Telebyte

Some Interesting Filter Design Configurations and Transformations Normally Not Found in The General Literature

Speaker:
Arthur Williams - Chief Scientist
Telebyte Inc.

Tuesday September 27, 2005

TOPICS

- Design of D-Element Active Low-Pass Filters and a Bidirectional Impedance Converter for Resistive Loads
- Active Adjustable Amplitude and Delay Equalizer Structures
- High-Q Notch filters
- Q-Multiplier Active Band-Pass filters
- A Family of Zero Phase-Shift Low-Pass Filters
- Some Useful Passive Filter Transformations to Improve Realizability
- Miscellaneous Circuits and "Tricks"

Frequency and Impedance Scaling from Normalized Circuit

$$
\mathrm{FSF}=\frac{\text { Frequency Scaling }}{\text { desired reference frequency }} \text { existing reference frequency }
$$

Normalized $n=3$ Butterworth low-pass filter normalized to $1 \mathrm{rad} / \mathrm{sec}:(a) L C$ filter; (b) active filter; (c) frequency response

Denormalized low-pass filter scaled to $1000 \mathrm{~Hz}:(a) L C$ filter; (b) active filter; (c) frequency response.

Impedance scaling can be mathematically expressed as

$$
\begin{aligned}
& R^{\prime}=Z x R \\
& L^{\prime}=Z x L \\
& C^{\prime}=\frac{C}{Z}
\end{aligned}
$$

Frequency and impedance scaling are normally combined into one step rather than performed sequentially. The denormalized values are then given by

$$
\begin{aligned}
L^{\prime} & =Z x L / F S F \\
C^{\prime} & =\frac{\mathrm{C}}{\mathrm{Z} \times F S F}
\end{aligned}
$$

(a)

(b)

Impedance-scaled filters using $\mathrm{Z}=1 \mathrm{~K}$: (a) $L C$ filter; (b) active filter.

Design of D-Element Active Low-Pass Filters and a Bi-Directional Impedance Converter for Resistive Loads

Generalized Impedance Converters (GIC)

$Z_{11}=\frac{Z_{1} Z_{3} Z_{5}}{Z_{2} Z_{4}}$
By substituting $R C$ combinations for Z_{1} through \mathbf{Z}_{5} a variety of impedances can be realized.

GIC Inductor Simulation

If Z_{4} consists of a capacitor having an impedance $1 / s C$ where $s=j \omega$ and all other elements are resistors, the driving point impedance becomes:

$$
\mathbf{Z}_{11}=\frac{\mathbf{s C R} \mathbf{R}_{1} \mathbf{R}_{3} \mathbf{R}_{5}}{\mathbf{R}_{2}}
$$

The impedance is proportional to frequency and is therefore identical to an inductor having an inductance of:

Note: If R_{1} and R_{2} and part of a digital potentiometer the value of L can be digitally programmable.

D Element

If both Z_{1} and Z_{3} are capacitors C and Z_{2}, Z_{4} and Z_{5} are resistors, the resulting driving point impedance becomes:

$$
\mathbf{Z}_{11}=\frac{\mathbf{R}_{5}}{\mathbf{s}^{2} \mathbf{C}^{2} \mathbf{R}_{2} \mathbf{R}_{4}}
$$

An impedance proportional to $1 / \mathbf{s}^{\mathbf{2}}$ is called a D Element.
$Z_{11}=\frac{1}{s^{2} D} \quad$ where: $\quad D=\frac{C^{2} R_{2} R_{4}}{R_{5}}$

If we let $C=1 F, R_{2}=R_{5}=1 \Omega$ and $R_{4}=R$ we get $D=R$ so:

$$
\mathrm{Z}_{11}=\frac{1}{\mathbf{s}^{2} \mathrm{R}}
$$

If we let $s=j \omega$ the result is a Frequency Dependant Negative Resistor FDNR

$$
Z_{11}=\frac{1}{-\omega^{2} R}
$$

D Element Circuit

Rule

A transfer function of a network remains unchanged if all impedances are multiplied (or divided) by the same factor. This factor can be a fixed number or a variable, as long as every impedance element that appears in the transfer function is multiplied (or divided) by the same factor.

The 1/S transformation involves multiplying all impedances in a network by 1/S.

