MICROCHIP **Digitally Enhanced Analog Power** Control **Presented by: Terry Cleveland**

Architecture and Applications Engineering Manager

- Digital Power Benefits
- Paying the Price for Digital Power
 - Has this limited the growth?
- Bridging the Gap from Analog to Digital or Digital to Analog?
- Introducing Digitally Enhanced Power Analog Solutions "DEPA"
- DEPA Applications
 - POL, LED Lighting, Battery Chargers and Intelligent DC/DC Converters

• Demo's

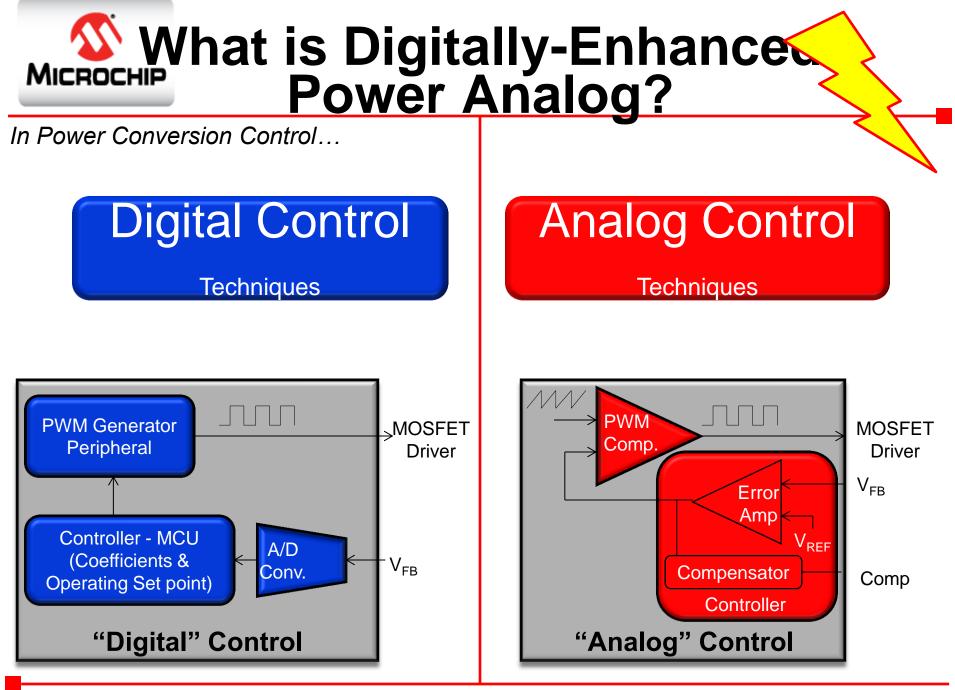
Digital Power Benefits

- Communication
- Flexible Configuration
 - UVLO, Startup, Shutdown
- Flexible Fault Handling
 - Over-Current, Over Voltage, Short Circuit

Intelligent

- Adapts to Changing Environments
- Adapts to different Loads

Reports Status and Diagnostics

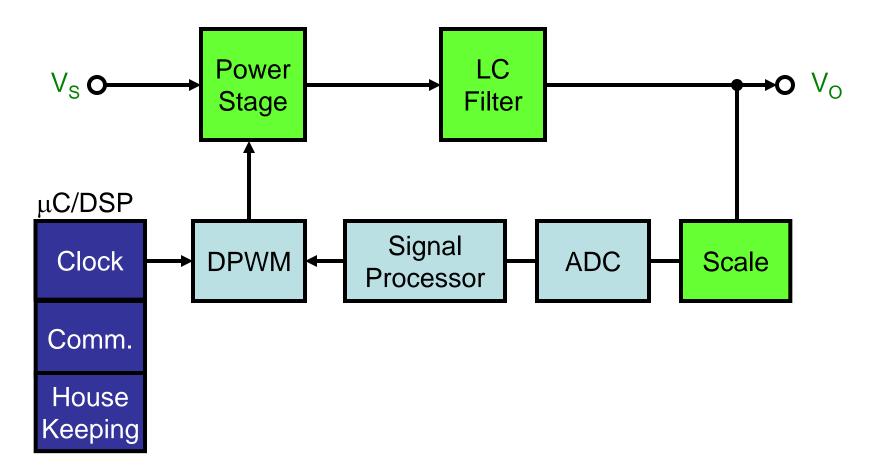

Increases Integration?

Microchip Technology Inc.

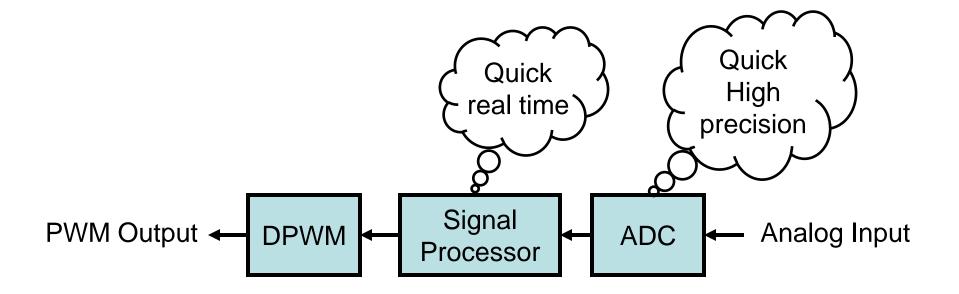
Price of Digital Power

- What's the cost?
 - Complexity, Speed and Integration
- Sense V_{OUT} / I_{PK} / V_{IN}?
- Dynamic Performance / Transient Response
- A/D Sampling Speed
- Hardware PWM Resolution
 - Example
- Is Digital Control Digital Power?
- Digitally Enhanced Power Analog
 - Analog Power Drawbacks

Microchip Technology Inc.



Digital Loop Closure



Digital Loop Closure

• Digital Control

Microchip Technology Inc.

MICROCHIP

Analog-to-Digital Converter

- Produces digital data that represents output voltage and / or current
- Resolution and ADC reference voltage set the precision to which the output can be maintained
 - Finite resolution leads to quantization effects

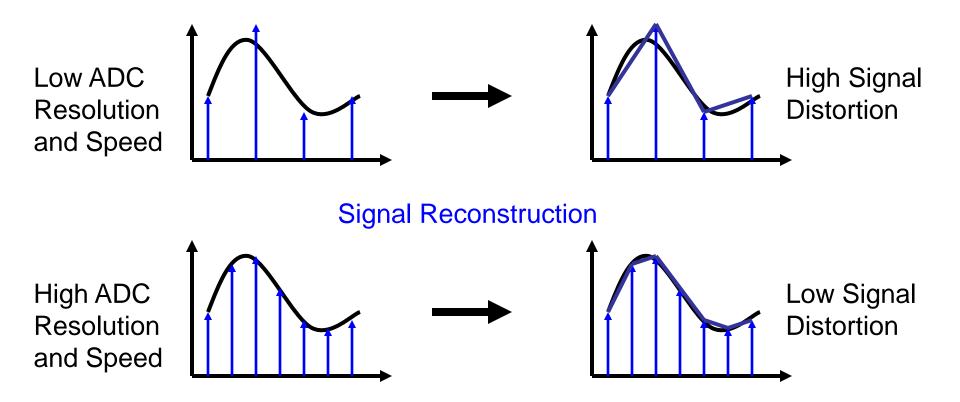
• Digital Pulse Width Modulator

- Performs same drive signal generation as its analog counterpart
- Does so by "calculating" and then "timing" the desired ON and OFF periods
 - Finite resolution leads to quantization effects

