	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs Time	
L	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs Time	
М	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs Time	
N	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs Time	
0	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs Time	
Р	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
Q	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
R	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
S	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
Т	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
II	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
U		V _{DC}				
V	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
v		V _{DC}				

TABLE LDC105-IV. Sample data sheet for LDC105 normal voltage transients for MIL-STD-704A.

Test	Parameters							Performance	
Condition	Steady State		Voltage T	ransient	ient Time at Voltage		Oscilloscope Trace		Pass/Fail
	Volt	age			Transien	t Level			
		V _{DC}		V _{DC}		msec	Attach Trace	$V_{DC}$ vs Time	
				V _{DC}		msec			
Repetitive	Time D	uration							
Transient	At T	est							
	Cond	ition							
		min							

TABLE LDC105-IV. Sample data sheet for LDC105 normal voltage transients for MIL-STD-704A. - Continued

Test	Parameters						
Condition	Steady State	Voltage Transient	Time at Voltage	Oscillosc	Pass/Fail		
	Voltage	_	Transient Level		-		
AA	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time		
BB	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time		
CC	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time		
DD	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time		
EE	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time		
FF	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time		
GG	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time		
HH	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time		
II	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time		
JJ	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time		
KK	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time		
LL	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time		
MM	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time		
NN	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time		
00	V _{DC}	V _{DC}	msec				
PP	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time		
00	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time		
VV		V _{DC}	msec				
DD	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs Time		
		V _{DC}	msec				

TABLE LDC105-V. Sample data sheet for LDC105 normal voltage transients for MIL-STD-704B, C, D, E, & F.

Test		Parameters							Performance
Condition	Steady State		Voltage Transient		Time at Voltage		Oscilloscope Trace		Pass/Fail
	Volt	age			Transier	t Level			
		V _{DC}		V _{DC}		msec	Attach Trace	$V_{DC}$ vs Time	
				V _{DC}		msec			
Repetitive	Time D	uration							
Transient	At 7	Test							
	Cond	ition							
		min							

TABLE LDC105-V. Sample data sheet for LDC105 normal voltage transients for MIL-STD-704B, C, D, E, & F. - Continued

#### METHOD LDC201 Power Interrupt

POWER GROUP:

28 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: Transfer Interrupt

PARAMETER:

Power Interrupt

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that 28 volt DC power utilization equipment operates and maintains specified performance when subjected to power interrupts as specified in the applicable editions(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for transfer aircraft electrical conditions when subjected to power interrupts as specified by the applicable editions(s) of MIL-STD-704 and as noted in table LDC201-I. The utilization equipment must maintain the specified performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE LDC201-1. MIL-STD-704 power	transfer	limits.
-----------------------------------	----------	---------

Limit	704A	704B	704C	704D	704E	704F
Power	50 msec	50 msec	50 msec	50 msec	50 msec	50 msec
Interrupt						
Voltage	24 Vdc	22 Vdc	22 Vdc	22 Vdc	22 Vdc	22 Vdc
NLSS						
Voltage	28.5 Vdc	29 Vdc	29 Vdc	29 Vdc	29 Vdc	29 Vdc
NHSS						

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable DC power supply
- b. True RMS voltmeter
- c. Oscilloscope
- d. Resistive dummy load

4. <u>Test setup</u>. Configure the test setup as shown in figure LDC201-1. The dummy resistive load placed in parallel to the UUT should be sized to draw three times the steady state current of the UUT up to a maximum 25 kW dummy load. Note: This is done to ensure that the UUT test does

not lose stored energy to other aircraft loads during power interrupts. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure LDC201-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 28 VDC. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through K noted in table LDC201-II, adjust the voltage to the steady state voltage listed. Perform a power interrupt (0 V) of the duration listed. The voltage must decrease from the steady state voltage to 0 Volts within 0.25 milliseconds, remain at 0 Volts for the duration listed for the test condition, and return form 0 Volts to the steady state voltage within 0.25 milliseconds. For test condition J, three 50 millisecond power interrupts are performed, separated by 0.5 seconds. For test condition K a normal overvoltage transient follows the power interrupt. The normal voltage transient is 50 Vdc for 12.5 milliseconds and returns to nominal voltage over the next 70 milliseconds. For test condition L a normal undervoltage transient follows the power interrupt. The normal voltage transient is 18 Vdc for 15 milliseconds and returns to nominal voltage over the next 85 milliseconds. For each test condition, monitor the performance of the UUT according to the utilization equipment performance test procedures for power transfer operation to verify that the UUT is providing specified performance for transfer aircraft electrical conditions. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions. Record the steady state voltage, time duration of power interrupt, and the performance of the UUT for each test condition in the data sheet shown in table LDC201-III. Repeat each test condition 5 times. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 28 VDC. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Steady State Voltage	Duration of Interrupt
А	Nominal Voltage	50 msec
В	NLSS Voltage	50 msec
С	NHSS Voltage	50 msec
D	Nominal Voltage	30 msec
Е	NLSS Voltage	30 msec
F	NHSS Voltage	30 msec
G	Nominal Voltage	10 msec
Н	NLSS Voltage	10 msec
Ι	NHSS Voltage	10 msec
J	Nominal Voltage	50 msec (repeated 3 times, separated by 0.5 sec )
К	Nominal Voltage	50 msec (followed by a normal voltage transient of 50 Vdc for 12.5 msec and return to steady state voltage in 70 msec)
L	Nominal Voltage	50 msec (followed by a normal voltage transient of 18 Vdc for 15 msec and return to steady state voltage in 85 msec)

# TABLE LDC201-II. Test conditions for transfer interrupt.


FIGURE LDC201-1. <u>Transfer interrupt - power interrupt</u>.

