

1

The Application of Vector Network Analyzers in Balanced Transmission Line Signal Integrity Measurements

Agenda

- 1. Introduction
 - 1.1 The Application and Advantages of Balanced Transmission Lines
 - 1.2 Important Parameters and Characteristics for Balanced Transmission Lines
 - 1.3 Characteristic Impedance, Structural Return Loss (SRL), Attenuation, Delay, Skew, Near End Crosstalk (NEXT), Far End Crosstalk (FEXT)
 - 1.4 Single Ended, Common Mode, Differential Mode, Mixed Mode Scattering Parameters (S Parameters), Mode Conversion
- 2. Techniques Used to Connect Vector Network Analyzers (VNA) to Balanced Transmission Lines
 - 2.1 Use of Baluns to Transform a 50 Ohm Un-balanced VNA Test Port to 100 Ohm Balanced Transmission Line
 - 2.2 Use of a Multiport VNA Test Set to Transform 50 Ohm Un-balanced VNA Test Ports to 100 Ohm Balanced Transmission Lines
 - 2.3 Advantages and Limitations of Each Approach
- 3. Frequency Domain Measurements for Balanced Transmission Lines
 - 3.1 Frequency Domain Measurement with a VNA
 - 3.2 Frequency Domain Measurement with a TDR / TDT (FFT)
 - 3.3 Advantages and Limitations of Each Approach

/Incitsu

Agenda

- 4. Time Domain Characteristics and Parameters for Balanced Transmission Lines
 - 4.1 Characteristic Impedance, Fault Type and Location, Attenuation, Delay, Skew, Near End Crosstalk (NEXT), Far End Crosstalk (FEXT)
 - 4.2 Single Ended, Differential Mode, Common Mode, Mixed Mode, Mode Conversion
 - 4.3 Time Domain Measurement with a VNA (IFT)
 - 4.4 Time Domain Measurement with a TDR / TDT
 - 4.5 Advantages and Limitations of Each Approach
- 5. Techniques Used with MultiPort Vector Network Analyzers (VNA) for Balanced Transmission Line Measurements
 - 5.1 Use of Mathmatical Superposition with a Single Source MultiPort VNA for Balanced Transmission Line Measurements
 - 5.2 Use of Dual Differential Sources MultiPort VNA for Balanced Transmission Line Measurements
 - 5.3 Advantages and Limitations of Each Approach
- 6. Fixture and Launch Considerations in Connecting to Balanced Structures

Introduction What is Signal Integrity (SI)?

- An Engineering Practice
 - That ensures all signals transmitted are received correctly
 - That ensures signals don't interfere with one another in a way to degrade reception.
 - That ensures signals don't damage any devices
 - That ensures signals don't pollute the electromagnetic spectrum

Introduction Components of High Speed Design

The Application and Advantages of Balanced Transmission Lines Shielded Quad Data Cable (Fiber-Channel)

/inritsu

7

Discover What's Possible™

dge-coupled)

(edge-coupled)

stripline

stripline

stripline

stripline

The Application and Advantages of Balanced Transmission Lines

/inritsu

Differential S parameters

Diff pair port 2

port 2

SDC12

S D C 22

9

/Inritsu

Discover What's Possible[™]

Cross section of a planar balanced transmission line

Cross section of a planar balanced transmission line, with electric and magnetic field lines a: Even or common mode b: Odd or differential mode

Ideal balanced devices: a: Fully balanced b: Balanced-to-single-ended

10

/inritsu

/inritsu

Odd Mode (Field)

/incitsu

Propagation equation

 $\gamma = \sqrt{(R + j\omega L)(G + j\omega C)} = \alpha + j\beta$

- α is the attenuation (loss) factor
- β is the phase (velocity) factor

Characteristic Impedance equation

- Propagation delay per unit length (T₀) {time/distance} [ps/in]
 - Or Velocity (v₀) {distance/ time} [in/ps]
- > Characteristic Impedance (Z₀)
- Per-unit-length Capacitance (C₀) [pflin]
- Per-unit-length Inductance (L₀) [nflin]
- Per-unit-length (Series) Resistance (R₀) [W|in]
- Per-unit-length (Parallel) Conductance (G₀) [Slin]