Quantization Effects - A digital phenomenon

- Analog control provides "infinite" resolution
 - Limited by loop gain, thermal effects, and system noise
- Digital control provides a finite set of discrete "set points" resulting from the resolution of the "quantizing elements" in the system
 - Two elements in this represented example: ADC and DPWM

Quantization Effects - ADC


- Resolution is defined as the number of states that can be uniquely represented
 - n bit resolution can assume 2ⁿ states
- ADC resolution ensures that the set point tolerance can be met

Example: $V_0 = 3.3V + 1\%$ Required resolution = $\Delta V_0 = 1\%$

ADC bits required = n = int
$$[\log_2(V_O / \Delta V_O)]$$

= int $[\log_2(100)] = 7$

Quantization Effects - ADC

Quantization Effects - DPWM

- Minimum required number of DPWM states equals 2ⁿ⁺¹
 - If less, the system will appear to hunt for a stable output value
- System clock sets the maximum number of bits that can be generated in a fixed time period

Example1: ADC Resolution = 7 Required DPWM resolution = 8 Desired switching frequency = 1MHz Required system clock = 1MHz * 2⁸ = 256MHz !!

Maximum switching speed = $30MHz / 2^7 = 234kHz$

• "Control" Law Processor

- Typically a PI or PID (Proportional Integral Derivative) style
 - Controls dc level and dynamic response characteristics of the control loop
 - Represented as mathematical coefficients; manipulated to adjust system performance
- Translates digital representation of output voltage into pulse duration (duty cycle) information used by the DPWM
- Does not affect the resolution of the system

Advantages

- "Tunable" system onthe-fly
- Independent of thermal drift, aging, and component tolerance limitations
- Precise control loop related parameters

Disadvantages

- Quantization errors
- Limited system switching frequency

Has Digital Control Slowed the Adoption of Digital Power?

• "Non-Digital Power Applications"

Point of Load Converters

- Limited in Power, Size, Cost and Efficiency are highly valued
- DC/DC LED Drivers
 - Application Drives Feature Set
 - Dimming / Diagnostics / Binning / Temp Comp
- DC/DC Battery Charging
 - Intelligence, Programmability, Wide Range of Power
- "Smart DC/DC Converters"

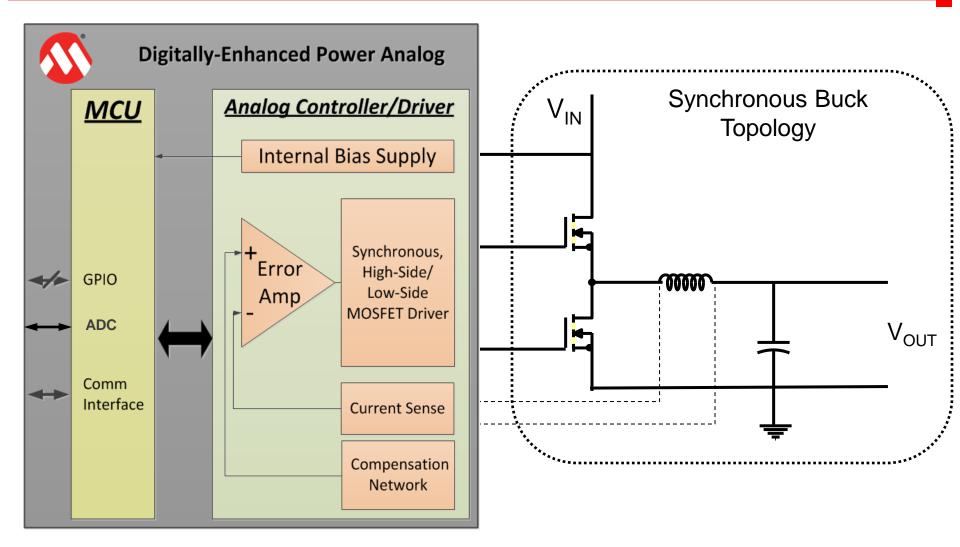
Bridging the Gap

What's Wrong with Analog Solutions?

- No Flexibility
- No Adaptability
- No Communication
- No Intelligence...

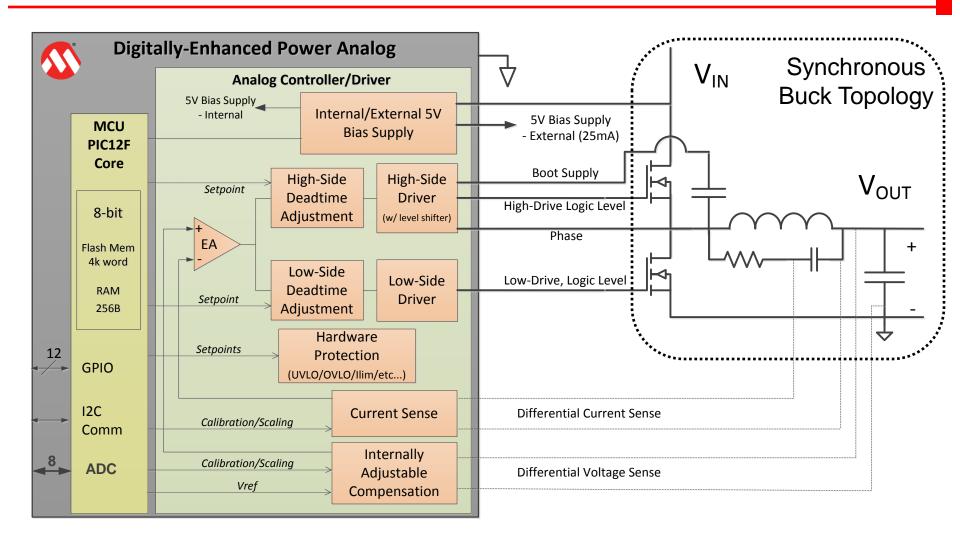
Adding Intelligence to Analog

- Unique Technology
- Design Tools / Programmers
- PIC Micro...Mid Range Core Versatility
- Add Analog Process
 - Different than Digital Process
- Add High Voltage Capability
- Add NDMOS for Efficiency
- Add Proprietary Integrated Features