Test		Paran	neters		Performance
Condition	Steady	y State	Time Duration		Pass/Fail
	Vol	tage	of Po	ower	
			Inter	rupt	
А		V _{DC}		msec	
В		V _{DC}		msec	
C		V _{DC}		msec	
D		V _{DC}		msec	
E		V _{DC}		msec	
F	V _{DC}			msec	
G	V _{DC}			msec	
Н		V _{DC}		msec	
Ι		V _{DC}		msec	
J		V _{DC}		msec	
		V _{DC}		msec	
	0	vervoltag	e Transie	ent	
K	Vol	tage	Voltage		
	Tran	sient	Transient		
		V _{DC}		msec	
		V _{DC}		msec	
	0	vervoltag	e Transie	ent	
L	L Voltage		Vol	tage	
	Tran	sient	Tran	sient	
		V _{DC}		msec	

# TABLE LDC201-III. Sample data sheet for LDC201 power interrupt.

### METHOD LDC301 Steady State Limits for Voltage

POWER GROUP:

28 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: Abnormal

PARAMETER:

Steady State Limits for Voltage

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that 28 volt DC power utilization equipment operates and maintains specified performance when provided power with voltage at that the Abnormal Low Steady State (ALSS) limits and the Abnormal High Steady State (AHSS) limits as specified in the applicable editions(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment performance specification document for abnormal aircraft electrical conditions when supplied input power of voltage at the specified abnormal steady state limits of the applicable editions(s) of MIL-STD-704 and as noted in table LDC301-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage and should be not less than thirty (30) minutes for each of the test conditions. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must demonstrate re-start at the abnormal steady state voltage limits. Unless otherwise specified in the utilization equipment performance specification document, the utilization must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

1		<b>-</b> 0.4 <b>-</b> 1	=	<b>-</b> 0.4 <b>-</b> 0	<b>T</b> 0 4 <b>T</b>	
TABI	LE LDC301-I	I. <u>MIL-STD-</u>	-704 abnorma	<u>ll limits for st</u>	eady state vo	<u>oltage</u> .
					-	-

Abnormal	704A	704B	704C	704D	704E	704F
Limit						
Voltage NLSS	22.5 Vdc	20.0 Vdc				
Voltage NHSS	30.0 Vdc	31.5 Vdc				

3. <u>Apparatus</u>. The test equipment should be as follows:

a. Adjustable DC power supply

b. True RMS voltmeter

4. <u>Test setup</u>. Configure the test setup as shown in figure LDC301-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure LDC301-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 28 VDC. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A and B noted in table LDC301-II, the UUT must remain for a length of time that confirms the utilization equipment can perform as specified at the abnormal steady state voltage limits and should be not less than thirty (30) minutes. At each test condition conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. For each test condition shutdown the UUT and verify that the UUT can be re-started. After re-start conduct a performance test of the UUT according to the utilization equipment performance for abnormal aircraft electrical conditions. Adjust the VUT is providing specified performance for abnormal steady state voltage of 28 VDC. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the voltage, time duration at test condition in the data sheet shown in table LDC301-III. Repeat for each mode of operation of the UUT.

 TABLE LDC301-II.
 Test conditions for abnormal steady state limits of DC voltage.

Test Condition	Voltage
А	ALSS Voltage
В	AHSS Voltage



FIGURE LDC301-1. Abnormal operation - steady state limits for voltage.

TABLE LDC301-III.	Sample data sheet for LDC301 a	abnormal steady state limits for	voltage.
	-		

Test		Parameters		Performance
Condition	Voltage	Time Duration	Re-Start	Pass/Fail
		at Test	(Yes/No)	
		Condition		
Α	V _{DC}	min		
В	V _{DC}	min		

### METHOD LDC302 Abnormal Voltage Transients

POWER GROUP: 28

28 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: Abnormal

Abnormal Voltage Transients

1. Scope.

PARAMETER:

1.1 <u>Purpose</u>. This test procedure is used to verify that 28 volt DC power utilization equipment operates and maintains specified performance when subjected to abnormal voltage transients as specified in the applicable editions(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for abnormal aircraft electrical conditions when subjected to voltage transients within the abnormal limits of the applicable editions(s) of MIL-STD-704 and as noted in table LDC302-I. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE LDC302-I. MIL-STD-704 limits for abnormal voltage transients.

