

Basics of Simulation Technology (SPICE), Virtual Instrumentation and Implications on Circuit and System Design

Patrick Noonan	Robert Berger	An Introduction
Business Development Manager	District Sales Manager – Long Island	
National Instruments	National Instruments	
Electronics Workbench Group		Presented at the IEEE –
patrick.noonan@ni.com	robert.berger@ni.com	Long Island Chapter on
cell. (207) 415-7754	phone. (516) 507-7001	10/25/2007

© 2007 National Instruments Corporation.

Agenda

- Introduction to SPICE
- What is Virtual Instrumentation?
- Using SPICE and Virtual Instrumentation Together
- Implications in Circuit and System Design (Demonstrations)
 - Circuit and Algorithm Development
 - Virtual Test
- Question and Answer

2

Introduction to SPICE

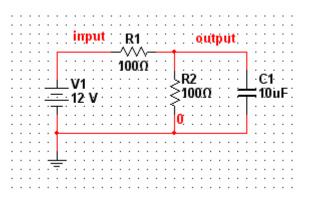
Circuit Simulation

- SPICE
- History
 - University of California at Berkeley- Larry Nagle
 - 1969 CANCER (Computer Analysis of Nonlinear Circuits Excluding Radiation)
 - 1972 SPICE 1
 - 1975 SPICE 2
 - 1985 SPICE 3
 - 1993 SPICE 3F4
- Popular Commercial Versions
 - Orcad PSPICE
 - LTspice/SwitcherCAD III
 - Multisim
 - TINA by DesigSoft

SPICE Introduction

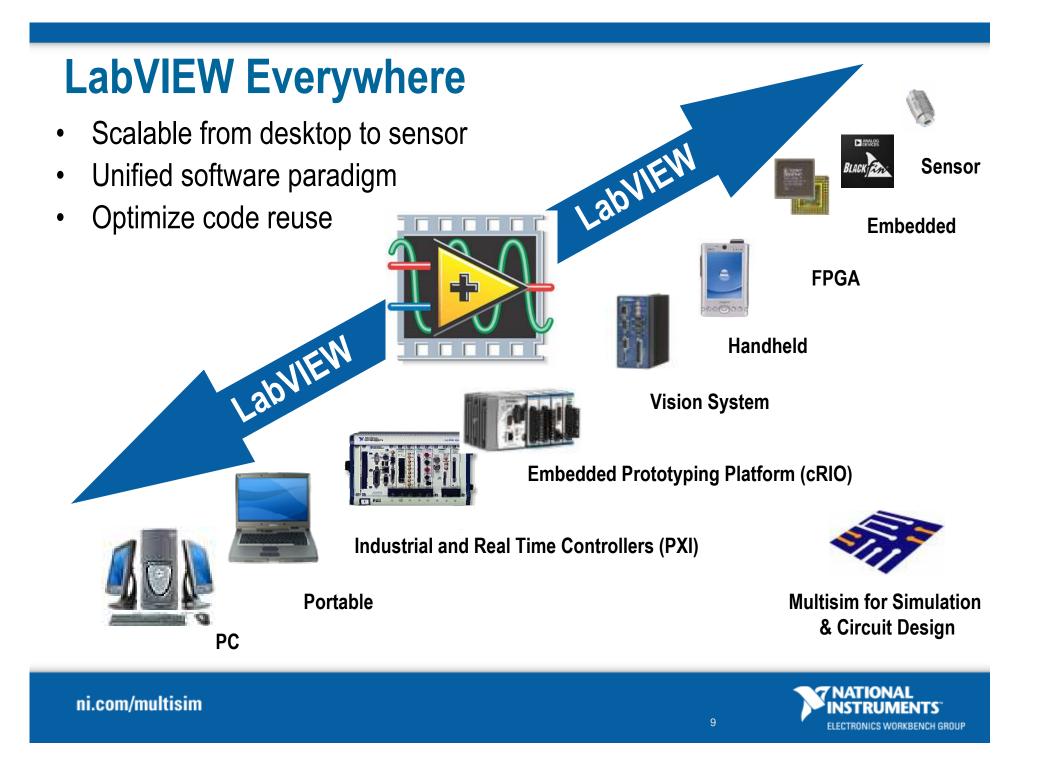
- SPICE
 - Simulation Program with Integrated Circuit Emphasis
 - Developed at University of California at Berkeley
 - Three revisions, SPICE-3F5 is current
- Other simulation technologies
 - XSPICE behavioral SPICE combines SPICE with component behavior in C
 - VHDL Programmable Logic Design
 - IBIS Used to model transfer function of sophisticated components (A/Ds, etc...)
 - PSPICE, HSPICE commercial variations of the Berkeley SPICE.

