

Steps in Designing Shielded Enclosures

Praveen Pothapragada
Chief Engineer
Equipto Electronics Corporation
351 Woodlawn avenue
Aurora IL 60506
PH: 630-859-7840 X 122

Email: praveen@equiptoelec.com

Outline

- Reasons for EMC
- Ways of Reaching EMC
- Company Background
- Standards
- Design of Shielded Enclosures
- Testing results
- Questions

Why do we need EMC?

- Unintentional Electro Magnetic Interference.
- Intentional Electro Magnetic Interference.

Unintentional EMI

Why do we need EMC?

- Unintentional Electro Magnetic Interference.
- Intentional Electro Magnetic Interference.

EMP SUITCASE

COMPACT 2100 SERIES

APELC proudly introduces the latest compact directed-energy solution. This portable and rugged Gigawatt-class source generates high-amplitude electric fields suitable for affecting electronics and testing system vulnerabilities. The development of APELC's EMP Suitcase was driven by input from DoD groups that required a powerful, reliable, compact EMP source capable of disabling or defeating electronics.

Repetetive Autonomous HPM-Test Source (DS110B)

120 MW Test Source

Autonomous device with

- integrated NiCad's
- Activation system
- Control electronics
- Charger / Service Unit

Availability

- **DS110B 3 Months**

Car Stopper

Performance Data DS110B

Electrical: Radiated Power ~250 MW

Radiated Field ~120 kV/m @ 1 m

Pulse Width < 10 ns

Frequency Range100-300 MHz

Band Width 20% Rep Rate 5 pps

Features:

- Portable
- Autonomous
- Omnidirection/Directional
- Short Range (2-20m)
- Tuneable Frequency Range

Application (Example)

- Destruction of electronic equipment and industrial production lines
- Neutralization of
 - Automotive electronics (car stopper)
 - Surveillance systems (Cameras, Sensors, etc.)
 - Control systems (e.g. industrial controllers)
 - Electronic mines
 - Computer, IT components
 - Television, monitors, radios,

telephones

Repetetive Autonomous HPM-Test Source (DS110B)

120 MW Test Source

Autonomous device with

- integrated NiCad's
- Activation system
- Control electronics
- Charger / Service Unit

Availability

- DS110B 3 Months

Car Stopper

Performance Data DS110B

Electrical: Radiated Power ~250 MW

Radiated Field ~120 kV/m @ 1 m Pulse Width < 10 ns

Frequency Range100-300 MHz

Band Width 20% Rep Rate 5 pps

Features:

- Portable
- Autonomous
- Omnidirection/Directional
- Short Range (2-20m)
- Tuneable Frequency Range

Application (Example)

- Destruction of electronic equipment and industrial production lines
- Neutralization of
- Automotive electronics (car stopper)
- Surveillance systems (Cameras, Sensors, etc.)
- Control systems (e.g. industrial controllers)
- Electronic mines
- Computer, IT components
- Television, monitors, radios,

telephones

Ways of reaching EMC

- At the component level (e.g.: Individual PC boards or chassis)
- Shielded enclosures
- Anechoic Chambers, Shielded Rooms and Faraday Cages.

Advantages of Shielded Enclosures

- Can be incorporated after the system is designed.
- Portable compared to Shielded rooms.
- Can be a less expensive solution compared to shielding individual components or the shielded rooms.

Applications of Shielded Enclosures

- Data centers where we need redundancy
- Industrial production lines for critical operations
- Department of Defense (protect communications)
- Other applications where EMC is critical

Company Background

- Started in 1960, EEC specializes in modular design for electronic packaging solutions.
- Our sheet metal fabrication facility is spread over 125,000 sq.ft in Aurora IL and has 50 employees.
- We specialize in custom solutions for shielded, shock and vibration and seismic applications.
- Our Shielded enclosure line started over 25 years ago.

EMC Standards

- IEEE-299-2006
- MIL-STD-461
- NSA 94-106
- FCC Part 15
- Tempest
- MIL-STD-188 (HEMP)

Design of Shielded Enclosures

- Selection of Enclosure Material
- Galvanic Compatibility
- Selection of Gaskets
- Input/Output
- Testing

- Radiated Emissions/Susceptibility?
- Shielding levels required.
- Thickness of material.
- Other mechanical properties

Radiated Emissions/Susceptibility?

For Radiated Emissions we want to choose a material that absorbs (e.g C.R.S or Stainless Steel).

For Susceptibility we want to choose material that reflects (e.g Aluminum).

