

DPD for Everyone and by Everyone

Murthy Upmaka Ph.D Sr. Member IEEE

Murthy Upmaka IEEE-LI Feb 2012

Agilent Technologies

Agenda

About Digital Pre-Distortion (DPD)

DPD challenges for 4G/wideband systems

Design a PA that is more linearizable

Understand the limits of the DPD algorithm

Practical implementation

Some Results

Q&A

Problem Statement

How to handle signals with high Crest Factor, while driving the PA to operate with high PAE, while also having low signal distortion?

Solution Approach

Digital Pre-distortion Principles – Compressing PA

Digital Pre-distortion Principles – Pre-expansion

Digital Pre-distortion Principles – Linearized Result

Linear Operation with Time-varying Envelope

Nonlinear Operation – Peaks are Compressed

DPD Pre-Expansion – Peaks are Exaggerated

Condition signal w/Crest Factor Reduction (CFR)

DPD Net Result: *Linear Gain of Complex-valued RF Carrier Envelope Over a Specific Range of Power Levels*

AM-AM Effects (Change in Gain vs. Power level)

Definitions

- **AM-AM** : Change in Gain vs. Power level, compared to small-signal (*dB*(S21))
- AM-PM : Change in Transmission Phase, compared to small-signal (phase(S21))
- **CCDF**: Percentage of time a particular amplitude level spends above avg power

Additional issues: Memory Effects

Output is Dependent on Previous History: "Path Dependence"

Output waveform has an instantaneous 1:1 correspondence in time with input waveform

Output waveform depends on previous values

What Does a DPD Look Like? (Volterra Model)

Volterra series pre-distorter can be described by

$$z(n) = \sum_{k=1}^{K} z_k(n) \qquad \text{where} \qquad z_k(n) = \sum_{m_1=0}^{Q} \cdots \sum_{m_k=0}^{Q} h_k(m_1, \cdots, m_k) \prod_{l=1}^{k} y(n-m_l)$$

which is a 2-dimensional summation of power series & past time envelope responses

$$z(n) = h_0 + \sum_{m_1=0}^{Q} h_1(m_1) y(n-m_1) + \sum_{m_1=0}^{Q} \sum_{m_2=0}^{Q} h_2(m_1,m_2) y(n-m_1) y(n-m_2) + \dots$$

A memory polynomial pre-distorter uses the diagonal kernels of the Volterra series and can be viewed as a generalization of the Hammerstein pre-distorter. It is constructed using the indirect learning architecture, thereby eliminating the need for a model assumption and parameter estimation of the power amplifier. Compared to the Hammerstein pre-distorter, the memory polynomial predistorter has slightly more terms, but it is much more robust and its parameters can be easily estimated using a least-squares algorithm.

A full Volterra produces a huge computational load. People usually simplify it into:

- Wiener model
- Hammerstein model
- Wiener-Hammerstein model
- Memory polynomial model

Memory Polynomial Model

If only diagonal terms are kept in Volterra model, Volterra model becomes memory polynomial model.

$$z(n) = \sum_{k=1}^{K} \sum_{q=0}^{Q} a_{kq} y(n-q) |y(n-q)|^{k-1} \quad \dots \quad 4$$

If *Q=0, the structure in the equation degenerates to a memoryless polynomial.* Since the model in equation 4 is linear with respect to its coefficients, the predistorter coefficients *akq can be directly obtained using a least-squares algorithm* by defining a new sequence:

<i>u</i> (n) –	y(n-q)	y(n-q)	k-1
$u_{kq}(n) =$	G	G	

,where, K is Nonlinearity order and Q is Memory length

At convergence, we should have

where

$$\begin{split} &z = \begin{bmatrix} z(0), z(1), \dots, z(N-1) \end{bmatrix}^T \\ &U = \begin{bmatrix} u_{10}, \dots, u_{K0}, \dots, u_{1Q}, \dots, u_{KQ} \end{bmatrix}, \\ &u_{kq} = \begin{bmatrix} u_{kq}(0), u_{kq}(1), \dots, u_{kq}(N-1) \end{bmatrix}^T, \\ &a = \begin{bmatrix} a_{10}, \dots, a_{K0}, \dots, a_{1Q}, \dots, a_{KQ} \end{bmatrix}^T. \end{split}$$

z = Ua

The least-squares solution for (6) is

 $\hat{a} = (U^H U)^{-1} U^H z$

where (U)^H denotes the complex conjugate transpose matrix.