Limit	704A	704B	704C	704D	704E	704F
Abnormal Voltage Transients	Figure 9 MIL-STD- 704A Locus of Equivalent Step Function Curves 1	Figure 8 MIL-STD- 704B	Figure 12 MIL-STD- 704C	Figure 12 MIL-STD- 704D	Figure 11 MIL-STD- 704E	Figure 14 MIL-STD- 704F
	and 4					

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable DC power supply
- b. True RMS voltmeter
- c. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure LDC302-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure LDC302-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 28 VDC. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

5.1 Compliance test for MIL-STD-704A. The UUT must be subjected to the voltage transients for each test condition A through V noted in table LDC302-II. The voltage must increase or decrease from steady state voltage as noted in table LDC302-II to the voltage transient level within 1 milliseconds. The voltage must remain at the voltage transient level for the duration noted in table LDC302-II. The voltage must return to steady state over the time duration noted in table LDC302-II. For test condition E and J, three over-voltage transients of 80 Vdc for 12 milliseconds are performed, separated by 0.5 second. For test condition O and T, three under-voltage transients of 6 Vdc for 12 milliseconds are performed, separated by 0.5 second. For test condition U and V, an under-voltage transient of 6 Vdc for 10 milliseconds is immediately followed by an overvoltage transient of 80 Vdc for 50 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT automatically returns to specified performance for normal aircraft electrical conditions when the power returns to within normal limits. Record the steady state voltage, voltage transient (oscilloscope trace), and the performance of the UUT for each test condition in the data sheet shown in table LDC302-V. Repeat for each mode of operation of the UUT.

5.2 Compliance test for MIL-STD-704B, C, & D. The UUT must be subjected to the voltage transients for each test condition AA through NN noted in table LDC302-III. The voltage must increase or decrease from steady state voltage as noted in table LDC302-III to the voltage transient level within 1 milliseconds. The voltage must remain at the voltage transient level for the duration noted in table LDC302-III. The voltage must return to steady state over the time duration noted in table LDC302-III. For test condition CC and FF, three over-voltage transients of 50 Vdc for 45 milliseconds are performed, separated by 0.5 second. For test condition LDC302-II and LL, three under-voltage transients of 7 Vdc for 45 milliseconds are performed, separated by 0.5 second. For test condition MM and NN, an under-voltage transient of 7 Vdc for 10 milliseconds is immediately followed by an over-voltage transient of 50 Vdc for 45 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT automatically returns to specified performance for normal aircraft electrical conditions when the power returns to within normal limits. Record the steady state voltage, voltage transient (oscilloscope trace), and

the performance of the UUT for each test condition in the data sheet shown in table VI. Repeat for each mode of operation of the UUT.

5.3 <u>Compliance test for MIL-STD-704E & F</u>. The UUT must be subjected to the voltage transients for each test condition AAA through NNN noted in table LDC302-IV. The voltage must increase or decrease from steady state voltage as noted in table LDC302-IV to the voltage transient level within 1 millisecond. The voltage must remain at the voltage transient level for the duration noted in table LDC302-IV. The voltage must return to steady state over the time duration noted in table LDC302-IV. For test condition CCC and FFF, three over-voltage transients of 50 Vdc for 50 milliseconds are performed, separated by 0.5 second. For test condition LDC302-III and LLL, three under-voltage transients of 7 Vdc for 50 milliseconds are performed, separated by 0.5 second. For test condition MMM and NNN, an under-voltage transient of 7 Vdc for 10 milliseconds is immediately followed by an over-voltage transient of 50 Vdc for 50 milliseconds and the voltage returns to steady state over the time duration noted. For each test condition, monitor the performance of the UUT during the voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for abnormal aircraft electrical conditions. Repeat each test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT automatically returns to specified performance for normal aircraft electrical conditions when the power returns to within normal limits. Record the steady state voltage, voltage transient (oscilloscope trace), and the performance of the UUT for each test condition in the data sheet shown in table VII. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 28 VDC. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