Shielding levels required.

Attenuation (
$$dB$$
) = $20Log_{10}$ $\left(\frac{Field\ Strength\ Without\ Enclosure}{Compliant\ Field\ Strength}\right)$

Repetetive Autonomous HPM-Test Source (DS110B)

120 MW Test Source

Autonomous device with

- integrated NiCad's
- Activation system
- Control electronics
- Charger / Service Unit

Availability

- DS110B 3 Months

Car Stopper

Performance Data DS110B

Electrical: Radiated Power ~250 MW

Radiated Field ~120 kV/m @ 1 m Pulse Width < 18 ns

Frequency Range 100-300 MHz

Band Width 20%
Rep Rate 5 pps

Features:

- Portable
- Autonomous
- Omnidirection/Directional
- Short Range (2-20m)
- Tuneable Frequency Range

Application (Example)

- Destruction of electronic equipment and industrial production lines
- Neutralization of
 - Automotive electronics (car stopper)
 - Surveillance systems (Cameras, Sensors, etc.)
 - Control systems (e.g. industrial controllers)
 - Electronic mines
 - Computer, IT components
 - Television, monitors, radios,

telephones

• Shielding levels required.

Attenuation (dB) =
$$20Log_{10}$$
 $\left(\frac{Field\ Strength\ Without\ Enclosure}{Compliant\ Field\ Strength}\right)$

Shielding Effectiness (dB) =
$$20 Log_{10} \left(\frac{120 \times 10^3}{5} \right) \approx 88 \text{ dB} @ 300 \text{ MHz}$$

FIGURE RE102-4. RE102 limit for ground applications.

$$S.E(dB) = A + R + B$$

A
$$(dB) = 3.338 \times 10^{-3} \times t \sqrt{\mu fG}$$

$$R_{E} (dB) = 353.6 + 10\log_{10} \frac{G}{f^{3} \mu r_{1}^{2}}$$
 r₁- distance between shield (in) thickness (mils)

G – relative conductivity (copper)

f – frequency (Hz)

μ - relative permeability (free space)

r₁- distance between source to

$$R_{H} (dB) = 20 \log_{10} \left(\frac{0.462}{r_{1}} \sqrt{\frac{\mu}{Gf}} + 0.136 r_{1} \sqrt{\frac{fG}{\mu}} + 0.354 \right)$$

$$R_P (dB) = 108.2 + 10 \log_{10} \frac{G \times 10^6}{\mu f}$$

Other mechanical properties

- Weldability
- Formability
- Availability
- Protection against magnetic fields (Aluminum, 300 series Stainless steels)

Design of Shielded Enclosures

- Selection of Enclosure Material
- Galvanic Compatibility
- Selection of Gaskets
- Input/Output
- Testing

MIL-F-14072 D (ER)

TABLE VI. Compatible couples.

Group	Metallurgical Category		Anodic Index	
No.		(Volt)		(see note below)
1	Gold, solid and plated;	+0.15	0	Q
. !	gold-platinum alloys;	ļ		
1	wrought platinum			
2	Rhodium plated on silver-	+0.05	10	ф Q
	plated copper			
3	Silver, solid or plated;	0	15	• • •
	high silver alloys			<u> </u>
4	Nickel, solid or plated;	-0.15	30	• • •
Į į	monel metal, high-nickel-]	1 1
/ <u> </u>	copper alloys			
5	Copper, solid or plated;	-0.20	35	
	low brasses or bronzes;	l .]	1 1
	silver solder; German sil-	1	l i	1 1 1
1	very high copper-nickel	1	İ	
i l	alloys; nickel-chromium	1	j j	
l i	alloys; austenitic corro-	1	l i	i
ii	sion-resistant steels			
6	Commercial yellow brasses	-0.25	40	
i	and bronzes			i - 1 1 1
7	High brasses and bronzes;	-0.30	45	
Ì	naval brass; Muntz metal	i	i i	
8	18% chromium type corro-	-0.35	50	
i	sion-resistant steels			i IIII
9	Chromium plated; tin plat-	-0.45	60	
_ i	ed; 12% chromium type cor-		i s	
i	rosion-resistant steels			i <u>1</u> 111
10	Tin-plate; terneplate;	-0.50	65	
	tin-lead solder	0.00		7 7 7 7 7
11	Lead, solid or plated;	-0.55	70	
i	high lead alloys		, ,	• • • • • • • • • • • • • • • • • • • •
12	Aluminum, wrought alloys	-0.60	75	
i	of the 2000 Series	0.00	,,,	1111
13	Iron, wrought, gray or	-0.70	85	*
i	malleable; plain carbon	3		7 7 7 7 7
i	and low alloy steels.	i i	*	
i	armco iron	i		1 1 1 1
14	Aluminum, wrought alloys	-0.75	90	1111
- · i	other than 2000 Series	0.,0		~ ~ ~ ~ ~ ~ ~
i	aluminum, cast alloys of	i	1	
i	the silicon type		ļ	
15	Aluminum, cast alloys other	-0.80	95	T T T T
	than silicon type; cadmium,	-0.00	33	· ·
ł	plated and chromated	i	ł	· ·
16	Hot-dip-zinc plate; galva-	-1.05	120	
	nized steel	-1.05	120	● γ
17	Zinc, wrought; zinc-base	-1.10	125	
17	die-casting alloys; zinc	-1.10	129	•
ł	plated	!	!	
18	Magnesium & magnesium-base	-1.60	175	
10		-1.00	1/2	. •
Notos	alloys, cast or wrought			