L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, "Memory polynomial predistorter based on the indirect learning architecture," in *Proc. of GLOBECOM*, Taipei, Taiwan, 2002, vol. 1, pp. 967–971.

DPD Principles – Memory Polynomial Model

How is it done in practice?

DPD Principles – Memory Polynomial Model

How do we select K (nonlinear order) and Q (memory length)?

- K is perhaps more tangible. When do you say "this amplifier is pretty nonlinear?"
- Q There are no golden rules yet. Mostly set up by experience.

"the unlinearized IMD total power normalized to the IMD power obtained after optimum static linearization" Is some times used as a metric for memory.

¹ João Paulo Martins et.al. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 12, DECEMBER 2006

Agenda

About Digital Pre-Distortion (DPD)

DPD challenges for 4G/wideband systems

Design a PA that is more linearizable

Understand the limits of the DPD algorithm

Practical implementation

Some Results

Q&A

DPD Challenges for 4G/Wideband Systems

Wider Bandwidth

Higher Crest Factor

Rapidly changing environment

- LTE-Advanced (100MHz) and 802.11ac (160MHz) are physically 5x-8x wider than previous generation
- Oversampling increases this bandwidth an additional 3x-5x
- Drives wider ADC/DAC, data rates, test equipment, & more
- Requires powerful embedded processors : DSP/FPGA/ASIC

Oversampling Increases the Measurement BW

Agilent Technologies

DPD Challenges for 4G/Wideband Systems

Wider Bandwidth

Higher Crest Factor

Rapidly changing environment

- Carrier aggregation increases PAPR (drives Efficiency down)
- Need to have compatibility with 3G signals.
- Highly-configurable signals (time-varying RBs) can lead to worst-case RF scenarios
- People apply Crest Factor Reduction differently....
 how to estimate the effect of CFR on your PA if *someone else* is doing the DSP?

The Effect of Carrier Aggregation on PAPR

Carrier Agg. Scenario	Link Type	Configuration	PAPR of single CC, before aggregation	PAPR with CCs, after aggregation
Scenario 1	FDD DL	4x20 MHz CCs	8.45 dB	9.98 dB
Scenario 2	TDD DL	5x20 MHz CCs	9.17 dB	11.71 dB
Soonario 4	FDD DL	2x20+2x20MHz	8.38 dB	9.58 dB
	FDD UL	20 + 20MHz	5.79 dB	6.86 dB

DPD Challenges for 4G/Wideband Systems

Wider Bandwidth

Higher Crest Factor

Rapidly changing environment

- LTE-Advanced, 802.11ac, and other Standards still changing
- IP issues: interoperability of signals, algorithms, channels, coded performance
- Closed DPD IP (no control)
- Availability of commercial DPD solutions
- Ecosystem & vendor re-alignments
- BB/RF hardware platform neutrality for local spectral variations, vendors, standards

Agenda

About Digital Pre-Distortion (DPD)

DPD challenges for 4G/wideband systems

Design a PA that is more linearizable

Understand the limits of the DPD algorithm

Practical implementation

Some Results

Conclusion

Q&A

PA Linearizability

- "I have a PA, but I do not know how linearizable it is."
- "I can not give an accurate model of my PA"
 - That captures non-linearity
 - Memory effects, short term and long term
 - Frequency response and
 - Noise
- "How do I exercise my degrees of freedom of my design?"
- "What technology/techniques are there for good PA modeling?"

Let us review: 1.Memory effects and 2.PA modeling

Manifestations of Memory Effects in Circuits Some examples

PA Linearizability

• PA modeling involves creating behavioral models:

Power-dependent S-parametersParallel HammersteinX-parameters currentVolterraStatic PolynomialRadial Bassis-function neural NetworkHammerstein

- All the above have either limitations or work for certain signals or too complex.
- Best two alternatives:
 - Fast Circuit Envelope (FCE) model -- limited to RFIC world (and not covered in this presentation).
 - Direct co-simulation avoid intermediate modeling altogether!