SPICE Primer

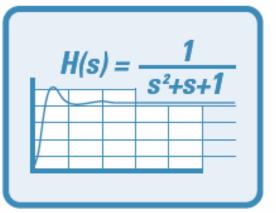

- SPICE Circuit
 - Built by creating a netlist of native SPICE primitive models.
 - Netlist is a text file that lists all connections and model information.
 - Schematic File
 - Vendor specific
 - May include package, footprint, and additional information
 - SPICE adds analysis commands on top of SPICE file allowing a SPICE simulation to extract information out of circuit (Transient, AC, Monte Carlo etc...)
- Variety of native SPICE components:
 - Resistors, Capacitors, Inductors, Sources, Transistors, etc...
- Subcircuit models
 - Can be derived to make higher order components out of these simple components

SPICE Examples

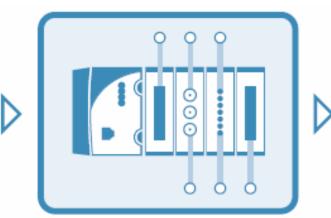
- Example SPICE netlist
 - R1 input output 100
 - R2 output 0 100
 - C1 output 0 0.00001
- Subcircuit models
 - Command ".subckt" describes start of model
 - Command ".ends" encloses end of circuit
 - Example
 - .subckt biplarjunctiontrans base collector emitter
 - R1 base n100 200
 - C1 n100 emitter 1.000E-9
 - D1 n100 emitter DX
 - e1 base n100 collector emitter 12.842917
 - R2 collector emitter 10
 - .MODEL DX D(IS=1e-15 RS=1)



Introduction to Virtual Instrumentation

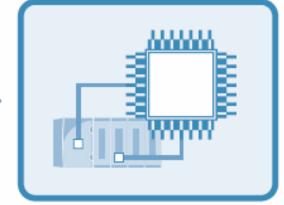

ni.com/multisim

8


Graphical System Design

Design

Algorithm Design


- System Identification
- Control Design
- Dynamic System Modeling
- Digital Signal Processing

Prototype

Tight Integration with I/O

- Off-the-Shelf Device
 Drivers
- LabVIEW Real-Time
- LabVIEW FPGA
- LabVIEW Embedded



Deploy

Deployable Devices

- PXI
- CompactRIO
- Single Board Computers
- Custom devices

- 1. Theory: Experience and Knowledge
- 2. Multisim and LabVIEW: Schematic, Simulation, Analysis, Real-World Input
- 3. Ultiboard: PCB Layout, Routing, Generation of Gerber Files
- 4. Prototype and LabVIEW: Virtual Measurement of Prototype