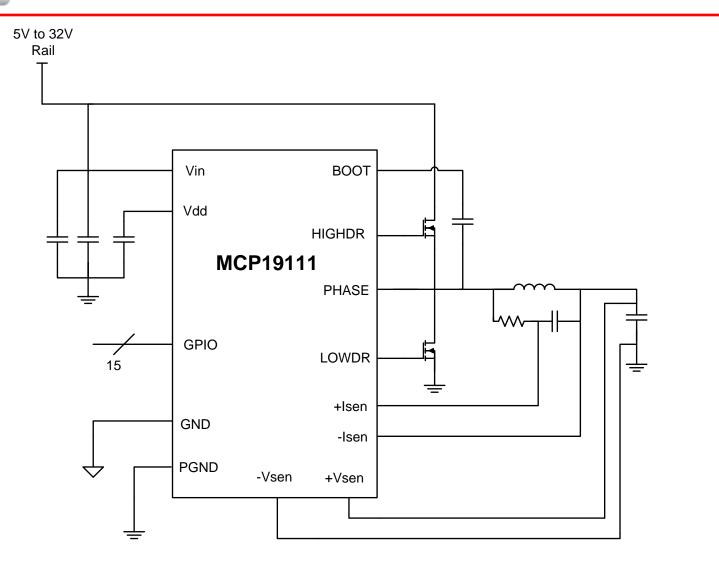


MCP19111

Digitally Enhanced Power Analog Controller with Integrated Synchronous Driver


Digitally Enhanced Power Controller Basic Solution Architecture

Microchip Technology Inc.

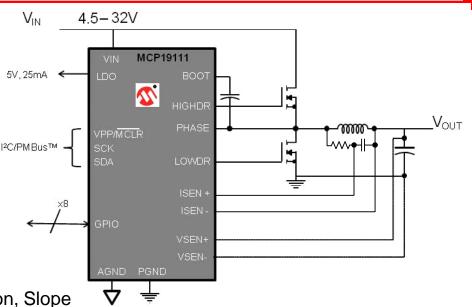


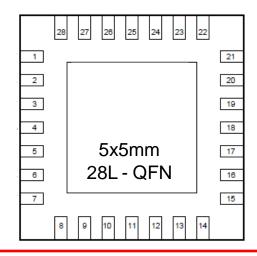
MCP19111 Synchronous Buck High/Low-Side Topology Support

MCP19111 Simplified Schematic

MCP19111

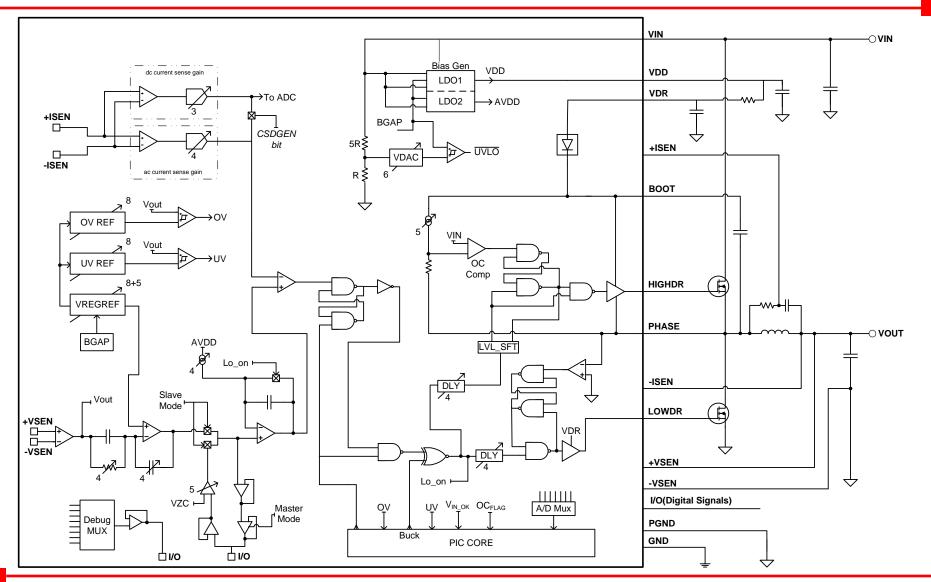
MICROCHIP


Digitally Enhanced Power Analog Controller


Single Phase Synchronous Buck

- V_{IN} Range: 4.5V to 32V
- V_{OUT} Range: 0.5V to 3.6V
 - Greater with output divider
- Coarse and Fine V_{REF} DAC
- Integrated MOSFET Driver:
 - Logic-Level Drive (5V)
 - 2A Source/4A Sink Drive Current
- Programmable Analog Controller:
 - Switching Freq: 100kHz to 1.6MHz
 - <u>Analog Control</u>: Control Loop Compensation, Slope Compensation, Peak Current Limit (Level & LEB Delay), Gate Drive Deadtime
 - <u>Thresholds:</u> V_{IN} UVLO, I_{OUT} CS Amp Gain, Soft-Start Rate, V_{OUT} Setpoint, V_{OUT} Trim, V_{OUT} OV/UV,
 - Measure: V_{IN}, V_{OUT}, Internal Temp + 8 Ext Ch
 - Master/Slave Mode \rightarrow Multi-phase operation

• Programmable Digital Core:


- Midrange Core (2 MIPS), 4kW Self-Write Flash, 256B RAM
- (2) 16-bit Timers, (1) 8-bit Timer, (1) PWM, 12 GPIO
- MSSP w/Enhanced PMBus Support

MCP19111 Block Diagram

Microchip Technology Inc.

Device Communication

MCP19111 Communication

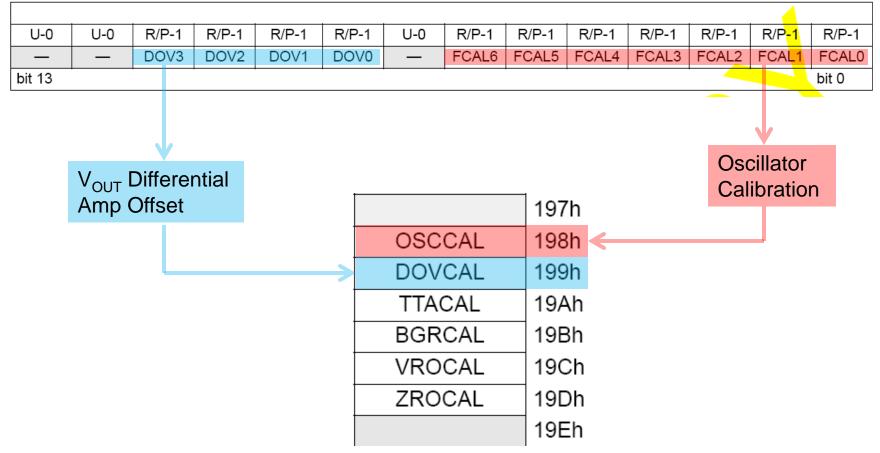
- I²C[™] Communication
 - Open drain clock and data lines
- SMBus Alert Pin
 - GBP4 open drain pin

• Two address registers

- Device specific address register
- SMBus alert address register
 - When activated, device will respond to either address

