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TOPICS

• Design of D-Element Active Low-Pass Filters and a Bi-
directional Impedance Converter for Resistive Loads

• Active Adjustable Amplitude and Delay Equalizer Structures

• High-Q Notch filters

• Q-Multiplier Active Band-Pass filters

• A Family of Zero Phase-Shift Low-Pass Filters

• Some Useful Passive Filter Transformations to Improve 
Realizability 

• Miscellaneous Circuits and “Tricks”
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Frequency and Impedance Scaling from Normalized Circuit

Frequency Scaling

frequency reference existing
frequency reference desiredFSF =

Normalized n = 3 Butterworth low-pass filter normalized to 1 rad/sec : (a) LC filter; (b) active filter; (c) frequency response
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Denormalized low-pass filter scaled to 1000Hz: (a) LC filter; (b) active filter; (c) frequency response.
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Impedance scaling can be mathematically expressed as

R′ = ZxR

L′ = ZxL

C’= C
Z

Frequency and impedance scaling are normally combined into one step rather than performed 
sequentially. The denormalized values are then given by

L′ = ZxL/FSF

C’=
Z x FSF

C

Impedance-scaled filters using Z=1K : (a) LC filter; (b) active filter.
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Design of D-Element Active Low-Pass Filters and a 
Bi-Directional Impedance Converter for Resistive Loads

Generalized Impedance Converters (GIC)

Z11= Z2Z4

Z1Z3Z5
By substituting RC combinations for Z1 through Z5
a variety of impedances can be realized. 
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GIC Inductor Simulation

sCR1R3R5

R2

Z11=

If Z4 consists of a capacitor having an impedance 1/sC where s=јω
and all other elements are resistors, the driving point impedance becomes:

The impedance is proportional to frequency 
and is therefore identical to an inductor having an inductance of:

CR1R3R5

R2

L=

Note: If R1 and R2 and part of a digital potentiometer the value of L can be digitally programmable.
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D Element

If both Z1 and Z3 are capacitors C and Z2,Z4 and Z5 are resistors,
the resulting driving point impedance becomes:

R5

s2C2R2R4
Z11=

An impedance proportional 
to 1/s2 is called a D Element.

C2R2R4
R5

1
s2DZ11= where: D  =

If we let C=1F,R2=R5=1 Ω and R4=R we get D=R so:

1
s2RZ11=

If we let s=јω the result is a Frequency Dependant Negative Resistor FDNR

1
-ω2RZ11=
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D Element Circuit 
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Rule

A transfer function of a network  remains unchanged if all impedances 
are multiplied (or divided) by the same factor. This factor can be a fixed 
number or a variable, as long as every impedance element that appears 
in the transfer function is multiplied (or divided) by the same factor.

The 1/S transformation involves multiplying all impedances in a 
network by 1/S.
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The 1/S Transformation
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Design of Active Low-Pass filter with 3dB point at 400Hz using D Elements

Normalized Low-Pass filter 1/S Transformation

Realization of D Element Frequency and Impedance Scaled Final Circuit

Filter is Linear Phase ±0.5° Type
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Elliptic Function Low-Pass filter using GICs

Normalized Elliptic Function Filter
C11 20 θ=75°
N=11 Rdb=0.18dB Ωs=1.0353   60.8dB

Requirements: 0.5dB Maximum at 260Hz
60dB Minimum at 270Hz
Steepness factor=1.0385 

Normalized
Elliptic Function Filter

1/S Transformation

Realization of D Elements
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Frequency and Impedance Scaled Final Circuit

Note: 1 meg termination resistor is needed to provide DC return path.
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Bi-Directional Impedance Converter for Matching D Element Filters Requiring
Capacitive Loads to Resistive Terminations

Rs
+ +

CGIC
Rs

R RR R

Value of R Arbitrary
Rs is source and load resistive terminations
CGIC is D Element Circuit Capacitive Terminations
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Active Amplitude and Delay Equalizer Structures

Σ
1

+ K

Fr Freq

Out

Freq

1

K=2

K=1
0

2

K=3

T(s)

In Out

Eout = T(s)K-1EIn
T(s)=1

K=2 corresponds to the all-pass case
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T(s) is a second-order bandpass network having a gain 
of +1 at center frequency Fr

ωr

Q
s

+ ωr
2s2 +

ωr

Q
s

T(s)=
ωr= √α2+β2

ωr= 2πFr

Q=
ωr

2α
As a function of Q the circuit has a group  delay  as follows:

The peak delay is equal to 

Tgd,max= ωr

4Q

Where K=2 and Q >2
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•This architecture can be used as an amplitude equalizer by varying K.

•If K=2 the circuit can be used as a delay equalizer by varying  Q.

•By varying both K and Q this architecture can be used for both 
amplitude and delay equalization. 
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5

2.414

2

1.707

1.25

2.414

1.707

2

There will be an interaction 
between amplitude and 
delay as K is varied to 
change the amount of 

amplitude equalization. 
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Adjustable Delay Equalizer

Tgd,max=4R1C

R2=R3=
ωrC

1
C,R,R′ and R″
can be any convenient values
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Adjustable Delay and Amplitude Equalizer

By introducing a potentiometer into the circuit 
amplitude equalization can also be achieved 
The amplitude equalization at  ωr is given by:

Adb= 20 Log (4K-1)

Where K from 0.25 to 1 covers an amplitude 
equalization range of - ∞ to +9.54 dB
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To extend the amplitude equalization range beyond +9.54 dB 
the following circuit can be used. The amplitude equalization at ωr given by:

Adb= 20 Log (2K-1)

where a K variation from 0.5 to ∞ results in an infinite range of equalization 
capability.  In reality ± 12dB has been found to be more than adequate so K 
will vary from 0.626 to 2.49.
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Simplified Adjustable Amplitude Equalizer

The following circuit combines a fixed Q bandpass section with a summing 
amplifier to provide a low complexity  adjustable amplitude equalizer. The 
design equations are given by:

Q≥0.707

Where K will range from 0 to 1 for an infinite 
range of amplitude equalization.