LabVIEW Toolkits

Advanced Control Design (,system ID, Control Design, dynamic system simulation, etc) Digital Filter Design (FIR / IIR Filter Design, Quantization, Fixed-point Modeling/Simulation, etc)		Order Analysis (Order Tracking, Spectrum Selection, Tachometer Processing, Waterfall, Orbit / Polar Plots, Bode Plots, etc) Spectral Measurements (Zoom FFT, Power-in-Band, Adjacent Channel Power, etc)
Advanced Signal Processing (Wavelets, Time-Series Analysis Time-Frequency Analysis, etc)	Sound and Vibration (Distortion, Octave Analysis, Swept Sine, Freq Measurements, Transient, S&V Level, Weighting, Waterfall Plot)	Modulation (Bit Error Rate, AWGN, Phase Noise, Constellation Plots, Eye Diagrams, etc)
Signal Processing (Signal Gen, Windows, Filters, Transforms, etc)	Mathematics (Numerics, Linear Algebra, Curve Fit, Prob/Stats, Optimization, Diff EQ, etc)	Measurements (Spectral, Tone Extraction, Pulse Params, Timing/Transition, Amp/Levels, etc)

Available Graphical System Design Tools – Design, Prototype and Deploy

• Design

- Electronics Workbench Multisim®
- NI-ELVIS with data acquisition
- LabVIEW and Design Toolkits
- PXI with Modular Instrumentation
- Signal Express

- Deploy
 - LabVIEW RT & FPGA
 - Compact RIO (cRIO)
 - LabVIEW Embedded
 - Electronics Workbench Ultiboard®

- LabVIEW RT & FPGA
 Compact RIO (cRIO)
- Custom cRIO module kit
- R Series DAQ

Prototype

Test Tools for Design Engineers

Traditional fixed functionality bench-top Tools

Engineer-defined computer based instrumentation

- 1. Automation (LabVIEW Signal Express)
- 2. Flexibility (Custom Measurements)
- 3. **Smaller Footprint**