- Knowing any two out of Z_0 , T_d , C_0 , and L_0 , the other two can be calculated.
- C_0 and L_0 are reciprocal functions of the line crosssectional dimensions and are related by constant $\mu \varepsilon$.
- ε is electric permittivity
 - ε₀= 8.85 X 10⁻¹² *F/m* (free space)
 - ϵ_r is relative dielectric constant
- µ is magnetic permeability
 - μ₀= 4p X 10⁻⁷ H/m (free space)
 - μ_r is relative permeability

$Z_0 = \sqrt{\frac{L_0}{C_0}}$	$T_{\rm d} = \sqrt{L_0}$
$C_0 = \frac{T_0}{Z_0}$	$L_0 = Z_0 T_0$
$_{k0} = \frac{1}{\sqrt{\mu\varepsilon}}$	$C_0 L_0 = \mu \varepsilon$
$\mu = \mu \mu_0$	$\mathcal{E}=\mathcal{E}_{\mathcal{E}}\mathcal{E}_{0}$

14

 C_0

Important Parameters and Characteristics for Balanced Transmission Lines Measurement of Characteristic Impedance Z₀

Measure S11 with Far End Terminated in Z_0

$$\mathbf{Z}_{\mathbf{0}_{\mathsf{T}}\mathbf{L}} = \frac{1+S11}{1-S11} * Zo$$

Measure S11 with Far End Terminated in Short Circuit

$$\mathbf{Z}_{oc} = \frac{1 + S11}{1 - S11} * Zo$$

Measure S11 with Far End Terminated in Open Circuit

$$\mathbf{Z}_{sc} = \frac{1 + S_{11}}{1 - S_{11}} * Z_{o}$$
$$\mathbf{Z}_{0_{TL}} = \sqrt{\mathbf{Z}_{oc} * \mathbf{Z}_{sc}}$$
15

/inritsu

Reflection Coefficient = $\rho = S_D 1_D 1 = b_1 / a_1$ = reflected / incident

Voltage Standing Wave Ratio = VSWR =

$$\frac{1 + |S_D l_D l|}{1 - |S_D l_D l|}$$

Return Loss (dB) = $-20 \log_{10} (|S_D 1_D 1|)$ [Structural Return Loss (dB)]

/inritsu

16

Single Pair Measurements

Insertion Loss (dB) = $20 \log_{10} (|S_D 2_D 1|)$ [Log Magnitude] Attenuation (dB/in) = $20 \log_{10} (|S_D 2_D 1|) / (\text{Length of Transmission Line})$ Delay (ns) = $(S_D 2_D 1)$ [Group Delay]

/incitsu

Single Pair Measurements

Delay Skew (ns) = (S31) [Group Delay] - (S42) [Group Delay]

/inritsu

Two Pair Measurements

Near End Crosstalk (NEXT) (dB) = $(S_D 3_D 1)$ [Log Magnitude]

19

Two Pair Measurements

Far End Crosstalk (FEXT) (dB) = $(S_D 3_D 1)$ [Log Magnitude]

20

Multiple Pair Measurements

Power Sum - NEXT (dB) = Σ NEXT Reference Pair to All Other Pairs Power Sum - ELFEXT (dB) = Σ FEXT Reference Pair to All Other Pairs

TECHNICAL DATA ELECTRICAL

FREQUENCY (MHz)	Insertion Loss (dB/100 m max.)	RL (dB min.)	SRL (dB min.)	PS-NEXT (dB min.)	NEXT (dB min.)	ELFEXT (dB min.)	PS-ELFEXT (dB min.)
1	2	20	25	62.3	65.3	63.8	60.8
4	4.1	23	25	53.2	56.3	51.7	48.7
10	6.5	25	25	47.3	50.3	43.8	40.8
16	8.2	25	25	44.2	47.3	39.7	36.7
20	9.3	25	25	42.7	45.8	37.7	34.7
31.25	11.7	23.6	23.6	39.8	42.9	33.9	30.9
62.5	17	21.5	21.5	35.3	38.4	27.8	24.8
100	22	20.1	20.1	32.3	35.3	23.8	20.8
150	27.5	18.9	18.9	29.7	32.7	20.2	17.2
200	32.4	18.0	18.0	27.8	30.8	17.7	14.7
250	36.9	17.3	17.3	26.3	29.3	15.8	12.8

