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Introduction 

 Quartz crystals provide superior performance to most other 

resonator types and half been used widely since 1939 

 Small 

 Extremely high Q (>20,000 for AT, >1,000,000 for SC) 

 Superb temperature performance 

 

 Oscillator Types 

 XO 

 VCXO 

 TCXO 

 MCXO 

 OCXO 

 DCOCXO 
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Introduction 

 Quartz Crystal equivalent circuit 

 

 

 

 

 

 

 

 Crystal equivalent circuit 
 C1, R1, and L1 are the “Motional Parameters” 

 C0 holder capacitance 
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Introduction 

 Fractional Frequency Stability 

 Relative measure of frequency variation 

 

                 S=ΔF/F 

 
 i.e. (change in Freq. / Nominal Freq.) 

 

 Ex:  1Hz/100Hz = .01 = 1% 

         1Hz/1MHz = 1x10-6 = 1ppm 

         0.01Hz/10MHz = 1x10-9 = 1ppb 

 

 

 

 
5 



Introduction 

 TCXO (Temperature Compensated Crystal Oscillator) 

 

 Quartz has  natural frequency versus temperature 

response 

 

 Compensation circuit creates a temperature dependent 

voltage that changes the load capacitance the crystal 

sees 

 

 Classically done with thermistor resistor networks 

 

 Modern TCXO use a 5th order polynomial generator  
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Introduction 
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Generic TCXO Block Diagram 
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TCXO Introduction 

 Thermistor resistor network 

 

 

 

 

 

 

 

 

 Limitation on curve fitting 

 Manual selection of resistors 

 Difficult to miniaturize 
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TCXO Introduction 

 Polynomial Function generator 
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Conventional Crystal Packages 
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Modern Strip Crystal Packages 
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Artificial Neural Network Compensation 

 TCXO’s are limited in temperature stability 

performance because of the following factors: 

 Polynomial generator is limited in shape it can 

generate 

 Crystals are not perfect polynomials 

 

 Artificial Neural Network (ANN) is not inherently 

limited in shape 

 Can adapt to any shape  

 Just add neurons 
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Artificial Neural Network Overview 

 ANN Definition 

 

 A machine that is designed to model the way in which 

the brain performs a particular function or task of 

interest [4] 

 

 It achieves this function through the use of simple 

processing units called neurons 

 

 The ability to “learn” or modify its response to given 

stimuli 

14 



Artificial Neural Network Overview 

 Neuron Model 
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Artificial Neural Network Overview 

 Neuron Shorthand Model 
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Artificial Neural Network Overview 

 Neural Network Example 
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Activation Function Overview 

 Activation Function can be any function 

 Unipolar sigmoid has been chosen 
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Activation Function Overview 

     controls the slope  

 

     controls the amplitude  

 

     controls the delay (left/right position) 
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b



Activation Function Overview 

     controls the amplitude  
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Single Neuron Output (Sigmoid Activation Function)
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Activation Function Overview 

     controls the slope  

 

21 


Single Neuron Output (Sigmoid Activation Function)
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Activation Function Overview 

     controls the delay (left/right shift)  
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Single Neuron Output (Sigmoid Activation Function)
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ANN Temperature Compensation 

 TCXOs compensation (-40 to +85 
 

C) 

 Thermistor resistor networks (+/-1.0ppm) 

 Polynomial function generator (+/-0.1ppm) 

 

 ANN provides superior curve fitting 

 +/-0.005ppm (-40 to +85 

 

C) 
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ANN Temperature Compensation 

 Network Configuration 
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ANN Curve Fitting Example 

 Two Neurons and Linear Summer 
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ANN Curve Fitting Example 

 Two Neurons and Linear Summer 
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ANN Temperature Compensation 

 Block Diagram 
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ANN Temperature Compensation 

 Hardware Block Diagram 

 

28 



ANN Temperature Compensation 

 Actual Hardware 
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ANN Temperature Compensation 

 Used GRI 5mm x 7mm TCXO 

 Ceramic package 

 

 Uncompensated 

 ANN is primary compensation 

 

 Compensated 

 ANN is secondary compensation 
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ANN Compensation Results 

 Uncompensated performance 

 Stability of +/-15.74 ppm from -42 to +86 

 

C  
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ANN Compensation Results 

 ANN as primary compensation (25 neurons) 

 Stability of +/-0.035 ppm from -42 to +86 

 

C  
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ANN Compensation Results 

 5th Order compensated performance 

 Stability of +/-0.102 ppm from -42 to +86 

 

C  
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ANN Compensation Results 

 ANN as secondary compensation (33 neurons) 

 Stability of +/-0.005 ppm from -42 to +86 

 

C  
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ANN Compensation Results 
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ANN Temp Comp Summary 

 ANN as primary compensation needs new 

oscillator design 

 

 ANN as secondary compensation has better 

stability than many small ovens  

 

 Both have better stability than polynomial 

compensation 
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ANN Temp Comp Summary 