Logic Analyzer

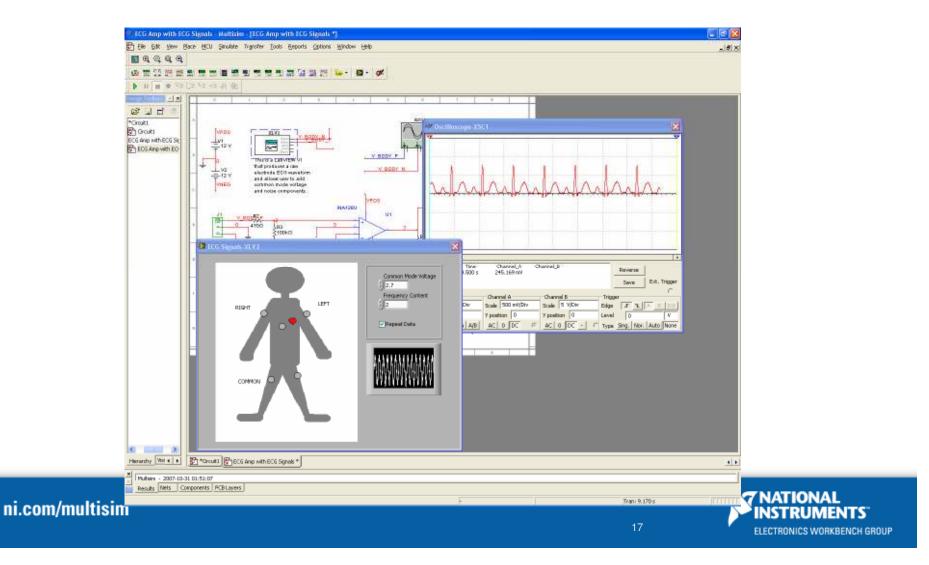
Function Generator

0.00

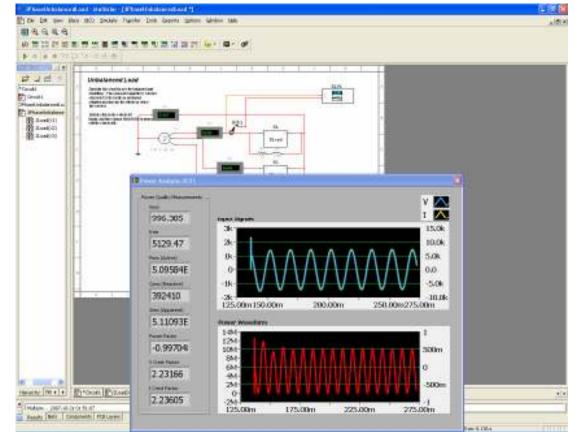
Power Supply

DMM

Implications in Circuit and System Design



Design Examples

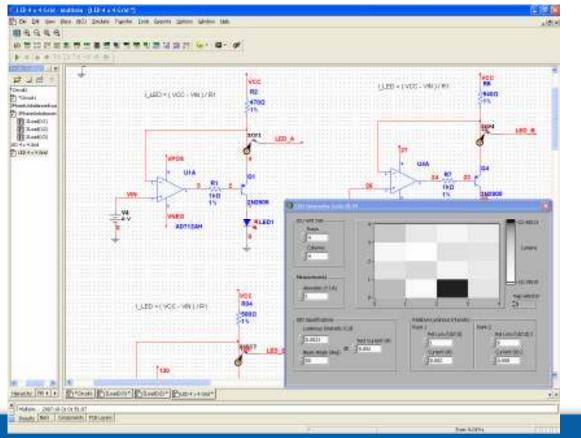

Example 1 : Using LabVIEW VI as a Signal Source

Real World Signals: LabVIEW ECG Signal Generation + Impairments
 for Physiological Amplifier Development

