

EMI - ESD PROTECTION SEMINAR

Signal Integrity Discussion

Low Inductance Ceramic Capacitors Low Inductance Feedthru Filters High Capacitance Ceramics Ta and Ta Alternatives Double Barrier Later Capacitors Signal Line Termination Options

Field Applications Engineering Team David Du Pre' Ron Demcko Colin Leath

International EMC Regulations:

IEC Military China Japan FCC

SPECIFICATION ACTIVITY ACCELERATION

MILITARY

- MIL-STD-461E Conducted and Radiated Emission and Susceptibility (+test methods)
- MIL STD 285 Shielding Effectiveness To a lesser extent DO160 (Avionic specs) becoming 'more powerful' as a emergency defactor

IEC

• EN61000-4 Basic Immunity – all parts IEC requirements are being proposed as a harmonization step to the FCC IEC requirements are being used to design JNS and CNS (ASIA)

FCC

- FCC Part 15 Computing Devices, cordless phones, satellite receivers, TV interface units, receivers, Low power Transmitters, Spread Spectrum Transmitters
- FCC Part 22 Cellular Telephones
- FCC Part 24 Personal Communication Systems
- FCC Part 90 Private Land Radio Service (paging and Mobile radio Transmitters)
- FCC Part 95 Personal Radio Service
- ANSI/IEEE C95.1 & OET Bulletin 65 RF Exposure

IEC ESD IMMUNITY TEST IEC 61000-4-2

TEST LEVEL	AIR DISCHARGE	CONTACT DISCHARG E	PEAK CURRENT
1	2 kV	2 kV	7.5 amps
2	4 kV	4 kV	15 amps
3	8 kV	6 kV	22.5 amps
4	15 kV	8 kV	30 amps

Traditional non Varistor ESD & EMI Control Methods:

- Lay Out Integration Caps Ferrites Resistors Zopore
- Zeners

Typical PCB Optimization Schemes

Discussion of Traditional Protection Methods

	Cost	Effectiveness
• Layout	free	good
 Integrated Spark Gaps 	free	possible negative
 Integration Capacitors 	low	possible negative
• Ferrites	moderate	good
Resistors	about free	poor to ok
• Zeners	intermediate	great
Broadband SMT EMI Filter		-

AVX SMT FeedThru Filters

How well do FeedThru Filters work?

Discussion of Traditional Protection Methods

FERRITE RULE:

- Maximize the series inductance using traces when possible
- Place ferrite beads in no ground circuitry
- MANY TIMES CHEAPER FERRITES ARE INCONSISTANT

Discussion of Traditional Protection Methods

ZENER RULE:

- Place clamping devices as close to the ESD entry point as possible*
- Do not assume that the Zener is noiseless
- Do not eliminate the EMC capacitor
- Watch for peak current wear out
- Watch for repetitive strike wear out
- Turn on time may or may not be a problem

* **EXCEPTION**: Place a Zener as close to *up* reset as possible

- 1) Use a multilayer PCB with large Vcc and ground plane
- if a ground plane is not practical create a ground grid
- not practical connect all ground runs to a common point A ground grid minimizes loop area decreases radiated emission and increase radiated immunity
 - A ground grid minimizes the inductance of the circuit (lowers ground noise)
 - Generates less radiated emissions due to lower ground inductance
 - Increases decoupling efficiency (potentially lowers cap values needed)

- 2) Use proven decoupling methods
- route the IC power trace close to the ground
- use a high frequency decoupling capacitor at each IC
- use a high frequency decoupling capacitor at the regulator
- connect all decoupling capacitors in low inductance manner

Proper decoupling reduces radiated noise

Proper decoupling 'hurts' ESD survivability (on signal traces)

Generalized Inductance Behavior

- •3) Keep I/O traces short :
- Route I/O traces close to ground plane
- Place any connectors on top of the ground plane
- Isolate I/O traces by guard ground traces at the periphery

Remember:

Traces are long or short depending on:

	where: $L = Track$ length in cm
$L < = \underline{Tr * v}$	Tr = digital signal fall time
2	v = signal propogation velocity
v = c/Er	where: $c = 30$ cm/ns (speed of light) Er = PCB dielectric constant