• Have a PMBus stack in the MPLAB X project

MCP19111 Calibration


Calibration Words

- 16 Calibration words at 2080h-208Fh
 - Read only, they are not erased with program memory.
 - Contains calibration for amplifier offsets, band gap, temperature measurement, oscillator, output differential amplifier.
 - Calibration words 2080h to 2083h need to be moved to specific SFRs.
 - DOVCAL, OSCCAL, VROCAL, BGRCAL, TTACAL, ZROCAL

Calibration Word Read Example

REGISTER 4-3: CONFIG – CALIBRATION WORD 1 (ADDRESS: 2080h)

Calibration Word Read Example

banksel movlw movwf	PMADRH 0x20 PMADRH	; MS Byte of Program Address to read		
movlw movwf bsf	0x80 PMADRL PMCON1, CALSEL	; LS Byte of Program Address to read	ł	
bsf nop nop	PMCON1, RD	; Program Memory read ; First instruction after memory read e ; instruction here is ignored as memo ; in 2nd cycle after read	after memory read executes is ignored as memory is read	
movf banksel movwf	PMDATH, W DOVCAL DOVCAL	; W = MS Byte of Program Memory ; Move W to DOVCAL		
banksel movf banksel movwf	PMDATL PMDATL, W OSCCAL OSCCAL	; W = LS Byte of Program Memory ; Move W to OSCCAL		

Assisting System Development

Ability to look at internal signals

- 17 different circuit nodes
- Multiplexer and buffer
- BUFFCON register controls signals
- Alternate GPIO pin function

MCP19111 Virtual Probe Details

bit 4-0 ANSEL<4:0>: MUX Control bits 00000 = Voltage proportional to current in the inductor 00001 = Demanded current plus the added slope comp ramp 00010 = Input to current loop, output of the demand mux 00011 = Band gap reference 00100 = Reference voltage for the VREG output 00101 = Internal version of the VREG output $00110 = RE_FRACT_PART$ 00111 = Analog voltage proportional to internal temperature 01000 = Internal ground of current measurement circuitry 01001 = Reference for over voltage comparator 01010 = Reference for under voltage comparator 01011 = Output of the error amplifier 01100 = Demanded current from remote master 01101 = Demanded current modified by the slave gain amplifier 01110 = 1/12 divided down VIN 01111 = DC Inductor Current 11101 = OC Reference

Minimal Register Configuration

MCP19111 Basic Set-up Code

; Configuring the switching frequency	→; Configuring analog SFRs	
banksel T2CON	banksel VINLVL	
clrf T2CON	movlw 0x9A	
clrf TMR2	movwf VINLVL	; set UVLO to about 11V
cIrf PWMPHL ; no phase shift	movlw 0x88	
movlw 0x13	movwf DEADCON	; set driver dead time
movwf PWMRL ; max allowed duty cycle ~ 75%	movlw 0x0D	
movlw 0x19	movwf CMPZCON	; set compensation values
movwf PR2 ; switching frequency ~ 300kHz	movlw 0x32	
bsf T2CON, 2 ; enable Timer2	movwf SLPCRCON	; set slope compensation
	movlw 0x05	
; Configuring the device	movwf CSGSCON	; set current sense AC gain
banksel PE1	banksel OVCCON	_
clrf PE1	movlw 0x71	; set Vout = 1.8V
movlw b'00001001'	movwf OVCCON	
movwf ABECON ; enable current measurement	movlw 0x80	; enable Vout DAC
& control loop	movwf OVFCON	
banksel VZCCON	banksel ATSTCON	
movlw 0x80	bcf ATSTCON, 0	; enable driver
movwf VZCCON		

MCP19111 Design Tools

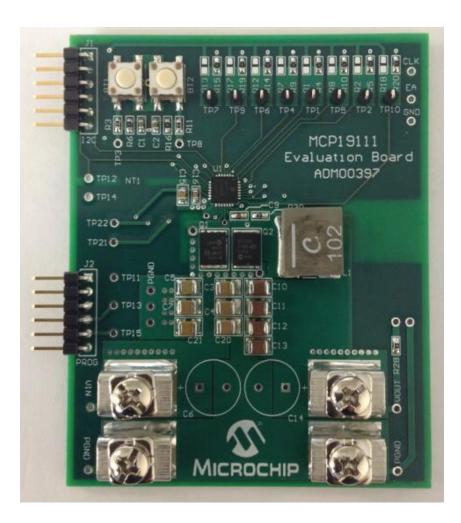
MCP19111 Excel Design Tool

MCP19111	Use D	efault EVAL Board Components and				
Input P	arameters	for De	sign			Compensation
Parameter	Designator	Value	Units	Notes	lout	Stan Lood
Input Voltage	V _{IN}	12	V	4.5 ≤ V _{IN} ≤ 30		Step Load
Output Voltage	V _{OUT}	1.8	V	0.6 ≤ V _{OUT} ≤ 3.6	I _{OH} -	
Output Current	I _{OUT}	30	А	0 ≤ I _{OUT} ≤ 30		
Switching Frequency	Fs	300	kHz	100 ≤ Fs ≤ 1200		
Input Voltage Ripple	V _{RIN}	100	mV		I _{oL} −	
Minimum Input Voltage	V _{IN_MIN}	9	V	$4.5 \le V_{\rm IN_MIN} \le V_{\rm IN}$		
Step Load Parameters						Time
High Output Current	I _{OH}	7.5	Α			
Low Output Current	I _{OL}	2.5	А		Use R	Recommended Components and
Output Voltage Overshoot			mV			Compensation

MCP19111 Programming GUI

: MCP19111 Plugin	
Digitally-Enhanced Power Analog - MCP19111 User Development Tool	
Eval Board 🗸 🖓 🖓 💭 🗶 🐺 🛛 🍑	
MCP19111 project rev: 1	
Parameter Protection Compensation PMBus [™] Bench Test	MCP19111 Plugin Read/Write sources MCP19111 Project
Output Voltage V Enable this Feature	(MPLAB X GUI) (MPLAB X Project)
Set Coarse Value 1800 🔻 mV	
Set Fine Value 1800 The Mathematical Mathem	
Multi-Phase Configuration	
Device Configuration stand alone unit	
SM Error Signal Input Gain -3.3 dB 💌	
Switching Frequency 🔽 Enable this Feature	
Generated Frequency 308	Mesocow
Phase Delay 0> 0 us	and the second
Max Duty-Cycle 72 🗸 %	
Dead Time Delay	
High Side 15ns 🔻 📝 Enable this Feature	
Low Side 16 ns 💌 🔽 Enable this Feature	
Startup Behavior	S
Soft Start Duration 100 ms> 18 V/s	MCP19111 Part
✓ Use Startup Pin Use pin GPB7 ▼	

Digitally Enhanced Power Analog Applications


Point of Load or "POL"

• 5V to 24V Inputs

- \bullet Low V_{OUT}, High I_{OUT} Applications
- Memory, Processors, FPGA, etc..
- Small Geometries (sub 1.8V Power)
- Current from 3A to 30A+

MCP19111 Eval Board and POL Converter Board

- $V_{IN} = 6V$ to 16V
- I_{OUT} = 30A with airflow
- **F**_{sw} = 100kHz to 1.2MHz