Time Domain Simulation

- Must sample the carrier frequency over at least one period of the modulation signal
 - Very small time steps
 - Long simulation time
 - Don't know if settled
- To display spectrum must compute FFT of large number of sample points

 Long computation
- No frequency-domain models (microstrip, S-parameters, etc.)

Step 1 - Transform input signal

Each modulated signal can be represented as a carrier modulated by an envelope - $A(t) \cdot e^{jf(t)}$

The values of amplitude and phase of the sampled envelope are used as input signals for Harmonic Balance analyses

Step 2 - Frequency Domain Analysis

An Harmonic Balance analysis is performed at each time step. This process creates a succession of spectra that characterize the response of the circuit at the different time steps.

Step 3 - Time domain Analysis

Circuit Envelope provides a complete non steady-state solution of the circuit through a Fourier series with timevarying coefficients $v(t) = real \left[\sum_{k=1}^{N} V_{k}(t) e^{j\omega_{k}t} \right]$

Extracting Information From Time Domain Data

Selecting the desired harmonic spectral line (fc in this case), it is possible to analyze:

- Amplitude vs. Time
 - Oscillator start up
 - Pulsed RF response
 - AGC transients
- Phase (ϕ) vs. Time (τ)
 - VCO instantaneous
 frequency (δφ/δτ), PLL
 lock time
- Amplitude & phase vs. time
 - Constellation plots
 - EVM, BER

Extracting Information From Frequency Domain Data

By applying FFT to the selected time-varying spectral line it is possible to analyze:

- Adjacent Channel Power Ratio (ACPR)
- Noise Power Ratio (NPR)
- Power added efficiency
- Reference frequency feed
 through in PLL
- Mixer intermods:
 - 3rd, 5th, 7th, 9th etc.

PA Modeling: A Direct Co-simulation Approach

Agenda

About Digital Pre-Distortion (DPD) DPD challenges for 4G/wideband systems Design a PA that is more linearizable Understand the limits of the DPD algorithm Practical implementation Some Results

Conclusion

Q&A

How to optimize the DPD algorithm?

DPD + Behavioral

• Potentially ignores memory effects and may not give best results

DPD + HW Amplifier

• How do we know the measurement set up is not the limiting factor?

DPD + Actual circuit simulation

• Opportunity to optimize circuit as well as the DPD algorithm concurrently

DPD (fixed point) + Actual circuit simulation

• Tells how much realistic efficiency is achieved that takes the DPD HW current consumption also.

Next --- Some Results

Agenda

About Digital Pre-Distortion (DPD) DPD challenges for 4G/wideband systems Design a PA that is more linearizable Understand the limits of the DPD algorithm Practical implementation Some Results

Conclusion

Q&A

Step by step to do DPD on a HW amplifier Presentation & Demonstration

Five Easy Steps! But lot of details

Create DPD Stimulus 2:	Capture DUT Response 3: DUT Model Ex	xtraction 4: DPD Response	5: Verify DPD Response	
Current Iteration 1				
FCarrier 83	36e6 Hz 🔻	SamplingRate	34.666e6	•
Clipping Parameters				
ClippingThreshold	1	Maximum Order	300	
Pass Frequency	4.5e6 Hz 🔻	Pass Ripple	0.1 dB	3
Stop Frequency	5e6 Hz 🔻	Stop Ripple	50 dB	3
I Branch Browse	C:\Users\mupmaka\Documents\	Q Branch Browse	C:\Users\mupmaka\Docun	nents'
Download Paramete	r			
RFPower -17.5	1014: dBm 🔻	PrimAddress	141.121.206.110	
TimeStart 0	ms 🔻	TimeStop	10 ms •	
Customized Wavefor	rm MXG/ESG			
• = 🔊	FORME THE	Download Wave	form Go To ESG Web Co	ontrol
SystemVice	Tank Indian	CCDF	PAPR	

Before you start DPD builder

- 1. Know the signal
- 2. Know your Power amplifier
- 3. Know the instruments
 - A. Signal Source
 - B. Signal Analyzer
- 4. Cable losses
- 5. DC bias source

Know CCDF of your signal

CDF PDF 120 100 Cumulative Probability 05 09 08 40 %Probability dP 0--1 0 1 dB above average 2 3 -2 -3 -2 -1 0 1 2 3 dB above average

Figure 2: Mathematical origin of CCDF

Know your Amplifier Gain and Gain compression

Agilent Technologies

Before you stat DPD builder

- 1. Know the signal
- 2. Know your Power amplifier
- 3. Know the instruments
 - A. Signal Source
 - B. Signal Analyzer
- 4. Cable losses
- 5. DC bias source
- 6. VSA (89600) software.