Example 2 : Using LabVIEW for Custom Measurements within SPICE

 Power Quality Analysis Measurements using LabVIEW inside of Multisim

ni.com/multisim

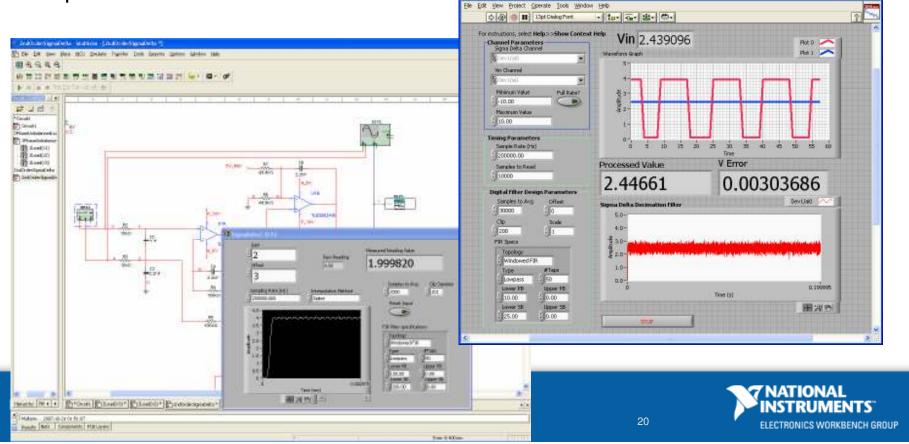

NATIONAL

INSTRUMENTS" ELECTRONICS WORKBENCH GROUP

8

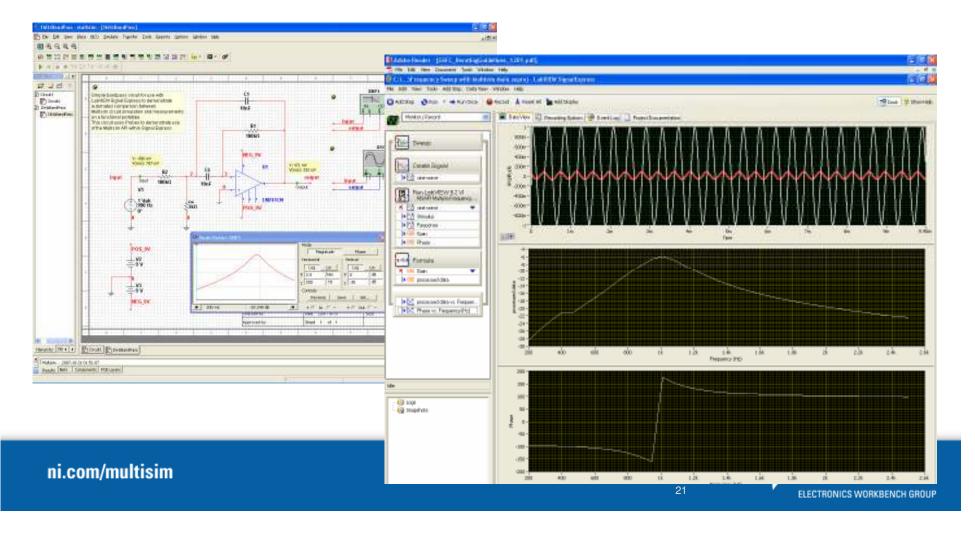
Example 3 : Physical Measurements from SPICE Simulation

Derived Physical Measurements from SPICE - Optical Uniformity
 Measurements (Lumens) on a 4x4 LED Array from SPICE Simulation


ni.com/multisim

NATIONAL

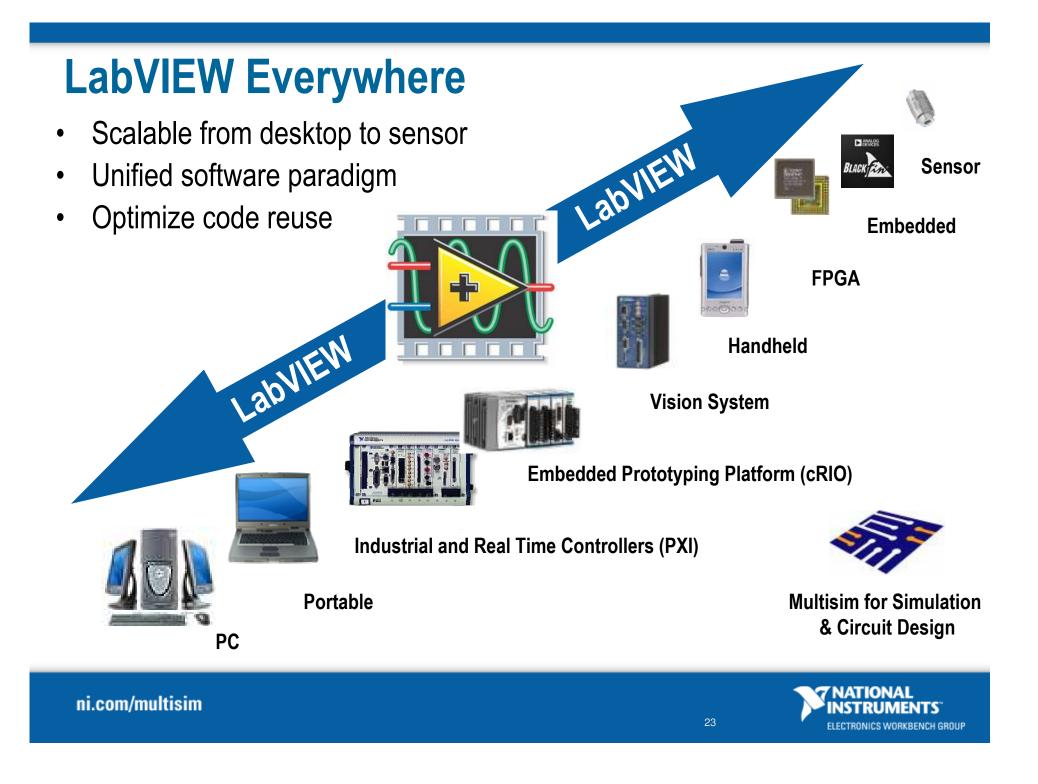
ELECTRONICS WORKBENCH GROUP


Example 4 : Using LabVIEW for DSP Filter Development within SPICE simulation

 Sigma Delta ADC – Circuit running in Multisim – LabVIEW used to design and implement DSP Filter. Test VI on right showing implementation of ADC and good agreement between input and processed values.