The 1/S Transformation

Element	Impedonce	Tronsformed Element	Tronsformed Impedonce
$\{L$	SL	$\{$	L
$\frac{1}{T}^{C}$	$\frac{1}{5 C}$	\pm1 1	$\frac{1}{s^{2} C}$
$\{R$	R	$\frac{L^{1}}{T^{R}}$	$\frac{R}{s}$

Design of Active Low-Pass filter with 3dB point at 400 Hz using D Elements

Elliptic Function Low-Pass filter using GICs

Requirements: 0.5 dB Maximum at $\mathbf{2 6 0 H z}$
60 dB Minimum at 270 Hz Steepness factor $=\mathbf{1 . 0 3 8 5}$

Normalized Elliptic Function Filter
C11 20 0=75 ${ }^{\circ}$
$\mathrm{N}=11 \mathrm{R}_{\mathrm{db}}=0.18 \mathrm{~dB} \Omega \mathrm{~s}=1.0353 \quad 60.8 \mathrm{~dB}$

(a)

1/S Transformation

Realization of D Elements

(d)

Frequency and Impedance Scaled Final Circuit

Note: 1 meg termination resistor is needed to provide DC return path.

Bi-Directional Impedance Converter for Matching D Element Filters Requiring Capacitive Loads to Resistive Terminations

Value of R Arbitrary
R_{s} is source and load resistive terminations
$\mathbf{C}_{\text {GIC }}$ is D Element Circuit Capacitive Terminations

Active Amplitude and Delay Equalizer Structures

$T(s)$ is a second-order bandpass network having a gain of +1 at center frequency F_{r}

$$
T(s)=\frac{\frac{\omega_{r}}{Q} s}{s^{2}+\frac{\omega_{r}}{Q} s+\omega_{r}^{2}}
$$

$$
\begin{aligned}
& \omega_{\mathrm{r}}=\sqrt{\alpha_{2}+\beta_{2}} \\
& \omega_{\mathrm{r}}=2 \pi \mathrm{~F}_{\mathrm{r}} \\
& \mathbf{Q}=\frac{\omega_{\mathrm{r}}}{2 \alpha}
\end{aligned}
$$

As a function of \mathbf{Q} the circuit has a group delay as follows:

The peak delay is equal to
$T_{g d, \max }=\frac{4 Q}{\omega_{r}}$
Where $K=2$ and $Q>2$

-This architecture can be used as an amplitude equalizer by varying K.
-If $K=\mathbf{2}$ the circuit can be used as a delay equalizer by varying \mathbf{Q}.

- By varying both K and Q this architecture can be used for both amplitude and delay equalization.

There will be an interaction between amplitude and delay as K is varied to change the amount of amplitude equalization.

(a)

(b)

Adjustable Delay Equalizer

Tgd, $\max =4 \mathrm{R}_{1} \mathrm{C}$

$$
R 2=R 3=\frac{1}{\omega_{\mathrm{r}} C}
$$

$\mathbf{C}, \mathbf{R}, \mathbf{R}^{\prime}$ and $\mathbf{R}^{\prime \prime}$

 can be any convenient values

(a)

Adjustable Delay and Amplitude Equalizer

By introducing a potentiometer into the circuit amplitude equalization can also be achieved The amplitude equalization at ω_{r} is given by:

$$
A_{d b}=20 \log (4 K-1)
$$

Where K from 0.25 to 1 covers an amplitude equalization range of $-\infty$ to $\mathbf{+ 9 . 5 4} \mathbf{d B}$

(b)

To extend the amplitude equalization range beyond +9.54 dB the following circuit can be used. The amplitude equalization at ω_{r} given by:
$A_{d b}=20 \log (2 K-1)$
where a K variation from 0.5 to ∞ results in an infinite range of equalization capability. In reality $\pm \mathbf{1 2 d B}$ has been found to be more than adequate so K will vary from 0.626 to 2.49 .

(c)

Simplified Adjustable Amplitude Equalizer

The following circuit combines a fixed Q bandpass section with a summing amplifier to provide a low complexity adjustable amplitude equalizer. The design equations are given by:

$$
\begin{gathered}
R_{2}=\frac{2 Q}{\omega, C} \\
R_{1 a}=\frac{R_{2}}{2} \\
R_{1 \mathrm{~b}}=\frac{R_{10}}{2 Q^{2}-1} \\
A_{\mathrm{dB}}=20 \log \left(\frac{1}{K}-1\right)
\end{gathered}
$$

Where K will range from 0 to 1 for an infinite range of amplitude equalization.

To compute the desired Q first define f_{b} corresponding to one-half the boost(or null) desired in dB.

Then:

$$
Q=\frac{f_{b} b^{2} \sqrt{K_{r}}}{f_{r}\left(b^{2}-1\right)}
$$

Where

$$
K_{r}=\log ^{-1}\left(\frac{A_{d b}}{20}\right)=10^{\mathrm{Adb} / 20}
$$

and $b=\frac{f_{b}}{f_{r}}$
or $\quad b=\frac{f_{r}}{f_{b}}$

Whichever b is >1

High-Q Notch Filters

This circuit is in the form of a bridge where a signal is applied across terminals' 1 and 2 the output is measured across terminals' 3 and 4. At $\omega=1$ all branches have equal impedances of $0.707 \angle-45^{\circ}$ so a null occurs across the output.