Five Easy Steps! But lot of details

SamplingRate	34.666e6	Hz •
Maximum Order	300	
Pass Ripple	0.1	dB
Stop Ripple	50	dB
Q Branch Browse	C:\Users\mupmaka\Do	cuments'
PrimAddress	141.121.206.110	
TimeStop	10 ms	•
Download Wave	form Go To ESG Web	Control
	SamplingRate Maximum Order Pass Ripple Stop Ripple Q Branch Browse PrimAddress TimeStop	SamplingRate 34.00060 Maximum Order 300 Pass Ripple 0.1 Stop Ripple 50 Q Branch Browse C:\Users\mupmaka\Doc PrimAddress 141.121.206.110 TimeStop 10 Download Waveform Go To ESG Web

Capture: configure the measurement samples

Iteration-1

Before you go any further, the VSA software must be able to make a standalone hardware measurement. Once VSA configured, then SystemVue's task is very simple. It just talks to the VSA, and anything the VSA can control.

Capture the PA output waveform

Iteration-1

Do a quick local measurement with the VSA to make sure that your PA is really operating.

Verify the true output power using the "Integrated BW Markers"

IMPORTANT Make sure that you have enough attenuation on the spectrum analyzer to prevent the PA from overloading the receiver front end.

5 FILES STORED:

Step2_PAOutputdata_Imag_Iter1.txt Step2_PAOutputdata_Real_Iter1.txt

Iteration-1

Ø DPD		CIPIC Model	Extraction a	
1: Create DPD Stimulus 2: Capture DUT onse	3: DUT Model Extraction	4: DPD Response	5: Verify DPD 2	ISE
Current Iteration 1 NumOfInputSamples 30000 MemoryOrder 4 Mod	Model Type lel Identification Algorithm	0: Memory Po 0: LSE using Q	lynomial 🔹	
$\sum_{i=1}^{k} a_{i,0} y(n) y(n) ^{i-1}$ $\sum_{i=1}^{k} a_{i,0} y(n-1) y(n-1) ^{i-1}$ $\sum_{i=1}^{k} a_{i,0} y(n-0) y(n-0) ^{i-1}$	<i>z(n)</i>	DPD Model Show DPD C	Extraction	
Show Results Image: Control of the second	AM-AM Jignment 0.37517735	PA AM-PM	DPD AM-P NMSE -49.6250610	'М)20684: dB

Iteration-1

End--Iteration 1

Ideally the DPD spectrum should coincide with the original signal spectrum excepting a gain difference. If the DPD has not improved the out put spectrum then we have to go back to step1.