# TABLE LDC302-II. Test conditions for MIL-STD-704A abnormal voltage transients.

Test Condition	Steady State	Time From	Voltage	Duration at	Time From
	Voltage	Steady State	Transient	Voltage	Voltage
	Vdc	Voltage to	Level	Transient	Transient
		Voltage	Vdc	Level	Level to
		Transient			Steady State
		Level			Voltage
		milliseconds			milliseconds
Overvoltage Transients					
А	28.5 Vdc	< 1 msec	80 Vdc	50 msec	< 1 msec
В	28.5 Vdc	< 1 msec	80 Vdc	37.5 msec	24 msec
С	28.5 Vdc	< 1 msec	60 Vdc	550 msec	< 1 msec
D	28.5 Vdc	< 1 msec	60 Vdc	410 msec	280 msec
Б	29.5 V.d.	< 1 msec	80 Vdc	12 msec	< 1 msec
E	28.5 Vac		(3 times)	Every 0.5 sec	
F	24 Vdc	< 1 msec	80 Vdc	50 msec	< 1 msec
G	24 Vdc	< 1 msec	80 Vdc	37.5 msec	26 msec
Н	24 Vdc	< 1 msec	60 Vdc	550 msec	< 1 msec
Ι	24 Vdc	< 1 msec	60 Vdc	410 msec	320 msec
т	24 V.d.	< 1 msec	80 Vdc	12 msec	< 1 msec
J	24 V UC		(3 times)	Every 0.5 sec	
Undervoltage Transients	5				
K	28.5 Vdc	< 1 msec	6 Vdc	50 msec	< 1 msec
L	28.5 Vdc	< 1 msec	6 Vdc	37.5 msec	26 msec
М	28.5 Vdc	< 1 msec	12 Vdc	550 msec	< 1 msec
Ν	28.5 Vdc	< 1 msec	12 Vdc	410 msec	320 msec
0	29.5 V.da	< 1 msec	6 Vdc	12 msec	< 1 msec
0	28.3 Vuc		(3 times)	Every 0.5 sec	
Р	24 Vdc	< 1 msec	6 Vdc	50 msec	< 1 msec
Q	24 Vdc	< 1 msec	6 Vdc	37.5 msec	24 msec
R	24 Vdc	< 1 msec	12 Vdc	550 msec	< 1 msec
S	24 Vdc	< 1 msec	12 Vdc	410 msec	280 msec
т	24.141	< 1 msec	6 Vdc	12 msec	< 1 msec
1	24 Vdc		(3 times)	Every 0.5 sec	
Combined Transient					
TT	28.5 Vdc	< 1 msec	6 Vdc	10 msec	< 1 msec
U	.1	< 1	80 V.do	50  msee	21 msec
	then	< 1  msec	80 V UC	30 msec	24 IIISCC
	then 24 Vdc	< 1  msec < 1  msec	6 Vdc	10 msec	< 1 msec

# TABLE LDC302-III. Test conditions for MIL-STD-704B, C, and D abnormal voltage transients.

Test Condition	Steady State Voltage Vdc	Time From Steady State Voltage to Voltage Transient Level milliseconds	Voltage Transient Level Vdc	Duration at Voltage Transient Level	Time From Voltage Transient Level to Steady State Voltage or Next Voltage Level
Overvoltage Transients					
AA	29 Vdc	< 1  msec	50 Vdc	45 msec	< 1  msec
		< 1  msec	50 Vdc	45 msec	15 msec
		then	45 Vdc	decreasing	30 msec
BB	29 Vdc	then	40 Vdc	decreasing	60 msec
DD	2) V de	then	35 Vdc	decreasing	4.85 sec
		then	30 Vdc	decreasing	1 sec
		then	29 Vdc		
CC	29 Vdc	< 1  msec	50 Vdc	45 msec	< 1  msec
	29 Vuc		(3 times)	Every 0.5 sec	
DD	22 Vdc	< 1 msec	50 Vdc	45 msec	< 1 msec
		< 1  msec	50 Vdc	45 msec	15 msec
		then	45 Vdc	decreasing	30 msec
FE	22 Vdc	then	40 Vdc	decreasing	60 msec
	22 1 40	then	35 Vdc	decreasing	4.85 sec
		then	30 Vdc	decreasing	8 sec
		then	22 Vdc		
FF	22 Vdc	< 1  msec	50 Vdc	45 msec	< 1  msec
11	22 • 40		(3 times)	Every 0.5 sec	
Undervoltage Transients			-	l	
GG	29 Vdc	< 1  msec	7 Vdc	45 msec	< 1  msec
		< 1  msec	7 Vdc	45 msec	15 msec
		then	12 Vdc	increasing	30 msec
НН	29 Vdc	then	17 Vdc	increasing	60 msec
		then	22 Vdc	increasing	4.85 sec
		then	28 Vdc	increasing	1 sec
		then	29 Vdc		
П	29 Vdc	< 1  msec	7 Vdc	45 msec	< 1  msec
			(3 times)	Every 0.5 sec	
JJ	22 Vdc	< l msec	7 Vdc	45 msec	< 1 msec
		< 1 msec	7 Vdc	45 msec	15 msec
KK	22 Vdc	then	12 Vdc	increasing	30 msec
		then	17 Vdc	increasing	60 msec
		then	22 Vdc		
LL	22 Vdc	< 1 msec	7 Vdc (3 times)	45 msec Every 0.5 sec	< 1 msec

TABLE LDC302-III.	Test conditions for MIL-STD-704B, C, and D abnormal
	voltage transients Continued

Test Condition	Steady State Voltage Vdc	Time From Steady State Voltage to Voltage Transient Level milliseconds	Voltage Transient Level Vdc	Duration at Voltage Transient Level	Time From Voltage Transient Level to Steady State Voltage or Next Voltage Level
Combined Transient					
		< 1 msec < 1 msec	7 Vdc then 50Vdc	10 msec 45 msec	< 1 msec 15 msec
		then	45 Vdc	decreasing	30 msec
MM	29 Vdc	then	40 Vdc	decreasing	60 msec
		then	35 Vdc	decreasing	4.85 sec
		then	30 Vdc	decreasing	1 sec
		then	29 Vdc		
		< 1 msec	7 Vdc then	10 msec	< 1 msec
		< 1  msec	50Vdc	45 msec	15 msec
		then	45 Vdc	decreasing	30 msec
NN	22 Vdc	then	40 Vdc	decreasing	60 msec
		then	35 Vdc	decreasing	4.85 sec
		then	30 Vdc	decreasing	8 sec
		then	22 Vdc		