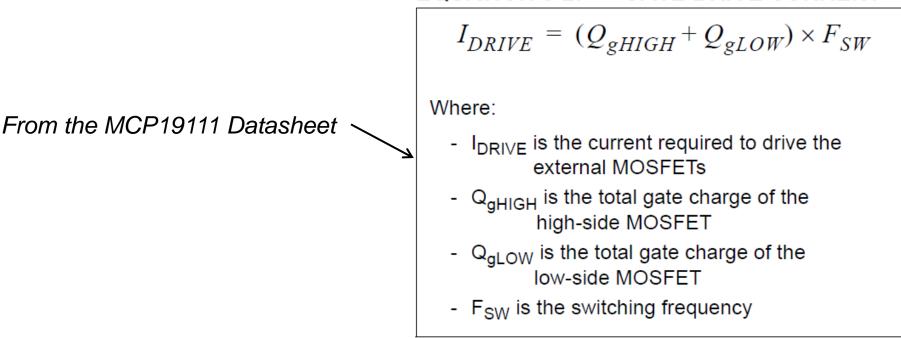
• Programmable Features

- Switching Frequency
- Output Voltage
 - Fine and Course
- Dead Time
- Output OV and UV
- Over Current Protection
- Compensation
- Current Sense Gain

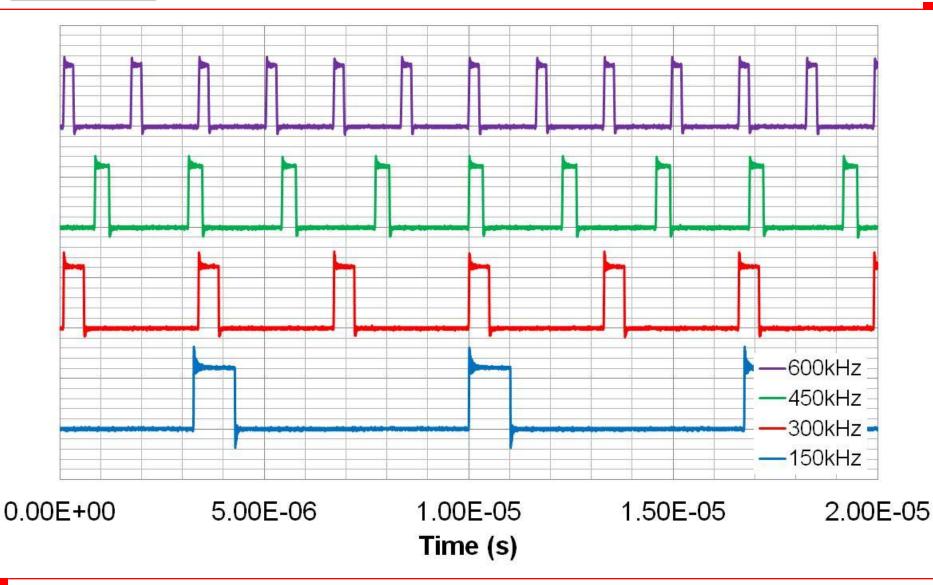
MCP19111 Eval Board and POL Converter Board

MCP87XXX Series MOSFETs

- MCP87050 HS MOSFET $5.0m\Omega R_{DS(ON)}$
- MCP87018 LS MOSFET $1.8m\Omega R_{DS(ON)}$


Optimized PCB Layout

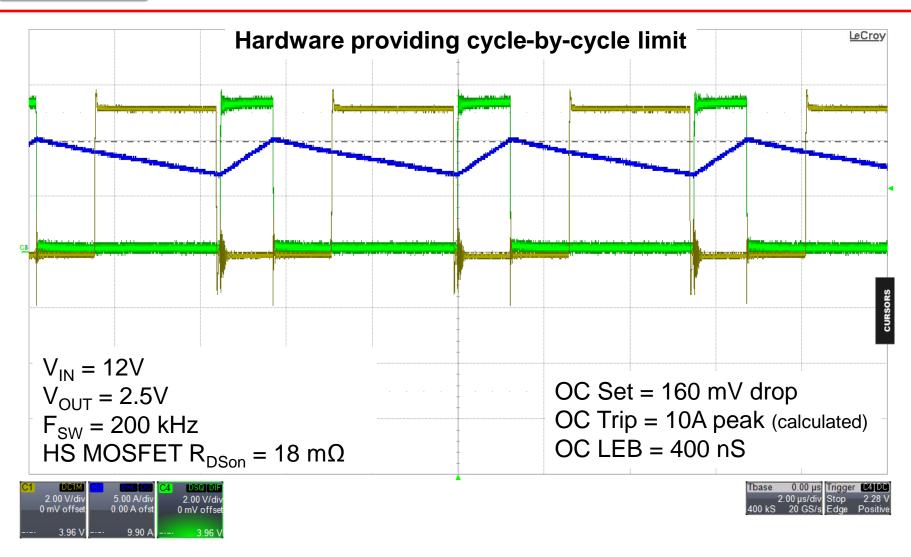
- Short, wide traces for all power paths
 - Vin, Pgnd, PHASE, Gate Drive, BOOT, etc.
- Split ground plane
- Input/Output ceramic capacitors


MCP19111 Switching Frequency Control

- Controlled by writing to PR2 register
 - TMR2 counts up to reach PR2
 - Adjustable from 100kHz to 1.6MHz
 - Larger FETs may require external regulator on V_{DR} at very high switching frequencies.
 EQUATION 3-2: GATE DRIVE CURRENT

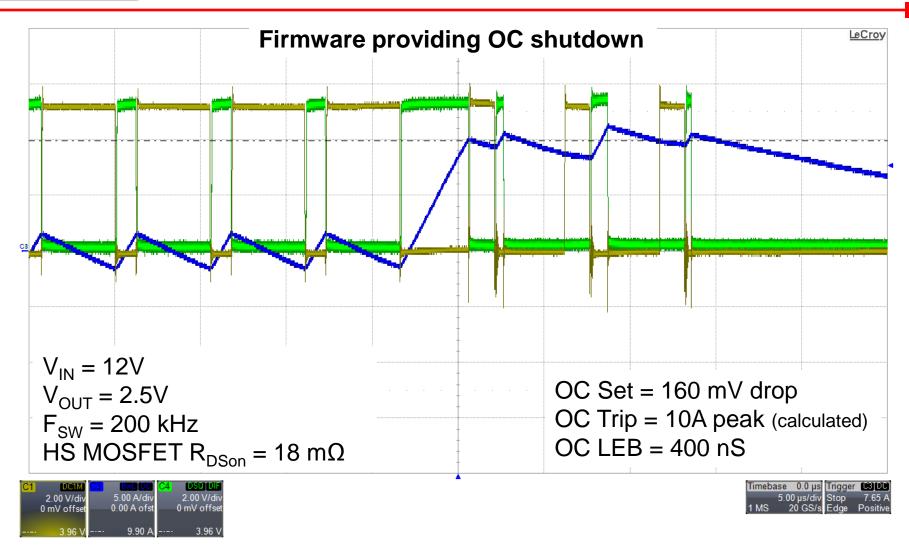
MCP19111 Waveforms Switching Frequency Control