24

To compute the desired Q first define fb corresponding to 
one-half the boost(or null)  desired in dB.

Then:

Q =
fbb2 √ Kr

fr(b2 -1)

Where        Kr = Log-1 ( Adb

20 ) = 10Adb/20

f
fr

+X db

+X/2 db

fb

fb

fr
and    b=

fr

fb
or       b=

f
frfb

-X dB

-X/2 dB
Whichever b is >1
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High-Q Notch Filters

This circuit is in the form of a bridge where a signal is applied across 
terminals’ 1 and 2  the output is measured across terminals’ 3 and 4. At ω=1
all branches have equal impedances of 0.707 ∠-45°so a null occurs 
across the output.
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The circuit is redrawn in figure B  in the form of a lattice. Circuit C is the 
Identical circuit  shown as two lattices in parallel.
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There is a theorem which states that any branch in series with both the 
ZA and ZB branches of a lattice can be extracted and placed outside the lattice. 
The branch is replaced by a short. This is shown in figure D above. The 
resulting circuit is known as a Twin-T. This circuit has a null at 1 radian for the 
normalized values shown.
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To calculate values for this circuit pick a convenient value for C. Then

R1=
1

2πfoC

The Twin-T has a Q (fo/BW3dB ) of only ¼ which is far from selective.
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Circuit A above illustrates bootstrapping a network β with a factor K. 
If β is a twin-T the resulting Q becomes:

Q =

If we select a positive K <1, and sufficiently close to 1, the circuit Q can be 
dramatically increased. The resulting circuit is shown in figure B.

1
4(1-K)
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Bridged-T Null Network

C
ωrLQ/2ωrLQ/2

-ωrLQ/4C L

ωrLQ/4
≡

at resonance

ωrLQ/4

Impedance of a center-tapped parallel resonant circuit at resonance is  ωrLQ
total and ωrLQ/4 from end to center tap (due to N2 relationship). Hence a 
phantom negative resistor of -ωrLQ/4 appears in the equivalent circuit which 
can be cancelled by a positive  resistor of  ωrLQ/4 resulting in a very deep null 
at resonance (60dB or more).
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Adjustable Q and Frequency Null Network

Σ
1

+1T(s)

In
Out

T(s) can be any  bandpass circuit having properties of unity gain at fr,
adjustable Q and  adjustable fr.
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Q Multiplier Active Bandpass Filters

If   T(s) in circuit A  corresponds 
to a bandpass transfer function of:

The overall circuit transfer 
function becomes:

Out
In

The middle term of the denominator has been modified so the circuit Q is given by Q/(1-β) where 
0<β <1. The Q can then be increased by the factor 1/(1-β) . Note that the circuit gain is increased
by the same factor.
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A simple implementation of this circuit is shown in figure B.
The design equations are:
First calculate β from β= 1 - Qr

Qeff

where Qeff is the overall circuit Q and Qr is the design Q of the bandpass section.
The component values can be computed from:

R1b=
R1a

2Qr
2-1

Where R and C can be conveniently chosen. 



34

A Family of Zero Phase Shift Low-Pass Filters

Attenuation of Normalized Chebyshev LPF 
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note near-zero phase slope for high ripples

Phase of Normalized Chebyshev LPF
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Transformation to Band-Pass Filter

amplitude

phase

Fo Freq
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Some Useful Passive Filter Transformations to Improve Realizability

NC2

C1

L

C2 N(N-1)

C2

L
N2

Advantages :
Reduces value of L
Allows for parasitic capacity across inductor N=1+

C1

C2

N=1+
CB

CA

CA

N

CA(1-1/N)CB

CA

LA
N2LA

Advantages:
Increases value of L 
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Narrow Band Approximations

This transformation can be used to reduce the value of a terminating resistor
and yet maintain the narrow-band response.
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The following example illustrates how this approximation can reduce the source impedance of a filter. 



40

Using the Tapped Inductor

An inductor can be used as an auto-transformer by adding a tap

Resonant circuit capacitor values can be reduced 
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Intermediate branches can be scaled in impedance

Leakage inductance can wreak havoc
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Effect of leakage inductance can be minimized by splitting capacitors which adds additional poles
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Exponentially Tapered Network

Z2

Z1 Z3 Z5

Z4

ZN

Z2R2/N

Z1R1/N Z3R3/N Z5R5/N

Z4R4/N

ZNR

1Ω

1Ω

1Ω

RΩ

Method of exponentially tapering a network  to a higher (or lower)
load impedance value with minimal effect on response
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EOUT
EOUT

SCR2

EOUT

SCR2R3

i =

EOUT
EOUT

SCR2

EOUT

SCR2R3

i =L=CR2R3

State Variable (Biquad) 
Bandpass Filter
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Center tap

0.2432F

1.605F

1.605H

0.4864F

0.8025H

0.8025F
1 ohm 1 ohm

1 ohm 1 ohm

1.6 sec
-1%

-5%

1 1.22 Rad/sec

All-PASS DELAY LINE SECTION
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SINGLE TRANSFORMER HYBRID

N =1

N =0.707

N =0.707

R /2

R

R

R

R

+1V +

+

R

+0.5V

--
+

-
+0.5V

+0.5V

+2V
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