If traces are long consider using terminating techniques

When to Terminate Lines

- 4) use minimal cable length
- long traces need termination (which is costs space and \$)
- place ground on outside (ribbon) cable pins (if possible)

5) Terminate high speed lines

- Place R/C on the I / O driver
- use series R = to Zo on each I / O
- place cap on each I / O

6) Use shielded cables with known ground points

- Shielding costs too much
- Use EMC gaskets
- Use low value wide tolerance caps as an EMC wall

$$E = 5.5 \sqrt{P * A}$$

RF Feedback from the Antenna is consistently a problem

D

Where: P = power in watts A = antenna gain

D = distance from the Antenna

- 7) Maintain consistent low Z grounds from PCB to PCB
- route differential traces next to one another
- keep all decoupling capacitor traces minimized

8) Place ESD sensitive components on PCB interior

- series L always helps ESD suppression
- parallel integration caps don't work reliably
- Spark gaps can emit E fields watch reset lines build an EM wall with caps

9) Choose the oldest possible semiconductor family available (within reason)

Wide line width semis have a much higher ESD damage voltage

Wide line width semis typically run slower (less EMMISSIONS)

10) Use the slowest speed IC possible

Advanced EMI and Transient Control Methods:

MultiLayer Varistors Equivalent Circuit Model SPICE Software FeedThru Varistors Varistor Arrays

MultiLayer Varistor (MLV) : Trade name TransGuard

Miniature size 0402 to 1210, x 2 or x 4 arrays, FeedThru and FeedThru Arrays

Construction of TransGuards

The ceramic material is doped Zinc Oxide where every grain is a Schottky Diode. The structure between the plates gives series/parallel diodes. The entire volume dissipates energy.

Discussion of <u>NEW</u> Protection Methods

MultiLayer Varistor (MLV) : Trade name TransGuard

May replace EMC cap and require no board changes

To Device PCB Requiring Trace Protection LP Rv C ξRp Ron Solder Pad Voltage Variable resistance Where: Ry -(per VI curve) $10^{12} \Omega$ Rp \geq defined by voltage rating and energy level C Ron turn on resistance =

Discrete MLV Model

p = parallel body inductance

TransGuard Case Sizes

<u>TransGuard vs Silicon TVS</u> <u>Turn-on Time</u>

Turn On Time Comparison

Device Type	Turn on Speed (ps)
0402 TransGuard	417
0603 TransGuard	673
0805 TransGuard	756
1206 TransGuard	818
1210 TransGuard	798
SOT 23 Diode	1380

ESD Repetitive Strike Test

TransGuards have Simple Implementation

TransGuard vs Diode Design

TransGuard Capacitance ranges from 2.2 pf to 4.7 nf*

* Options exist for capacitance range to 0.5 pf in BGA packages

NOTEBOOK, WORK STATION AUDIO PROTECTION

ASIC RESET & Vcc PROTECTION

FeedThru Filter Varistors

Signal Integrity :

Low Inductance Ceramic Capacitors

Low Inductance FeedThru Filters

High Capacitance Ceramics

Ta and Ta Alternatives

Double Barrier Capacitors

Signal Line Terminations

Road Map

<u>IDC</u>

- Low inductance device
- 175pH
- One capacitor, eight terminations
- VIP pcb configuration

<u>LGA</u>

- Newest Low inductance device
- ~27pH
- 2 8 Terminals

New Solid Electrolyte Capacitor Developed by AVX

Where does it fit ?

TACmicrochip

- A brief introduction to the technology
 - How does it differ from standard technology
- Improvements over the last 2 years
 - Round to square
 - Automation
- Reliability data
- Typical electrical data
- Range extension development plan
 - including 0402 (1005M) plans
- Available Ratings

TACmicrochip Manufacturing

- Manufactured in wafers Vs traditional parts are individual
 - Reduced handling
 - Ease of automation
 - Improved quality
- Gives scope for customisation
 - Array
 - Block
 - Special size & shape

3 x 2 Block

2 x 2 Block

Applications Engineering

3 unit Array

TAC MICROchip

Downsizing: Packaging Technology

- Results in low ESR, low inductance, low leakage in miniature package
- 0805, 0603, 0402 sizes.