IMPORTANT: Berk-Tek performance guarantees are based on swept-frequency testing and apply to all frequencies for the entire specified frequency range and are not limited to the tables of data shown which are presented to demonstrate our guarantees at "representative" frequencies. Values above 100 MHz are for engineering information. Other jacket colors available.

Measurement of Longitudinal Balance

Important Parameters and Characteristics for Balanced Transmission Lines Single Ended S-Parameters

- Traditional S-Parameters
- All Measurements Use Ground as the Return (Common Mode)
- Balanced Lines and Devices Measured One Side at a Time
- Delay Skew is Based on Single Ended Measurements

Important Parameters and Characteristics for Balanced Transmission Lines Common Mode S-Parameters

- Balanced Transmission Lines / Devices Treated as a 4 Port
- Ground is Common Return For All Ports (May be Virtual)
- Each DUT "Port" is Connected to a VNA Port Center Conductor
- Delay Skew Can Be Derived From Common Mode Measurements

Important Parameters and Characteristics for Balanced Transmission Lines Differential Mode S-Parameters

For differential-ended 4-port VNA.

- Balanced Transmission Lines / Devices Treated as a 4 Port
- Ground is Common Return For All Ports (May be Virtual)
- Each DUT "Port" is Connected to a VNA Port Center Conductor
- Delay Skew Can Be Derived From Common Mode Measurements

Important Parameters and Characteristics for Balanced Transmission Lines Mixed Mode S-Parameters

- Balanced Transmission Lines / Devices Treated as a 4 Port
- Ground is Common Return For All Ports (May be Virtual)
- Each DUT "Port" is Connected to a VNA Port Center Conductor
- Mixed Mode Parameters Include Important Mode Conversion Parameters, Differential Mode
 Common Mode

26

- Balanced Transmission Lines / Devices Treated as a 4 Port
- Ground is Common Return For All Ports (May be Virtual)
- Each DUT "Port" is Connected to a VNA Port Center Conductor
- Mixed Mode Parameters Include Important Mode Conversion Parameters, Differential Mode Common Mode

27

Techniques Used to Connect Vector Network Analyzers (VNA) to Balanced Transmission Lines

Typical 2 Port VNA (3 Receiver)

Typical 2 Port VNA (4 Receiver)

Figure 1. A coupler test set architecture is shown here: the test couplers are on the DUT-side of the multiplexing switches. As N becomes large, this test set becomes quite complex.

Figure 2. A no-coupler architecture for the 4x2 problem is shown here. In this case, any VNA port can be connected to any test port although this is not needed for most measurements. This test set can be simpler for large N but does have limitations.

Typical 4 Port VNA (2 Source)

28

Use of Baluns to Transform a 50 Ohm Un-balanced VNA Test Port to 100 Ohm Balanced Transmission Line

Measuring the differential mode characteristics of a two-port DUT using baluns

BALUN Transformer with Center-Tapped Output

Use of Baluns to Transform a 50 Ohm Un-balanced VNA Test Port to 100 Ohm Balanced Transmission Line VNA Configurations for Balun Based Measurements

Reflection Measurements

Transmission Measurements

Use of Baluns to Transform a 50 Ohm Un-balanced VNA Test Port to 100 Ohm Balanced Transmission Line VNA Configurations for Balun Based Measurements

FEXT Measurements

31

Use of a 2 Port VNA Test Set to Transform 50 Ohm Un-balanced VNA Test Ports to 100 Ohm Balanced Transmission Lines VNA Configurations for Reflection Measurements