## TABLE LDC302-IV. <u>Test condition for MIL-STD-704E and F abnormal voltage transients</u>.

Test Condition	Steady State Voltage Vdc	Time From Steady State Voltage to Voltage Transient Level milliseconds	Voltage Transient Level Vdc	Duration at Voltage Transient Level	Time From Voltage Transient Level to Steady State Voltage or Next Voltage Level
Overvoltage Transients					
AAA	29 Vdc	< 1 msec	50 Vdc	50 msec	< 1 msec
		< 1 msec	50 Vdc	50 msec	15 msec
		then	45 Vdc	decreasing	30 msec
BBB	29 Vdc	then	40 Vdc	decreasing	60 msec
	25 Vue	then	35 Vdc	decreasing	4.85 sec
		then	30 Vdc	decreasing	1 sec
		then	29 Vdc		
CCC	29 Vdc	< 1  msec	50 Vdc	50 msec	< 1  msec
	2) Vuc		(3 times)	Every 0.5 sec	
DDD	22 Vdc	< 1  msec	50 Vdc	50 msec	< 1  msec
		< 1 msec	50 Vdc	50 msec	15 msec
		then	45 Vdc	decreasing	30 msec
EEE	22 Vdc	then	40 Vdc	decreasing	60 msec
	22 V de	then	35 Vdc	decreasing	4.85 sec
		then	30 Vdc	decreasing	8 sec
		then	22 Vdc		
FFF	22 Vdc	< 1  msec	50 Vdc	50 msec	< 1  msec
	22 1 46		(3 times)	Every 0.5 sec	
Undervoltage Transients					-
GGG	29 Vdc	< 1 msec	7 Vdc	50 msec	< 1 msec
		< 1 msec	7 Vdc	50 msec	15 msec
		then	12 Vdc	increasing	30 msec
ННН	29 Vdc	then	17 Vdc	increasing	60 msec
		then	22 Vdc	increasing	4.85 sec
		then	28 Vdc	increasing	l sec
		then	29 Vdc		
III	29 Vdc	< 1  msec	7 Vdc	50 msec	< 1  msec
			(3 times)	Every 0.5 sec	
JJJ	22 Vdc	< 1 msec	/ Vdc	50 msec	< 1 msec
		< 1 msec	/ Vdc	50 msec	15 msec
ККК	22 Vdc	then	12 Vdc	increasing	30 msec
		then	17 Vdc	increasing	60 msec
		then	22 Vdc	50	
LLL	22 Vdc	< 1 msec	7 Vdc (3 times)	50 msec Every 0.5 sec	< 1 msec

# TABLE LDC302-IV. <u>Test conditions for ML-STD-704E & F abnormal voltage transients</u>. - Continued

Test Condition	Steady State Voltage Vdc	Time From Steady State Voltage to Voltage Transient Level milliseconds	Voltage Transient Level Vdc	Duration at Voltage Transient Level	Time From Voltage Transient Level to Steady State Voltage or Next Voltage
Combined Transient	1				Level
MMM	29 Vdc	< 1 msec < 1 msec then then then then then	7 Vdc then 50Vdc 45 Vdc 40 Vdc 35 Vdc 30 Vdc 29 Vdc	10 msec 50 msec decreasing decreasing decreasing decreasing	< 1 msec 15 msec 30 msec 60 msec 4.85 sec 1 sec
NNN	NNN 22 Vdc		7 Vdc then 50Vdc 45 Vdc 40 Vdc 35 Vdc 30 Vdc 22 Vdc	10 msec 50 msec decreasing decreasing decreasing decreasing	< 1 msec 15 msec 30 msec 60 msec 4.85 sec 8 sec



53

FIGURE LDC302-1. Abnormal operation - abnormal voltage transients.

Test		Pa	rameters			Performance
Condition	Steady State	Voltage Transient	Time at Voltage	Oscillosc	ope Trace	Pass/Fail
	Voltage	_	Transient Level		_	
А	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
В	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
С	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
D	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
Е	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
F	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
G	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
Н	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
Ι	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
J	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
K	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
L	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
М	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
N	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
0	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
Р	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs Time	
Q	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs Time	
R	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs Time	
S	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs Time	
Т	V _{DC}	V _{DC}	msec	Attach Trace	V _{DC} vs Time	
II	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
U		V _{DC}	msec			
V	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
v	· · · ·	V _{DC}	msec			

TABLE LDC302-V. Sample data sheet for LDC302 abnormal transients for MIL-STD-704A.