MCP19111 Over Current Protection

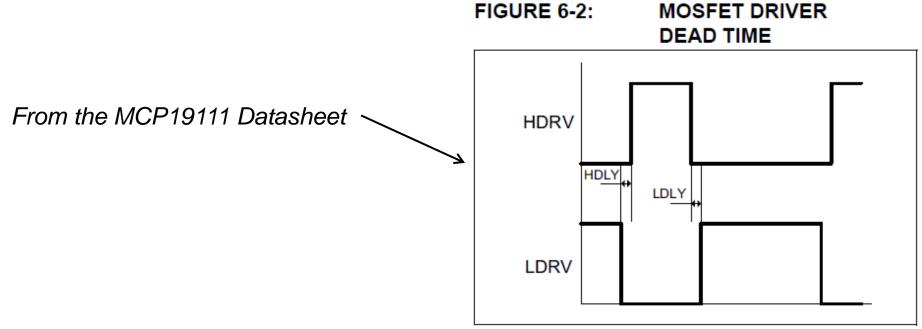

- Voltage drop across high-side MOSFET sensed
 - Cycle-by-cycle peak current limit
 - Controlled by writing to OCCON register
 - Adjustable range: 160mV to 625mV drop
 - Leading edge blanking of 114nS, 213nS, 400nS, 780nS
 - When OC occurs, OCIF Flag is set, hardware resets

Customized fault handling

- User's firmware dictates procedure
 - Ex. Restart 3 times, if fault still exists then shutdown

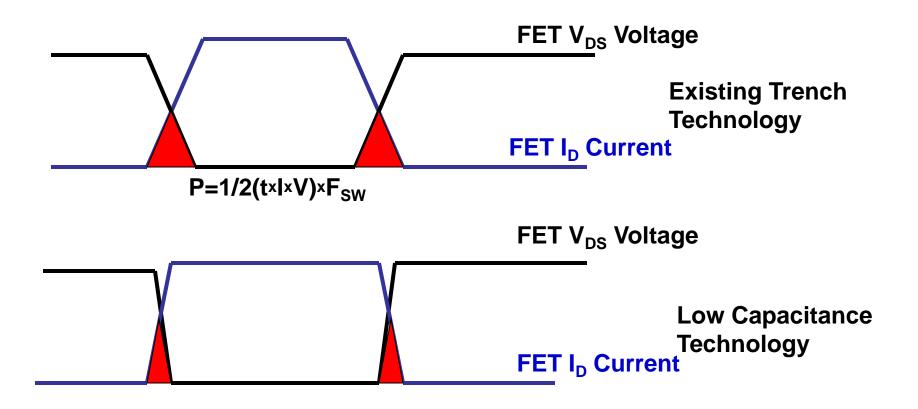


MCP19111 Cycle by Cycle OC Protection


MCP19111 Output Short Circuit

MCP19111 Dead Time Control

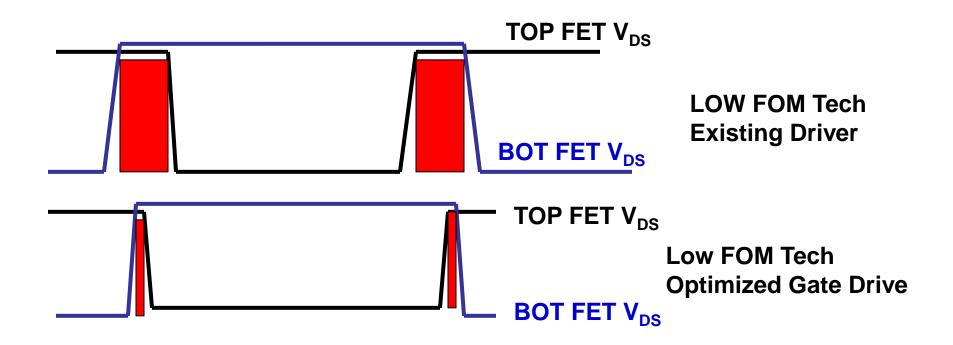
- Controlled by writing to DEADCON register
 - 4 bits for HDLY, adjustable from 11nS to 71nS
 - 4 bits for LDLY, adjustable from 4nS to 64nS
 - Very important to optimize efficiency, especially with High Speed (Low Parasitic Capacitance) MOSFETs



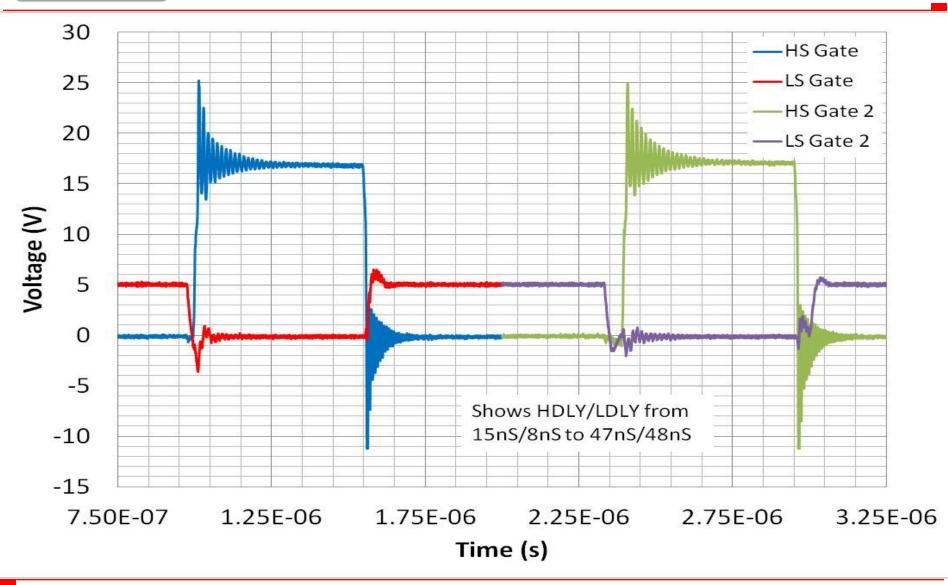
MOSFET Switching Loss

MOSFET Low Capacitance Technology

• Lower Switching Losses Increases Efficiency!