Multiport (2 Port) Based

32

/Inritsu

Use of a Multiport VNA Test Set to Transform 50 Ohm Un-balanced VNA Test Ports to 100 Ohm Balanced Transmission Lines

VNA Configurations for Reflection Measurements

VNA Configurations for Transmission Measurements

Multiport (4 Port) Based

33

Use of a Multiport VNA Test Set to Transform 50 Ohm Un-balanced VNA Test Ports to 100 Ohm Balanced Transmission Lines

VNA Configurations for NEXT Measurements

Use of a Multiport VNA Test Set to Transform 50 Ohm Un-balanced VNA Test Ports to 100 Ohm Balanced Transmission Lines

VNA Configurations for FEXT Measurements

35

Advantages and Limitations of Each Approach Balun Based Balanced VNA

Advantages

- 1. Lowest Cost Balanced VNA Approach
- 2. True Differential Stimulus
- 3. Simple Balanced VNA Calibration (SOLT, TRL) With Fewer Connections
- 4. Traditional Balanced VNA Approach

Limitations

- 1. Limited Measurement Bandwidth With Transformer Baluns
- 2. Difficult to Separate Residual Common Mode Component (Longitudinal Balance)
- 3. Difficult to Measure Mixed Mode and Common Mode S Parameters
- 4. No Single VNA Vendor Support "Science Fair Project"
- 5. VNA Based Reflection and Transmission Time Domain (TDR / TDT) Limited to Band Pass, Impulse Response

Advantages and Limitations of Each Approach 2 Port Based Balanced VNA

Advantages

- 1. Lowest Cost VNA Configuration
- 2. Simple Balanced VNA Reflection Calibration (SOLT)
- 3. Full VNA Reflection Time Domain (TDR) Available

Limitations

- 1. Reflection Only Balanced VNA Measurements
- 2. Not True Differential Stimulus (Superposition) With Standard, Lowest Cost 2 Port VNA's

/incitsu

Advantages and Limitations of Each Approach Multiport 4 Port Based Balanced VNA

Advantages

- 1. True Differential Stimulus With Two Coherent Source 4 Port VNA
- 2. Simple to Measure Differential Mode, Mixed Mode and Common Mode S Parameters
- 3. Full VNA Reflection and Transmission Time Domain (TDR / TDT) Available

Limitations

- Not True Differential Stimulus (Superposition) With Standard, Single Source 4 Port VNA's
- 2. Cumbersome Balanced VNA Calibration (SOLT) With Many Connections
- 3. Most Expensive Balanced VNA Approach
- 4. External Test Set Multiport 4 Port Based Balanced VNA Usually Requires External Software for Test Set Control

Frequency Domain Measurement for Balanced Transmission Lines

- S Parameters are Complex Numbers (Real and Imaginary) or (Magnitude and Phase)
- Frequency Domain Measurements are Parameter Versus Frequency
- Frequency Domain Measurements Represent a Weighted Average Over Time
- Time Domain Measurements are Parameter Versus Time
- Time Domain Measurements Represent a Weighted Average Over Frequency

Frequency Domain Measurement with a VNA

- Stimulus Sources are Sine Wave Oscillators that are Stepped in Frequency
- All Receiver Channels are Narrowband Tuned Receivers Synchronized to the Stimulus Sources
- S Parameters are Complex Numbers (Real and Imaginary) or (Magnitude and Phase)
- Frequency Domain Measurements are Parameter Versus Frequency
- Frequency Domain Measurements Represent a Weighted Average Over Time

Frequency Domain Measurement with a VNA

Mixed Mode S Parameters

- SDD are Differential (Balanced) In and Out
- SCC are Common (Single-Ended) In and Out
- SDC are Differential (Balanced) In and Common (Single-Ended) Out
- SCD are Common (Single-Ended) In and Differential (Balanced) Out

Frequency Domain Measurement with a TDR / TDT (FFT)

- Measurements Made With Fast Rise Time Voltage Step Generator
- Both Reflection (TDR) and Transmission (TDT) Made in Time Domain
- Step Response Differentiated to Calculate Impulse Response
- Chirp Z Fast Fourier Transform (FFT) Applied to Impulse Response to Calculate Frequency Domain S Parameters