Test		Р	arameters			Performance
Condition	Steady State	Voltage	Time at Voltage	Oscilloso	cope Trace	Pass/Fail
	Voltage	Transient	Transient Level		-	
AA	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
BB	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
CC	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
DD	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
EE	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
FF	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
GG	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
HH	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
II	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
JJ	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
KK	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
LL	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
ММ	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
101101		V _{DC}	msec			
NN	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
1 N I N		V _{DC}	msec			

TABLE LDC302-VI. Sample data sheet for LDC302 abnormal voltage transients for MIL-STD-704B, C, & D.

Test		Р	arameters			Performance
Condition	Steady State	Voltage	Time at Voltage	Oscillosc	cope Trace	Pass/Fail
	Voltage	Transient	Transient Level		-	
AAA	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
BBB	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
CCC	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
DDD	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
EEE	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
FFF	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
GGG	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
HHH	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
III	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
JJJ	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
KKK	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
LLL	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
МММ	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
		V _{DC}	msec			
NININI	V _{DC}	V _{DC}	msec	Attach Trace	$V_{DC}$ vs Time	
111111		V _{DC}	msec			

TABLE LDC302-VII. Sample data sheet for LDC302 abnormal voltage transients for MIL-STD-704E, & F.

### METHOD LDC401 Steady State Limits for Voltage

POWER GROUP:

28 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: Emergency

- -

PARAMETER:

Steady State Limits for Voltage

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that 28 volt DC power utilization equipment operates and maintains specified performance when provided power with voltage at that the Emergency Low Steady State (ELSS) limits and the Emergency High Steady State (EHSS) limits as specified in the applicable editions(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for emergency aircraft electrical conditions when supplied input power of voltage at the specified emergency steady state limits of the applicable editions(s) of MIL-STD-704 and as noted in table LDC401-I. The utilization equipment must maintain specified performance for a length of time that confirms the utilization equipment can continuously operate at the steady state voltage and should be not less than thirty (30) minutes for each of the test conditions. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must demonstrate re-start at the emergency steady state voltage limits. Unless otherwise specified in the utilization equipment performance specification document, the utilization must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

Emergency Limit	704A	704B	704C	704D	704E	704F
Voltage ELSS	16.0 Vdc	18.0 Vdc	16.0 Vdc	16.0 Vdc	18.0 Vdc	18.0 Vdc
Voltage EHSS	24.0 Vdc	29.0 Vdc	30.0 Vdc	29.0 Vdc	29.0 Vdc	29.0 Vdc

TABLE LDC401-I. MIL-STD-704 emergency limits for steady state voltage.

3. <u>Apparatus</u>. The test equipment should be as follows:

a. Adjustable DC power supply

b. True RMS voltmeter

4. <u>Test setup</u>. Configure the test setup as shown in figure LDC401-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure LDC401-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 28 VDC. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A and B noted in table LDC401-II, the UUT must remain for a length of time that confirms the utilization equipment can perform as specified at the emergency steady state voltage limits and should be not less than thirty (30) minutes. At each test condition conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for emergency aircraft electrical conditions. For each test condition shutdown the UUT and verify that the UUT can be re-started. After re-start conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for emergency aircraft electrical conditions. Adjust the voltage to the nominal steady state voltage of 28 VDC. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the voltage, time duration at test condition, and the performance of the UUT for each test condition in the data sheet shown in table LDC401-III. Repeat for each mode of operation of the UUT.

TABLE LDC401-II. <u>Test conditions for emergency steady state limits for DC voltage</u>.

Test Condition	Voltage
А	ELSS Voltage
В	EHSS Voltage



FIGURE LDC401-1. Emergency operation - steady state limits for voltage.

Test	Paran	Performance	
Condition	Voltage	Time Duration	Pass/Fail
		at Test	
		Condition	
А	V _{DC}	min	
В	V _{DC}	min	

TABLE LDC401-III. Sample data sheet for LDC401 emergency steady state limits for voltage and frequency.

### METHOD LDC501 Starting Voltage Transients

POWER GROUP:

28 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: Starting

-

PARAMETER:

Starting Voltage Transients

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that 28 volt DC power utilization equipment operates and maintains specified performance when subjected to starting voltage transients as specified in the applicable editions(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for starting aircraft electrical conditions when subjected to starting voltage transients for the applicable editions(s) of MIL-STD-704 and as noted in table LDC501-I. Unless otherwise specified in the utilization equipment performance specification document must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE LDC501-I. MIL-STD-704 limits for starting voltage transients.