Murthy Upmaka IEEE-LI Feb 2012

Agilent Technologies

Begin--Iteration 2

Current Iteration 2 FCarrier 835.6e6 Hz Samplin Clipping Parameters Clipping Threshold 1 Pass Frequency 4.5e6 Hz Pass Rip Stop Frequency 5e6 Hz Q Brance Download Parameter	igRate 2.1666e6 im Order 300 ople 0.1 50	Hz •
Current Iteration 2 1 FCarrier 835.6e6 Hz Samplin Clipping Parameters Samplin Maximu ClippingThreshold 1 Maximu Pass Frequency 4.5e6 Hz Pass Rip Stop Frequency 5e6 Hz Stop Rip I Branch Browse C:\Users\mupmaka\Documents\ Q Brance	ngRate 2.1666e6 nm Order 300 ople 0.1 50	Hz v dB dB
FCarrier 835.6e6 Hz Samplin Clipping Parameters Clipping Threshold 1 Pass Frequency 4.5e6 Hz Pass Rip Stop Frequency 5e6 Hz Stop Rip I Branch Browse C:\Users\mupmaka\Documents\ Download Parameter	ngRate 2.1666e6	Hz v dB dB
Clipping Parameters I Maximu Clipping Threshold I Maximu Pass Frequency 4.5e6 Hz Pass Rip Stop Frequency 5e6 Hz Stop Rip I Branch Browse C:\Users\mupmaka\Documents\ Q Brance	ople 0.1	dB dB
ClippingThreshold 1 Maximu Pass Frequency 4.5e6 Hz Pass Rip Stop Frequency 5e6 Hz Stop Rip I Branch Browse C:\Users\mupmaka\Documents\ Q Brance	ople 0.1	dB dB
Pass Frequency 4.5e6 Hz Pass Rip Stop Frequency 5e6 Hz Stop Rip I Branch Browse C:\Users\mupmaka\Documents\ Q Brance	ople 0.1	dB dB
Stop Frequency 5e6 Hz Stop Rip I Branch Browse C:\Users\mupmaka\Documents\ Q Brance	ople 50	dB
I Branch Browse C:\Users\mupmaka\Documents\ Q Brance		
Download Parameter	h Browse C:\Users\mup	pmaka\Documents
RFPower -1.0 dBm - 2 Prim/	Address 192.168.0.102	2
TimeStart 0 Time	eStop 20	ms v
Customized Waveform MXG/ESG		500 W L C
		ESG Web Control
System Vier	CCDF PAPR	

Iteration 2

DPD DPD					
1: Create DPD Stimulus	2: Capture DUT Response	3: DUT Model Extraction	4: DPD Response	5: Verify DPD Response	
Current Iteration	n 2 es 100000				
VSATrace	1: B 🔻	Setup Fi	ile C:\Users\m	upmaka\D Browse	
	Second Second		×		
Cantura PA Output		Capture Waveform			
Capture PA Output					
			} →		
		Capture Waveform			

Iteration 2

Iteration 2

End--Iteration 2

: Create DPD Stimulus	2: Capture DUT Response	3: DUT Model Extraction	4: DPD Response	5: Verify DPD Response	
Current Iteration Download Parameters	2				
RFPower -1.0	dBm 🔻	PrimAddress	192.168.0.102		
Time Start 0	ms v	Time Stop	20 ms	*	
	Customized W	aveform	MXG/ESG	This step is to dow original signal (with	nload the nout DPD) with
	Download Wavefo	Go To ESG	Web Control	the same RF power may also use the d waveform in step 1 the power in MXG/	r as step 4. You ownloaded . and change /ESG.
		•	} →		
8		Capture Wavefo	rm		
Show Results					

Let us review the steps

PA Circuit - DPD Algorithm in Simulation

Murthy Upmaka IEEE-LI Feb 2012

Agilent Technologies

Wideband platform

SystemVue with Modular PXI Instruments (Bandwidth ~250 MHz)

DPD of LTE-Advanced, Using M9330A/M9392A 4 x 20 MHz Contiguous CCs (80 MHz Signal BW)

DPD of LTE-Advanced, Using M9330A/M9392A 2 x 20 MHz + 20 MHz Non-contiguous CA (80 MHz Signal BW)

Source = M9330A AWG

Vector Analyzer = M9392A

- 12bits ADC

- up to 250 MHz bandwidth

PA Output Spectrum (Blue) PA+DPD Spectrum (Red) PA Input Spectrum (Green)

DPD of 802.11ac, Using M9330A/M9392A (80 MHz Option)

Source = M9330AAWG

Vector Analyzer= M9392A - 12bits ADC - up to 250 MHz bandwidth

PA Output Spectrum (Blue) PA+DPD Spectrum (Red) PA Input Spectrum (Green)

DPD of 802.11ac - Simulation

Murthy Upmaka IEEE-LI Feb 2012

Agilent Technologies

DPD of 802.11ac - Simulation

Murthy Upmaka IEEE-LI Feb 2012

Agilent Technologies

Agenda

About Digital Pre-Distortion (DPD) DPD challenges for 4G/wideband systems Design a PA that is more linearizable Understand the limits of the DPD algorithm Some Results