Discover What's Possible™

/Inritsu

Frequency Domain Measurement Comparison VNA vs TDR / TDT

PSPL Model 4022 TDR Test Configuration Used to Measure S11 Data

Model 4022 TDT Test Configuration Used to Measure S21 Data

System	S-parameter bandwidth; dyn. range	TDR/T risetime
65 GHz VNA	65 GHz; >60 dB	14 ps
Model 4022 10 ps TDR	30 GHz; >25 dB	10 ps

Comparison of TDR/T and VNA Measurement System Capabilities

S-parameter Measurements with the PSPL Model 4022 High-Speed TDR and TDT System

Kipp Schoen, Picosecond Pulse Labs (PSPL), Boulder, Colorado, USA

0-30 GHz S21 Plot PSPL TDR System and 65 GHz VNA Measurements

44

/inritsu

Advantages and Limitations of Each Approach Frequency Domain Measurement with a VNA

Advantages

- 1. Higher Source Power and Tuned Receiver \rightarrow High Dynamic Range (> 100 dB)
- 2. Applies to Both Active and Passive Linear Devices
- 3. Direct Frequency Domain Measurements \rightarrow No Post Processing Required
- 4. Traditional Measurement Approach For Frequency Domain Performance
- 5. Better Signal to Noise \rightarrow Measurements More Repeatable, Less Deviation

Limitations

- 1. All Measurements are Causal \rightarrow No Insight Into DUT Topology
- 2. Higher Cost Than Comparable TDR/TDT Oscilloscope
- 3. Slower Measurement Speed Than Comparable TDR/TDT Oscilloscope
- 4. More Complex, Less Bandwidth Signal Separation Test Set

Advantages and Limitations of Each Approach Frequency Domain Measurement with a TDR/TDT

Advantages

- 1. Wide Measurement Bandwidth \rightarrow DC to Max Frequency
- 2. Lower Cost Stimulus (Step Generator(s))
- 3. Lower Cost Per Measurement Channel
- 4. Broadband Receiver \rightarrow Measurements Made Faster, Single Shot Capture

<u>Limitations</u>

- 1. Applies to Only Passive Devices
- 2. Limited Dynamic Range \rightarrow 40 dB to 50 dB
- 3. Limited Power in Harmonics of Voltage Step Generator \rightarrow Less Signal to Noise
- 4. Direct Time Domain Measurements \rightarrow FFT Post Processing Required
- 5. Additional Software Required For Frequency Domain Performance

Time Domain Characteristics and Parameters for Balanced Transmission Lines

TDR Spatial Resolution Requirements

Rise time, ps	Resolution in air, mm	(v _p =0.446*C _{light}), mm
10	1.50	0.67
15	2.25	1.00
20	3.00	1.34
28 4.20		1.87
40	6.00	2.68
150	22.50	10.04

Rise Time Requirements for Serial Standards

Standards	Datarates, Gb/s*	t _{standard rise} as a ratio of bit width
1 st generation standards	1.125 - 3.125	15%
2 nd generation standards	4.25 - 6.5	20%
3 rd generation standards	8 - 12	25%

- ----

Rise time as percentage of the bit width for three generation of standards.

Faster pulse risetime = better resolution

TDR resolution rules of thumb.

To resolve
$$a_1$$
 and a_2 as
separate discontinuities:
 t_{a_1} a_2 $t_{TDR_risetime}/2$ t_{a_1} t_{a_1} t_{a_2} $t_{TDR_risetime}/10$

With standard TDR: $(t_{separation} > \frac{1}{2} \text{ TDR risetime} = 17.5 \text{pS})$

(1/10 TDR risetime = 3.5pS)

47

Time Domain Characteristics and Parameters for Balanced Transmission Lines Impedance

/inritsu

Time Domain Characteristics and Parameters for Balanced Transmission Lines Fault Type and Location