Limit	704A	704B	704C	704D	704E	704F
Starting Voltage Transients	16.0 Vdc to 28.5 Vdc	Use Limits of 704 C	16.0 Vdc to 30.0 Vdc	12.0 Vdc to 29.0 Vdc	12.0 Vdc to 29.0 Vdc	12.0 Vdc to 29.0 Vdc

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable DC power supply
- b. True RMS voltmeter
- c. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure 1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure LDC501-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 28 VDC. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

5.1 <u>Compliance test for MIL-STD-704A, B and C</u>. The UUT must be subjected to the starting voltage transients described in table LDC501-II (test condition A). The voltage must decrease from steady state voltage to the 16 Vdc within 1 millisecond. The voltage must return to steady state at a constant rate over 30 seconds. Monitor the performance of the UUT during the starting voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for starting aircraft electrical conditions. Repeat the test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT automatically returns to specified performance for normal aircraft electrical conditions when the power returns to within normal limits. Record the steady state voltage, voltage transient (oscilloscope trace), and the performance of the UUT in the data sheet shown in table LDC501-IV. Repeat for each mode of operation of the UUT.

5.2 <u>Compliance test for MIL-STD-704D, E, & F</u>. The UUT must be subjected to the starting voltage transients described in table LDC501-III (test condition AA). The voltage must decrease from steady state voltage to the 12 Vdc within 1 millisecond. The voltage must return to steady state at a constant rate over 30 seconds. Monitor the performance of the UUT during the starting voltage transient according to the equipment performance test procedures to verify that the UUT is providing specified performance for starting aircraft electrical conditions. Repeat the test condition 5 times. After the power returns to normal limits, conduct a performance test of the UUT automatically returns to specified performance for normal aircraft electrical conditions when the power returns to within normal limits. Record the steady state voltage, voltage transient (oscilloscope trace), and the performance of the UUT in the data sheet shown in table LDC501-IV. Repeat for each mode of operation of the UUT.

Test Condition	Steady State	Time From	Voltage	Time From
	Voltage	Steady State	Transient	Voltage
	Vdc	Voltage to	Level	Transient
		Voltage	Vdc	Level to
		Transient		Steady
		Level		State
		milliseconds		Voltage
				_
А	28.5 Vdc	< 1 msec	16 Vdc	30 sec

TABLE LDC501-II. Test conditions for MIL-STD-704A, B and C starting voltage transients.

Test Condition	Steady State Voltage Vdc	Time From Steady State Voltage to Voltage Transient Level milliseconds	Voltage Transient Level Vdc	Time From Voltage Transient Level to Steady State Voltage
AA	29 Vdc	< 1 msec	12 Vdc	30 sec

# TABLE LDC501-III. <u>Test conditions for MIL-STD-704D</u>, E and F starting voltage transients.



64

FIGURE LDC501-1. Starting operation - starting voltage transients.

Test	Parameters								Performance
Condition	Steady Vol	y State tage	Voltage Transient		Time to Return to Steady State Voltage		Oscilloscope Trace		Pass/Fail
		V _{DC}		V _{DC}		sec	Attach Trace	$V_{DC}$ vs Time	

TABLE LDC501-IV. Sample data sheet for LDC501 starting voltage transients for MIL-STD-704A, B, C, D, E & F.

### METHOD LDC601 Power Failure

POWER GROUP: 28 Vo

28 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: Power Failure

PARAMETER:

Power Failure

1. <u>Scope</u>.

1.1 <u>Purpose</u>. This test procedure is used to verify that 28 volt DC power utilization equipment operates and maintains specified performance when subjected to Power Failures as specified in the applicable editions(s) of MIL-STD-704.

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment operates and maintains performance as specified in the utilization equipment performance specification document for power failure aircraft electrical conditions when subjected to power failures as specified by the applicable editions(s) of MIL-STD-704 and as noted in table LDC601-I. The utilization equipment must maintain the specified performance during power failures. Unless otherwise specified in the utilization equipment performance specification document, the utilization equipment must automatically return to the performance specified for normal aircraft electrical conditions when the power returns to within normal limits. The utilization equipment must not suffer damage or cause an unsafe condition.

TABLE LDC601-I. MIL-STD-704 power failure limits.

l	Limit	704A	704B	704C	704D	704E	704F
ſ	Power	7 sec	7 sec	7 sec	7 sec	7 sec	7 sec
	Failure	Figure 9	Figure 8	Figure 12	Figure 12	Figure 11	Figure 14
		Curve 4	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-	MIL-STD-
		MIL-STD-	704B	704C	704D	704E	704F
		704B					

3. <u>Apparatus</u>. The test equipment should be as follows:

- a. Programmable DC power supply
- b. True RMS voltmeter
- c. Oscilloscope

4. <u>Test setup</u>. Configure the test setup as shown in figure LDC601-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure LDC601-1. Turn on the power source and adjust the voltage to the nominal steady state voltage of 28 VDC. Energize the UUT. Allow sufficient time for the UUT to warm up. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to verify that the UUT is providing specified performance for normal aircraft electrical conditions.

For each test condition A through D noted in table LDC601-II, perform a power failure (0 V) of the duration listed. The voltage must decrease from the steady state voltage to 0 Volts within 0.25 milliseconds, remain at 0 volts for the duration listed for the test condition, and return from 0 Volts to the steady state voltage within 0.25 milliseconds. For each test condition, monitor the performance of the UUT according to the utilization equipment performance test procedures for power failure operation to verify that the UUT is providing specified performance for power failure aircraft electrical conditions. After the power returns to normal limits, conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has automatically returned to the performance specified for normal aircraft electrical conditions, and has not suffered damage. Record the steady state voltage, time duration of power failure, and the performance of the UUT for each test condition in the data sheet shown in table LDC601-III. Repeat each test condition 5 times. Repeat for each mode of operation of the UUT.