Conclusion

Q&A

Conclusion

- New bandwidth and linearity requirements are driving 4G designers to spec DPD earlier in their system designs
- The velocity of the industry is pushing DPD activity in-house, where designers are taking a more active role
- Cosimulation with actual circuit gives the ability to capture Memory effects
- Establishes the boundaries of DPD algorithm
- Enables good business decision on the selection of instrumentation

Further Information

About Wideband DPD

- Watch a demo: <u>http://www.youtube.com/watch?v=bocF6P74T9E</u>
- Read an app note: <u>http://cp.literature.agilent.com/litweb/pdf/5990-8883EN.pdf</u>

About Agilent Products

- http://www.agilent.com/find/eesof-systemvue-dpd-builder
- http://www.agilent.com/find/modular

Selected DPD References

- 1. Lei Ding, Zhou G.T., Morgan D.R., Zhengxiang Ma, Kenney J.S., Jaehyeong Kim, Giardina C.R., "A robust digital baseband predistorter constructed using memory polynomials", <u>Communications, IEEE Transactions</u> on, Jan. 2004, Volume: 52, Issue:1, page 159-165.
- 2. Lei Ding, "Digital Predistortion of Power Amplifiers for Wireless Applications", PhD Thesis, March 2004.
- 3. Roland Sperlich, "Adaptive Power Amplifier Linearization by Digital Pre-Distortion with Narrowband Feedback using Genetic Algorithms", PhD Thesis, 2005.
- 4. Helaoui, M. Boumaiza, S. Ghazel, A. Ghannouchi, F.M., "*Power and efficiency enhancement of 3G multicarrier amplifiers using digital signal processing with experimental validation*", <u>Microwave Theory and Techniques, IEEE Transactions on</u>, June 2006, Volume: 54, Issue: 4, Part 1, page 1396-1404.
- 5. H. A.Suraweera, K. R. Panta, M. Feramez and J. Armstrong, "*OFDM peak-to-average power reduction scheme with spectral masking*," Proc. Symp. on Communication Systems, Networks and Digital Signal Processing, pp.164-167, July 2004.
- Zhao, Chunming; Baxley, Robert J.; Zhou, G. Tong; Boppana, Deepak; Kenney, J. Stevenson, "Constrained Clipping for Crest Factor Reduction in Multiple-user OFDM", Radio and Wireless Symposium, 2007 IEEE Volume, Issue, 9-11 Jan. 2007 Page(s):341-344.
- 7. Olli Vaananen, "Digital Modulators with Crest Factor Reduction Techniques", PhD Thesis, 2006
- 8. Boumaiza, et a, "On the RF/DSP Design for Efficiency of OFDM Transmitters", *IEEE Transactions on Microwave Theory and Techniques*, Vol. 53, No. 7, July 2005, pp 2355-2361.
- 9. Boumaiza, Slim, "Advanced Memory Polynomial Linearization Techniques," IMS2009 Workshop WMC (Boston, MA), June 2009.

Recent DPD Resources from Agilent

App Notes

- <u>http://cp.literature.agilent.com/litweb/pdf/5990-8883EN.pdf</u> (Wideband DPD)
- <u>http://cp.literature.agilent.com/litweb/pdf/5990-7818EN.pdf</u> (3G/4G)
- <u>http://cp.literature.agilent.com/litweb/pdf/5990-6742EN.pdf</u>
- <u>http://cp.literature.agilent.com/litweb/pdf/5990-6534EN.pdf</u> (algorithms used)

Demonstration Videos

<u>http://www.youtube.com/watch?v=bocF6P74T9E</u> (Wideband DPD)

Webcasts

"High Performance Digital Pre-Distortion (DPD) for Wideband Systems" (Sept 2011)

http://www.home.agilent.com/agilent/eventDetail.jspx?ckey=2021229&pid=1475688&nid=-34360.0&lc=eng

"4G For Everyone: Extended RF Performance with DPD" (June 2010)

http://www.home.agilent.com/agilent/eventDetail.jspx?cc=US&lc=eng&ckey=1842093&nid=-11143.0.00&id=1842093

Murthy Upmaka IEEE-LI Feb 2012

Agilent Technologies