/inritsu

Time Domain Characteristics and Parameters for Balanced Transmission Lines Determining Fault Location

Time Domain Characteristics and Parameters for Balanced Transmission Lines

TDT - Time Domain Transmission, Insertion Loss, Delay, Skew

Time Domain Characteristics and Parameters for Balanced Transmission Lines Near End Crosstalk (NEXT), Far End Crosstalk (FEXT)

- Near-End Cross Talk (NEXT) is the ratio between the voltage measured on the near end on the quiet line and the stimulus.
- □ Far-End Cross Talk (FEXT) is the ratio between the voltage measured on the far end on the quiet line and the stimulus.
- NEXT-FEXT Cross-talk measured the coupling between two adjacent transmission lines

Time Domain Characteristics and Parameters for Balanced Transmission Lines Near End Crosstalk (NEXT), Quiet Line Open Terminated

/inritsu

Time Domain Characteristics and Parameters for Balanced Transmission Lines True Differential TDR / TDT

 High Speed digital systems are mainly differential

✓ TDR requires <u>two</u> TDR modules to provide the differential signal (stimulus), step pulses, positive and negative (automatically changes polarity when selecting differential)

Differential TDR measurements set-up

Discover What's Possible[™]

- ✓ De-skew control aligns the two pulses from each of the two TDR modules.
 ✓ HW deskew (±50 ps)
- Requires <u>four</u> TDR modules two to generate the differential signal and other two to receive the differential signal

54

/Incitsu

Time Domain Characteristics and Parameters for Balanced Transmission Lines TDR/TDT and VNA

 \checkmark TDR/TDT and S-parameter are describing reflection / transmission respectively in the time domain and in the frequency domain .

✓ TDR/ TDT measurements may be converted into the frequency domain for S-parameter analysis.

 ✓ S-parameter measurements may be converted into the time domain for TDR/TDT measurements

/Inritsu

Single Ended, Differential Mode, Common Mode, Mixed Mode, Mode Conversion

Time Domain Measurements are Parameter Versus Time / Distance
 Time Domain Measurements Represent a Weighted Average Over
 Frequency

56

Time Domain Measurement with a VNA (IFT)

Forward Measurements VNA Configuration

- Measurements Made in Frequency Domain and Converted to Time Domain by Inverse Fourier Transform (IFT)
- Step Response, Impulse Response, and Band Pass Impulse Response
- Step Response and Impulse Response Require Harmonic Related Frequencies
- Time Resolution Related to (1/ Frequency Span)
- Time Range Related to $(1/\Delta F)$
- Windowing Used to Deal With Frequency Truncation Error (Finite Frequency Range)

Time Domain Measurement with a TDR / TDT

Time Domain Reflection and Transmission (TDR and TDT) block diagram. A similar diagram can be drawn for reverse measurements (from port 2 to port 1).

Measured TDR profile of a transmission line with initial via and small gap in the return path.

- Measurements Made With Fast Rise Time Voltage Step Generator
- Both Reflection (TDR) and Transmission (TDT) Made in Time Domain
- Step Response Standard For Time Domain Measurements
- TDT Direct Measurement of Insertion Loss, Crosstalk, and Delay
- \bullet TDR Direct Measurement of Reflection Coefficient and Impedance with $_{58}$ Location

/inritsu

Time Domain Measurement with a TDR / TDT Differential TDR Using a Single Step Generator

Single ended pulse generator built into Ch 1, and Ch 2 input with no step

Equivalent circuit of TDR step and scope inputs represented by common mode and differential mode step sources.