 TCXO Phase Noise performance 

 

 Multiple inputs could allow compensation of 

other environmental effects 

 Trim effect 

 

 Thermal Hysteresis 

 

 Warm-up 

 

 Aging 
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Trim Effect Compensation 

 Trim effect is a skewing of frequency versus 

temperature performance 

 

 Caused by being at a different point on the 

varactor reactance curve than when 

compensated 

 

 This degradation exists in all tunable xtal 

oscillators, but rarely specified anymore. 
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Trim Effect Compensation 

 Frequency versus load capacitance 
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Trim Effect Compensation 

 Trim Effect on Polynomial Generator 
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Trim Effect Compensation 

 Two input ANN for trim compensation 
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Trim Effect Compensation 

 Two input sigmoid response 
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Trim Effect Compensation 

 Trim effect compensation block diagram 
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Trim Effect Compensation 

 Trim Effect Compensation Hardware 
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Trim Effect Compensation 

 ANN temperature compensation applied first 
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Trim Effect Compensation 

 Baseline trim effect  
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Trim Effect Compensation 

 Trim Effect Compensation  
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Trim Effect Summary 

 ANN compensation of trim effect very effective 

 

 +/-20ppb relatively easy to achieve 

 

 Temp/trim compensation could be achieved as 

single ANN 

 

 Practically easier to implement as a separate 

network 
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Hysteresis Compensation 

 Thermal Hysteresis is a difference in the 

frequency versus temperature performance 

depending on thermal history 

 Temperature change and rate are both factors in 

thermal hysteresis 

 Rate causes an apparent hysteresis due to 

mismatch of the temperature sensor and the 

resonator 

 Temperature change causes “true” hysteresis 

which is thought to be stress induced 
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Hysteresis Compensation 

 TCXO’s are compensated by sweeping 

temperature and calculating solution, then 

repeating… 

 

 Different manufacturers choose different profiles 

Hot to Cold versus Cold to Hot 

 

 Greenray compensates Hot to Cold to eliminate 

moisture  issues 
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Hysteresis Compensation 

 Both “true” and “apparent” hysteresis need to be 

compensated  

 

 Very difficult because it is not trivial separating 

true from apparent hysteresis when various turn 

around points are encountered 

 

 More research needs to be done to gain an 

understanding of the mechanics of hysteresis  
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Hysteresis Compensation 

 Example of quartz thermal hysteresis 
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Hysteresis Compensation 

 Rate Effects 
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Hysteresis Compensation 

 Hysteresis compensation block diagram 

 

54 



Hysteresis Compensation 

 Hysteresis compensation block diagram 

 

55 



Hysteresis Compensation 

 Hysteresis at different turn around points (same rate) 
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Hysteresis Compensation 

 Hysteresis Comp  
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Hysteresis Summary 

 Partially reduced to practice 

 

 Need to better understand the effect thermal 

history has on frequency 

 

 Need to isolate rate effects (apparent hysteresis) 

from hysteresis (true hysteresis) 
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Aging/Warm-up Compensation 

 Aging is the long term frequency drift that takes 

place in quartz oscillators 

 “Good” aging is a  positive trending natural log 

function  

        f(t)=A(ln(Bt+1)+fo 

 

 “Bad” aging is a negative trending natural log 

function or negative linear function 

 Bad aging can come from outgassing of 

contaminants that mass load the blank (mass to 

frequency relationship is inverse) 
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Aging/Warm-up Compensation 

 Aging Plot (40MHz 9mmx7mm oscillator) 
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Aging/Warm-up Compensation 

 Warm-up Plot (≈27MHz oscillator) 
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Aging/Warm-up Compensation 

 Has not been reduced to practice 

 

 Although different phenomenon aging and 

warm-up could use a common ANN structure for 

compensation 

 

 Need to keep track of elapsed on time and off 

time    
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Aging/Warm-up Compensation 

 Proposed circuit block diagram  
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Aging/Warm-up Summary 

 Has not been reduced to practice 

 

 Difficulty in keeping track of off time 

 

 Might be viable for specific application with fixed 

amounts of off time 
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Conclusions 

 ANN is a superior curve fitter to any method 

currently or previously used in frequency control 

 For temperature compensation an order of 

magnitude improvement has been realized over 

other state of the art methods 

 For trim effect it provides a compensation that 

makes the DUT virtually immune to trim effect 

(most manufacturers ignore it) 

 Hysteresis is present on all crystal oscillators to 

some degree 
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Conclusions 

 With the ANN temperature compensation the 

hysteresis dominates as the source of error 

 Needs more research to better understand the 

phenomenon before compensation can be fully 

realized 

 Aging/WU compensation is also desirable 

 Difficulty in dealing with off time 

 Maybe suitable for fixed off time applications 
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Conclusions 

 ANN could be used for even more frequency 

control applications 

 Very versatile due to its adaptive nature 

 Not inherently limited in shape factor 
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Thank You 

 Questions 

 

 Comments 

 

 Concerns 
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