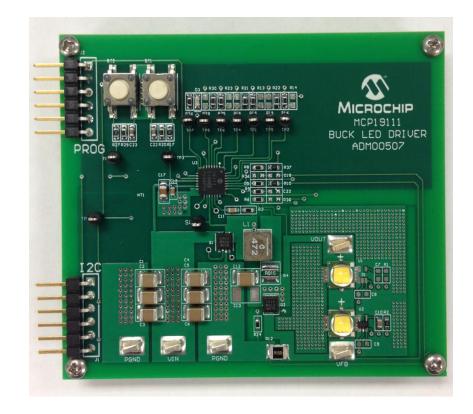
MOSFET Body Diode Loss


Optimized Dead Times

• Keeping current out of the diode reduces reverse recovery losses and conduction losses

MCP19111 Waveforms Dead Time Control

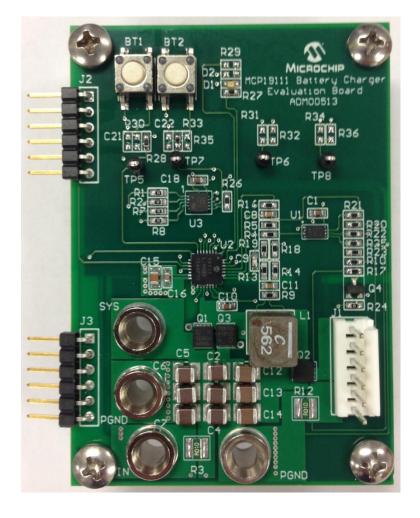
Digitally Enhanced Power Analog Applications Continued


MCP19111 Applications DC/DC LED Lighting

- Buck Converter High Power LED Lighting
- Applications
 - Automotive (Optics to Distribute Light)
 - Adaptive Lighting
 - Communicating with LED Lighting
 - Commercial LED Lighting

MCP19111 Applications DC/DC LED Lighting

- Synchronous Buck Converter LED Evaluation Board
- $V_{IN} = 8V$ to 32V
- Programmable current
- Provides current regulation using a sense resistor
- Two LEDs in series
- Hardware dimming and software dimming



MCP19111 Applications Charging Batteries

- Multi-Chemistry (Programmable Current Source)
- Wide I_{OUT} Range
 - Pre-Charge, Fast Charge, Termination
 - NiMH, Li-Ion, Pb-Acid Battery Profiles

Multi-Chemistry Battery Charger

- Sync Buck Multi-Chemistry Battery Charger Evaluation Board
- 1-4 Cell Li-Ion
- NiMH, NiCd, Pb Acid
- V_{IN} = 4.5V to 32V
- Programmable Charging current up to 8A
- PIC core provides ability to design custom charging curves, protections, etc.

MCP19111 Applications High Output Voltage

- Output of higher than 3.6V are possible with the MCP19111 by connecting the +V_{SEN} pin to a voltage divider
- Care must be taken to ensure voltage rating compliance on all pins

MCP19111 Applications High Output Voltage

- $V_{IN} = 6V$ to 32V
- I_{OUT} up to 5A
- Switchable between 4 voltage options using buttons
 - 3.5V, 5V, 10V, 12V
 - LED Indication
- Current sensing using resistor
- Utilizes MCP19110
 - Same as MCP19111 in 4x4QFN package, minus 4 pins and debug capability

MCP19111 Output Voltage Control

Controlled by writing to OVCCON and OVFCON registers

REGISTER 6-10: OVCCON: OUTPUT VOLTAGE SET POINT COARSE CONTROL REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| OVC7 | OVC6 | OVC5 | OVC4 | OVC3 | OVC2 | OVC1 | OVC0 |
| bit 7 | | | | | | | bit 0 |

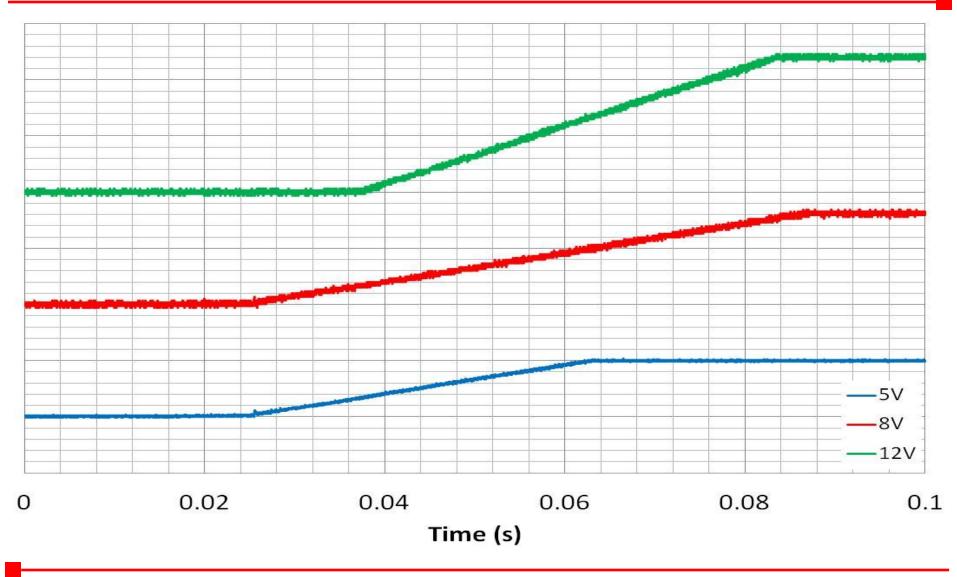
bit 7-0 OVC<7:0>: Output Voltage Set Point Coarse Configuration bits

OVC<7:0> = (V_{OUT}/15.8 mV)+15.8 mV

REGISTER 6-11: OVFCON: OUTPUT VOLTAGE SET POINT FINE CONTROL REGISTER

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
VOUTEN	—	—	OVF4	OVF3	OVF2	OVF1	OVF0	
bit 7 bit 0								

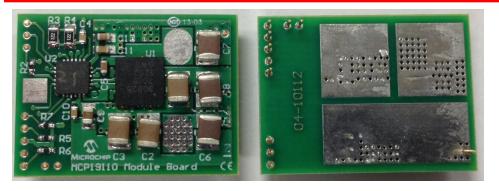
- bit 7 VOUTEN: Output Voltage DAC Enable bit
 - 1 = Output Voltage DAC is enabled
 - 0 = Output Voltage DAC is disabled
- bit 6-5 Unimplemented: Read as '0'
- bit 4-0 OVF<4:0>: Output Voltage Set Point Coarse Configuration bits

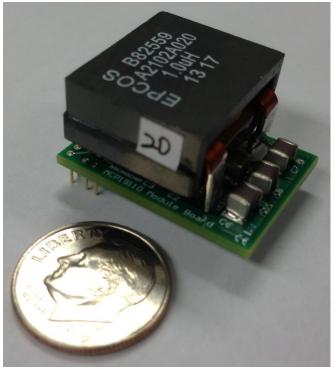

 $OVF < 4:0 > = (V_{OUT} - V_{OUT} COARSE)/0.8 mV$

Output Voltage can be programmed to < 0.1% accuracy

Microchip Technology Inc.