V(1) and V(2) responses, single edged drive, balanced termination

- Requires Launch Into Balanced Transmission Line
- Complement Step Generated in Transmission Line by Reciprocity
- Stimulus From Transmission Line is True Differential

59

Advantages and Limitations of Each Approach Time Domain Measurement with a VNA (IFT)

<u>Advantages</u>

- 1. Higher Source Power and Tuned Receiver → Faster Effective Rise Time, Better Time Resolution
- 2. Both Step and Impulse Response Available
- 3. Impulse Response of High Pass or Band Pass Devices
- 4. Time Domain Gating Available
- 5. DC Response of DUT Not Required (DC Blocks Not a Problem)

Limitations

- 1. Time Domain Requires Software Post Processing (IFT)
- 2. Higher Cost Than Comparable TDR/TDT Oscilloscope
- 3. Slower Measurement Speed Than Comparable TDR/TDT Oscilloscope
- 4. Windowing Required to Deal With Frequency Truncation Error (Finite Frequency Range)

Advantages and Limitations of Each Approach Time Domain Measurement with a TDR/TDT

Advantages

- 1. Direct Time Domain Measurements
- 2. Direct Time Base Based Delay Measurements
- 3. Frequency Response of Step Generator Not Band Limited, Windowing Not Required
- 4. Lower Cost Than Comparable VNA
- 5. Differential Step Generators With Adjustable Skew

Limitations

- 1. Step Response Only
- 2. DC Response of DUT Required (DC Blocks a Problem)
- 3. Limited Dynamic Range \rightarrow 40 dB to 50 dB
- 4. Limited Power in Harmonics of Voltage Step Generator → Slower Rise Time, Less Time Resolution

Techniques Used with MultiPort Vector Network Analyzers (VNA) for Balanced Transmission Line Measurements

Use of Mathematical Superposition with a Single Source MultiPort VNA for Balanced Transmission Line Measurements

- Standard Single Source VNA Used With Switch Matrix
- Single Ended S Parameters Measured for All Path Combinations
- Differential and Mixed Mode Parameters Calculated by Superposition
- Basic Assumption That DUT Is Linear
- If Interconnect From 4 Port Test Set to DUT Uses Balanced Transmission Lines, True Differential Stimulus Generated By Reciprocity

Use of Dual Differential Sources MultiPort VNA for Balanced Transmission Line Measurements

- Passive Balanced / Differential DUT
 - Transmission Lines
 - PCB
 - Lumped Components
 - Passive Filters
 - UTP, STP, Quad Cables
 - Connectors / Interfaces
- Linear Active Balanced / Differential DUT
 - Linear Amplifiers, Differential Amplifiers
 - Linear Active Filters
 - Input / Output Match ADC / DAC
- Non Linear Active Balanced / Differential DUT
 - Devices in Compression / Saturation
 - Log Amplifiers

- Dual Source VNA Used
- Sources Are Synchronous and 180 Degree Phase Difference
- Common, Differential and Mixed Mode Parameters Measured Directly
- DUT Can Be Linear or Nonlinear
- True Differential Stimulus
- Balun Based VNA True Differential for Differential Mode Parameters

Advantages and Limitations of Each Approach Mathematical Superposition with a Single Source MultiPort VNA

Advantages

- 1. Lower VNA System Cost
- 2. If Interconnect From 4 Port Test Set to DUT Uses Balanced Transmission Lines, True Differential Stimulus Generated By Reciprocity
- 3. Single Ended 2 Port VNA Can Be Upgraded to 4 Port Balanced VNA By Adding Test Set
- 4. Valid Balanced / Differential Measurements For All Linear DUT's

Limitations

- 1. Requires Software For Mathematical Superposition Calculation
- 2. Stimulus Not True Differential $* \rightarrow$ May Not Be Valid For Non Linear DUT's
- 3. Switch Matrix Repeatability Can Degrade Systematic Error Correction Resulting in Higher Residual Errors (Ripple) in Corrected Measurements

Advantages and Limitations of Each Approach Dual Differential Sources MultiPort VNA

<u>Advantages</u>

- 1. True Differential Stimulus
- 2. Valid Balanced / Differential Measurements For All Linear and Non Linear DUT's
- 3. Better Test Set Repeatability → Lower Residual Errors (Ripple) in Corrected Measurements

Limitations

- 1. Higher VNA System Cost
- 2. 180 Degree Phase Relationship Difficult to Maintain From VNA to DUT → Skew Error → Problematic For Non Linear DUT's

Fixture and Launch Considerations in Connecting to Balanced Structures

Output coax

connector

Four-port test jig using short, equal length fixtures.