Example 5 : Virtual Device Testing

 Signal Express Test Script – Running 'Virtual Device' simulation in Multisim to compare and correlate simulation with real test data. This example uses LabVIEW to control Multisim via ActiveX API



NI Multisim Tutorial

[Not Given in Presentation]

see ni.com/multisim

Multisim and LabVIEW Integration

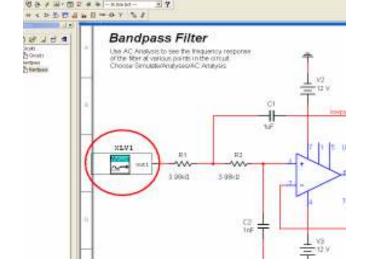
- Multisim
 - Great for rapid designing of a circuit (schematic entry and simulation)
 - Placement and wiring technology speeds development
 - Once circuit is wired simulation is ready to run.

LabVIEW

- Great for rapid development of test, measurement and automation (Flowchart)
- Over 4000 instrument drivers directly accessible for LabVIEW
- Once control and functions objects are wired, program is ready to run.

Multisim and LabVIEW

- Real stimulus signals can be directed added to circuit simulation
- Advanced LabVIEW measurements and algorithms can be tied into simulation
- LabVIEW can be used to 'drive' the prototype and verify the design specs!



How Easy is to use LabVIEW Virtual Instruments in Multisim?

- 1. Utilize LabVIEW to measure and save real-world signals
- 2. LabVIEW VIs represented as part of Multisim simulation. Simply place the VI as you would a component
- Input signals measured in in LabVIEW (step 1) into the VIs that are placed in Multisim (step 2)

4. Simulate!

OR – Create your own CUSTOM LabVIEW Instruments!

NI Multisim | Where to Learn More

- For product information: ni.com/multisim
- Professional Resources: ni.com/multisim/professional
- Academic Resources: ni.com/academic/circuits
- Circuit Design Technical Library
 - SPICE Simulation fundamentals
 - Example Circuits
 - Custom LabVIEW Virtual Instruments
 - User Guides and Manuals
 - Discussion Forum
 - Support Page
- Free Component Evaluation Multisim Analog Devices Edition ADI Edition: analog.com keyword search: multisim

a to he share by	10 (2 Sans 10 Sans 10 (2 - 14)	A NUMBER OF STREET		
PRITRUMENTS		(Transitions)		
terte di Santa di Pari	Andrea & Service Relations Corport & The Internet & Research Content & Direct Donat 1	Andrease Annual Annual Franks Company Allegare - Millington Annual Company		
41 Multisim		Contract III the paint and name		
Mar per La Fill Manhanne		NI Multisim 📁		
Technoolidees		Sealartine -		
Tert Bran Hollow	a la			
Nation of Designs	Poweki New 945 (her 12 Desiter Constraints	III East toffers Oaks		
taxet for other and coattine, was	rog Firsteds Destruins Academ do acage the Index anal vestigator with relative destruint a consistent. Tamés off a Robot factor a Inno	Macal, board Issesult with Autorouting optimies		
Faster Pro	- Fall	ane .		
	 Oranilard development pietherm 	4 Brightstening achievabilit traction it		
 Prevenera de veloparent pieders Debraratio capiteria entrattita encoderia 20.004 concentrati Circuit -rotación and social analisme Tall tuelle al analisme 	 Extension softwark in all provides Extension with rid Labor 200 have load 	e Detergination nable die Labolit 2014 der benet		
Schurtalic collect and MEER seculation Schurt workshiller Constructional and schul and	Consistent sector build provide Consistent with HE LaborEX for head Processive issues on Multiple	 TLADEr somparents Abler to arguet to sinisated for brying? 		