Note: o indicates the most cathodic members of the series; ● indicates an anodic member; Arrows indicate the anodic direction.

Design of Shielded Enclosures

- Selection of Enclosure Material
- Galvanic Compatibility
- Selection of Gaskets
- Input/Output
- Testing

Selection of Gaskets

- Reason for having gaskets
- Type of opening
 - Wiping or compression
- Shielding effectiveness
- Galvanic Compatibility

Door Opening Design

Advantages:

- High level of Shielding Effectiveness
 Disadvantages:
- Must be manufactured precisely.
- Use of heavier gauge material.

Design of Shielded Enclosures

- Input/Output
 - Vents
 - Power Line Filters
 - Connectors

Vents

Example: Determine SE @ 10 GHz for 1/8"Honeycomb 1" Long.

Cutoff Frequency
$$C = \frac{6.92}{D} = \frac{6.92}{0.125} = 55.36 \text{ GHz}$$

Since 10 GHz < 55.36 GHz the honeycomb is usable.

SE
$$(dB) \approx \frac{32 \times L}{D} \approx \frac{32 \times 1}{0.125} \approx 256 \, dB$$

Rule of thumb for vents

$$\frac{L}{D} \ge 5$$

Design of Shielded Enclosures

- Input/Output
 - Vents
 - Power Line Filters
 - Connectors

Design of Shielded Enclosures

- Selection of Enclosure Material
- Galvanic Compatibility
- Selection of Gaskets
- Input/Output
- Testing

Testing

- IEEE-299-2006
- NSA 94-106

Shielding Effectiveness Test Report

Tests Performed on an Equipto R6 Shielded Equipment Cabinet Radiometrics Document RP-6717A

Test Specifications IEEE-299-2006								
Tests Performed For: Equipto Electronics 351 Woodlawn Avenue Aurora, Illinois 60506-9988			Test Facility: Radiometrics Midwest Corporation 12 East Devonwood Romeoville, IL 60446					
Test Date(s): March 12 – March 22, 2010								
RP-6553 Revisions:								
Rev.	Issue Date	Affected Pages	Revised By					
0	August 24, 2010							

Equipto R6 Magnetic Field Shielding Effectiveness

Shielding Effectiveness Test Report

Tests Performed on an Equipto R6 Shielded Equipment Cabinet Radiometrics Document RP-6717

Test Specifications NSA NO. 94-106 (24 October 1994) "National Security Agency Specification for Shielded Enclosures"							
Tests Pe	erformed For:		Test Facility:				
Equip	to Electronics		Radiometrics Midwest Corporation				
351 W	oodlawn Avenue		12 East Devonwood				
Aurora	, Illinois 60506-9988		Romeoville, IL 60446				
Test Date(s):							
March 8 through March 10, 2010							
RP-6717 Revisions:							
Rev.	Issue Date	Affected Pages	Revised By				
0	July 12, 2010						

ELECTROMAGNETIC ATTENUATION REQUIREMENTS

Plane Wave Shielding Effectiveness - Horizontal Polarization

Plane Wave Shielding Effectiveness - Vertical Polarization

References

- The design of shielded enclosures by Louis T. Gnecco
- Chomerics (EMI Shielding Theory)
- MIL-F-14072D
- NSA 94-106
- MIL-STD-461F
- EMPrimus SCADA/DCS Testing
- www.APELC.com
- www.diehl.de

Questions