Four-port high-frequency test fixture.

Coax to UTP Transition

Measurement set-up using input/output baluns

(3)

"Thru" Connection

Calibration reference planes

Baluns response calibration

(1)

(2)

Input coax

connector

ACP-6556 (loft) vs. ACP-656256 (right)

67

Fixture and Launch Considerations in Connecting to Balanced Structures

http://datasheets.maxim-ic.com/en/ds/MAX3873AEVKIT.pdf

/inritsu

References

Multi-Port Calibration Techniques for Differential Parameter Measurements with Network Analyzers Holger Heuermann, *Committee Member, IEEE, MTT-11* ROHDE & SCHWARZ WORKSHOP, EUMC 2003, OCTOBER 2003

Generalized Mixed-Mode S-Parameters Andrea Ferrero, *Member, IEEE, and Marco Pirola, Member, IEEE* IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 1, JANUARY 2006

Combined Differential and Common-Mode Scattering Parameters: Theory and Simulation David E. Bockelman, Member, IEEE, and William R. Eisenstadt, Senior Member, IEEE IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 7, JULY 1995

Mixed-Mode S-Parameter Characterisation of Differential Structures W. Fan, A. C. W. Lu, L. L. Wai and B. K. Lok STR/04/011/JT

Single-Ended and Differential S-Parameters MAXIM High-Frequency/Fiber Communications Group Application Note: HFAN-5.1.0 Rev 0; 03/01

Measuring Balanced Components with Vector Network Analyzer ZVB Rohde & Schwarz Application Note

Signal Integrity Basics Anritsu Field Application Engineers Anritsu Signal Integrity Basics White Paper_2009-04134

Transmission Line Basics II - Class 6 Michael Leddige Intel Bus Boot Camp

References

Network Analyzer Basics Agilent Technologies www.Agilent.com S-parameter Measurements with Multiport Balanced Test Sets Anritsu Company Lightning[™] and Scorpion®VNAs Application Note 11410-00329 Measurement of Longitudinal Balance North Hills[™]Signal Processing Corp Application Note # 156 PCB Design for SI and EMC of Gb/s Differential Transmission Lines Keith Armstrong, Cherry Clough Consultants 5th June 2008 **De-Mystifying Cabling Specifications** Valerie Maguire, The Siemon Company TDR and VNA Techniques for PCB Characterization Dr. Eric Bogatin GigaTest Labs Sunnyvale, CA **TDR and VNA Measurement Primer TDA Systems** EE Times' Planet Analog, April 14th, 2004 S-parameter Measurements with the PSPL Model 4022 High-Speed TDR and TDT System Kipp Schoen, Picosecond Pulse Labs (PSPL), Boulder, Colorado, USA Correlation between VNA and TDR/TDT Extracted S-Parameters up to 20 GHz Cherry Wakayama, Jeff Loyer Intel Corp

References

A Comparison of Measurement Uncertainty in Vector Network Analyzers and Time Domain Reflectometers Paul Pino, Application Engineer W. L. Gore & Associates, Inc White Paper May 2010

Ultra-Wideband Differential Measurements Using PSPL BALUNs James R. Andrews, Ph.D., IEEE Fellow PICOSECOND PULSE LABS Application Note AN-8

Two-Port Balanced Network Measurements North Hills[™]Signal Processing Corp Application Note # 160

Agilent Signal Integrity Analysis Series Part 2: 4-Port TDR/VNA/PLTS Application Note 5989-5764EN

Time Domain Reflectometry (TDR) and S-parameters "Advanced Measurementsnot only Signal Integrity" – July 2009 LeCroy

<u>/inritsu</u>	Discover What's Possible®
Dennis Poulin Field Applications Engineer Americas Sales Region	
ANRITSU COMPANY 11 Mill Road, PO Box 717 Hollis, NH 03049 Phone: 603-303-3301 www.us.anritsu.com	Cell: 603-303-3301 E-mail: dennis.poulin@anritsu.com