MCP19111 Waveforms High Output Voltage

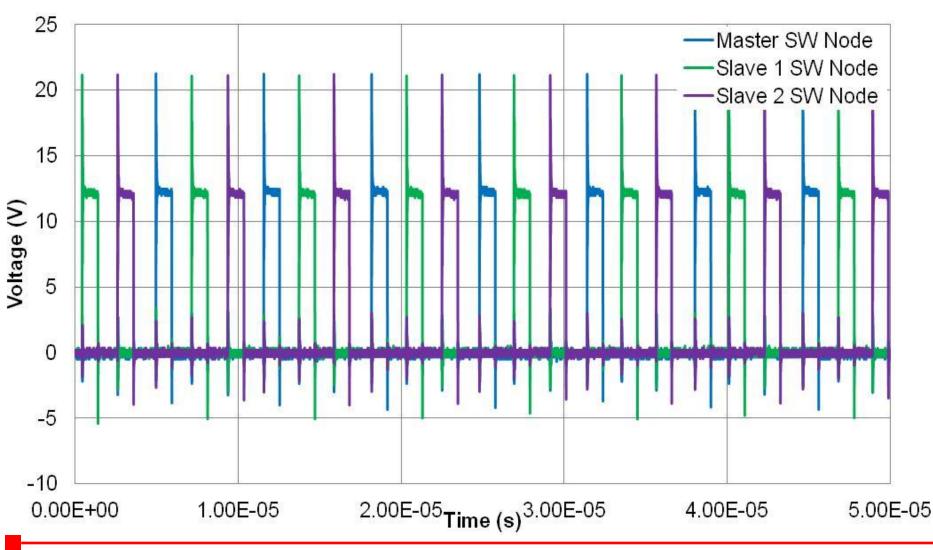



MCP19111 Applications Power Supply Modules

- Small footprint lends itself to very high power density applications
 - MCP19111 5x5mm DFN, 28 Leads
 - MCP19110 4x4mm DFN, 24 Leads
- Programmability allows module designer to use the same part number for many different modules
- GPIO for communication, P_{GOOD}, Enable, etc

MCP19111 Applications Power Supply Modules

- $V_{IN} = 6V \text{ to } 16V$
- $V_{OUT} = 0.9$ to 3.3V
- I_{OUT} = 30A+
- Utilizes the MCP19110, the GWS30B25 Dual MOSFET, EPCOS inductor
- Inductor "floats" over the PCB
- 66uF input ceramic cap,
 300uF output ceramic cap
- 1" x 0.75" PCB
- POWER DENSITY!


MCP19111 Applications Synchronized Multi-Output

-							
15	1			TP2 GND	F	MICROCHIP 19110 MULTI-OUTPUT VALUATION BOARD VIN: 9U - 14U DUT: 0.9U - 3.3U ADM00524	
the held held the	R1 D1 R2 TP3 GND UIN	С 6 B82559 0 A2102A020 1 0uH 11 45			2 C20		
12	R3 D2 R4 TP60 GNC0 VIN	с 882559 0 821024020 0 1.0uH 11 45		C22 C14 C14 C14 C13 C13 C13 C13 C13 C13 C13 C13 C13 C13	C 23	TP9 GND UOUT2	
Et state	R5 D3 R6 TP8 GND UIN	и B82559 0 A21024020 С A21024020 1.00H 11 45	S S S S S S S S S S S S S S S S S S S	C15 C15 C15 C15 C15 C15 C15 C15 C15 C15	1 C26 1 C27	TP12 GND TP10 VOUT3	
J4 00000	R7 D4 R8 TP110 GND o VIN	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		C17 C18 C18 C28 DN9 0 C28	1 C29	TP13 Ø VOUT4 Ø	00
)						0

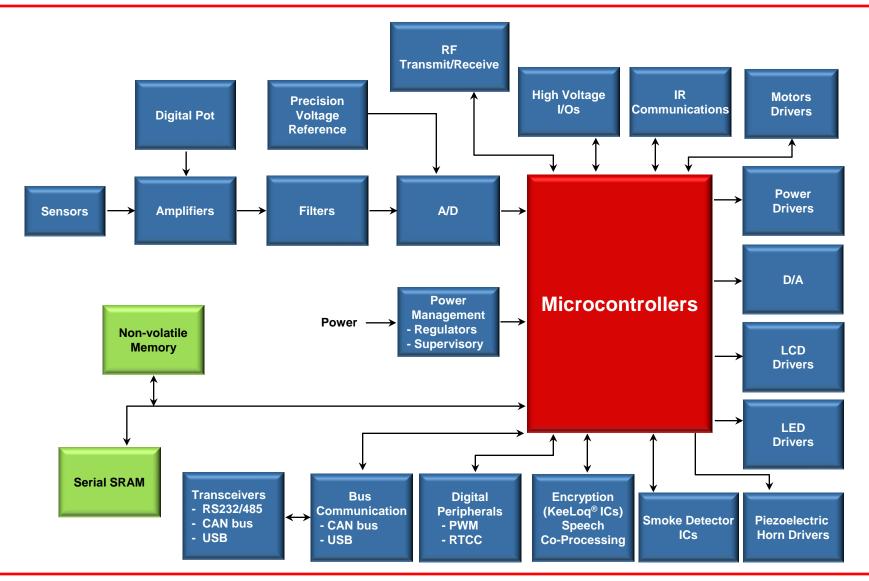
- $V_{IN} = 6V$ to 16V
- I_{OUT} = 30A+ per output
- Utilizes 4x MCP19110 power supply modules
- Switching waveforms synchronized 90° out of phase
 - Simplifies input filtering
- PIC core allows easy control of start-up sequence

MCP19111 Waveforms Synchronized Multi-Output

Microchip Technology Inc.

MCP19111 RECAP

Extremely versatile part


- POL, DC-DC LED Lighting, Battery Chargers, Modules, HV Output, Multi-rail, etc
- PIC core allows the flexibility, fault handling, and communication of a digital solution while offering the speed, resolution, and low quiescent current of an analog solution
- Flexibility = higher efficiency!
- Small footprint = high power density!

MCP87XXX MOSFETs

• FAST, ROBUST

Our Analog & Memory Enables Providing Complete Solutions

Microchip Technology Inc.

Additional Resources

Product Landing Page

http://www.microchip.com/wwwproducts/Devices.aspx?dDocN ame=en560308

	CHIP	English		Search Mic Search Dat			
PRODUCTS AP	PLICATIONS	DESIGN SUPPORT	TRAINING	SAMPLE & BUY	ABOUTUS	Contact Us	myMicrochip Login
MCP19111 in	Production				The Low	r Power Analog	Solution
Documentation & So	oftware Prici	ng & Samples Develo	pment Tools	Related Videos			Quick Links

MCP19111 Enhanced Power Analog Controller w/ Integrated Synchronous Driver (01/27/2013)

The MCP19111 is a mid-voltage (4.5-32V) analog-based PWM controller family with an integrated 8-bit PIC(R) Microcontroller. This unique product combines the performance of a high-speed analog solution, including high-efficiency and fast transient response, with the configurability and communication interface of a digital solution. Combining these solution types creates a new family of devices that maximizes the strengths of each technology to create a more cost-effective, configurable, high-performance power conversion solution. The MCP1911x family, when combined with Microchip's MCP87xxx MOSFETs, or any low-FOM MOSFET, produce high-efficiency (>96%) DC/DC power-conversion solutions.