After all test conditions are complete, adjust the voltage to the nominal steady state voltage of 28 VDC. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has not suffered damage and is providing specified performance for normal aircraft electrical conditions.

Test Condition	Duration of Power Failure
А	100 msec
В	500 msec
С	3 seconds
D	7 seconds

TABLE LDC601-II. Test conditions for power failures.



89

FIGURE LDC601-1. Power failure - power failure.

Test	Parar	Performance	
Condition	Voltage	Time Duration	Pass/Fail
		of Power	
		Failure	
A	V _{DC}	msec	
В	V _{DC}	msec	
С	V _{DC}	sec	
D	V _{DC}	sec	

69

TABLE LDC601-III. Sample data sheet for LDC601 power failure.

### METHOD LDC602 Phase Reversal

POWER GROUP: 28 Volt DC

AIRCRAFT ELECTRICAL OPERATING CONDITION: Power Failure

PARAMETER:

1. Scope.

1.1 <u>Purpose</u>. This test procedure is used to verify that 28 volt DC power utilization equipment is not damaged by phase reversal or a positive physical means is employed to prevent phase reversal.

Phase Reversal

2. <u>Validation criteria</u>. The utilization equipment is considered to have passed if the utilization equipment is not damaged and does not cause an unsafe condition when the positive and negative connection are reversed for the applicable editions(s) of MIL-STD-704 and as noted in table LDC602-I. A positive physical means to prevent phase reversal may be used to fulfill this requirement.

TABLE LDC602-I. MIL-STD-704 phase reversal requirement.

Limit	704A	704B	704C	704D	704E	704F
Phase Reversal	N/A	N/A	N/A	N/A	N/A	Phase Reversal Does not Cause Damage

3. <u>Apparatus</u>. The test equipment should be as follows:

a. Adjustable DC power supply

b. True RMS voltmeter

4. <u>Test setup</u>. Configure the test setup as shown in figure LDC602-1. Measurements, except current, must be made within 10 cm of the input power terminals of the UUT.

5. <u>Compliance test</u>. If a positive physical means is employed to prevent phase reversal, confirm that the positive and negative conductors cannot be reversed.

If the positive and negative conductors can be reversed, with the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure LDC602-1 (positive and negative conductors reversed). Turn on the power source and adjust the voltage to the nominal steady state voltage of 28 VDC. Energize the UUT. The UUT must remain for a length of time that confirms the utilization equipment is not damaged and does not cause an

unsafe condition due to phase reversal and should be not less than thirty (30) minutes. Record the steady state voltage, time duration at phase reversal test condition, and the performance of the UUT in the data sheet shown in table LDC602-II. Repeat for each mode of operation of the UUT.

With the power source off, install the UUT and the stimulation and monitoring equipment into the test setup of figure LDC602-2 (positive and negative conductors connected properly). Turn on the power source and adjust the voltage to the nominal steady state voltage of 28 VDC. Energize the UUT. The UUT must remain for a length of time that confirms the utilization equipment was not damaged and does not cause an unsafe condition after the phase reversal and should be not less than thirty (30) minutes. Conduct a performance test of the UUT according to the utilization equipment performance test procedures to confirm that the UUT has returned to the performance specified for normal aircraft electrical conditions and has not suffered damage. Record the steady state voltage, time duration at test condition, and the performance of the UUT in the data sheet shown in table LDC602-II. Repeat for each mode of operation of the UUT.



5. Phase Polarity is reversed.

72

FIGURE LDC602-1. Phase reversal.



73

FIGURE LDC602-2. Correct phase connection.

Test	Parameters			Performance	
Condition				Yes/No	
Phase Reversal Prevented by Positive Physical					
Means					
If No					
	Vol	tage	Time Duration		Pass/Fail
			at Condition		
Phase		$V_{dc}$		min	
Reversal					
Correct Phase		$V_{dc}$		min	
Connection					

# TABLE LDC602-II. Sample data sheet for LDC602 phase reversal.
## MIL-HDBK-704-8

## 6. NOTES

6.1 <u>Intended use</u>. This handbook should be used as guidance when establishing test requirements, for inclusion in performance specifications developed for the procurement of utilization equipment, to ensure compliance with the aircraft electrical power characteristics as specified by MIL-STD-704.

6.2 Subject term (keyword) listing.

Aircraft, electrical power Aircraft, electrical test Electrical operating areas Equipment, utilization Power groups Specification, utilization equipment

## CONCLUDING MATERIAL

Custodians: Army - AV Navy - AS Air Force - 11 Preparing Activity: Navy - AS

(Project No. SESS-0054)

Review Activities: Army - CR, MI, TE Navy - EC, MC, SA, SH, YD

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at <u>www.dodssp.daps.mil</u>.