The circuit is redrawn in figure B in the form of a lattice. Circuit C is the Identical circuit shown as two lattices in parallel.

(d)

There is a theorem which states that any branch in series with both the Z_{A} and Z_{B} branches of a lattice can be extracted and placed outside the lattice. The branch is replaced by a short. This is shown in figure D above. The resulting circuit is known as a Twin-T. This circuit has a null at 1 radian for the normalized values shown.

To calculate values for this circuit pick a convenient value for \mathbf{C}. Then

$$
R_{1}=\frac{1}{2 \pi f_{0} C}
$$

The Twin-T has a $Q\left(f_{0} / B W_{3 d B}\right)$ of only $1 / 4$ which is far from selective.

Circuit A above illustrates bootstrapping a network $\boldsymbol{\beta}$ with a factor K. If $\boldsymbol{\beta}$ is a twin-T the resulting Q becomes:
$Q=\frac{1}{4(1-K)}$
If we select a positive $K<1$, and sufficiently close to 1 , the circuit Q can be dramatically increased. The resulting circuit is shown in figure B.

Bridged-T Null Network

Impedance of a center-tapped parallel resonant circuit at resonance is $\omega_{\mathrm{r}} \mathrm{LQ}$ total and $\omega_{\mathrm{r}} \mathrm{LQ} / 4$ from end to center tap (due to N^{2} relationship). Hence a phantom negative resistor of $-\omega_{r} L Q / 4$ appears in the equivalent circuit which can be cancelled by a positive resistor of $\omega_{r} L Q / 4$ resulting in a very deep null at resonance (60 dB or more).

Adjustable Q and Frequency Null Network

$T(s)$ can be any bandpass circuit having properties of unity gain at f_{r}, adjustable Q and adjustable f_{r}.

Q Multiplier Active Bandpass Filters

(a)

If $T(s)$ in circuit A corresponds to a bandpass transfer function of:

$$
T(s)=\frac{\frac{\omega_{r}}{Q} s}{s^{2}+\frac{\omega_{r}}{Q} s+\omega_{r}^{2}}
$$

The overall circuit transfer function becomes:

$$
\frac{\text { Out }}{\text { In }}=\frac{\frac{\omega_{r}}{Q} s}{s^{2}+\frac{\omega_{r}}{\frac{Q}{\frac{Q}{1-\beta}}} s+\omega_{r}^{2}}
$$

The middle term of the denominator has been modified so the circuit Q is given by $Q /(1-\beta)$ where $0<\beta<1$. The Q can then be increased by the factor $1 /(1-\beta)$. Note that the circuit gain is increased by the same factor.

A simple implementation of this circuit is shown in figure B.
The design equations are:
First calculate β from $\beta=1-\frac{Q_{r}}{Q_{\text {eff }}}$
where $Q_{\text {eff }}$ is the overall circuit Q and Q_{r} is the design Q of the bandpass section.
The component values can be computed from:

$$
\begin{array}{lll}
R_{3}=\frac{R}{\beta} & R_{2}=\frac{Q_{r}}{\pi f_{r} C} & \mathbf{R}_{1 \mathrm{~b}}=\frac{\mathrm{R}_{1 \mathrm{a}}}{2 \mathrm{Q}_{\mathrm{r}}{ }^{2}-1} \\
R_{4}=R & R_{\mathrm{ta}}=\frac{R_{2}}{2} & \\
R_{5}=\frac{R}{(1-\beta) A_{r}} & &
\end{array}
$$

Where R and C can be conveniently chosen.

A Family of Zero Phase Shift Low-Pass Filters

note near-zero phase slope for high ripples

Transformation to Band-Pass Filter

Some Useful Passive Filter Transformations to Improve Realizability

Advantages :
Reduces value of L
Allows for parasitic capacity across inductor

$$
N=1+\frac{C_{1}}{C_{2}}
$$

Advantages:
Increases value of L

Narrow Band Approximations

This transformation can be used to reduce the value of a terminating resistor and yet maintain the narrow-band response.
and

$$
\begin{aligned}
& C_{2}=\frac{1}{\omega_{0} \sqrt{R_{1} R_{2}-R_{2}^{2}}} \\
& C_{1}=C_{T}-\frac{1}{\omega_{0}} \sqrt{\frac{R_{1}-R_{2}}{R_{1}^{2} R_{2}}}
\end{aligned}
$$

where the restrictions $R_{2}<R_{1}$ and $\left(R_{1}-R_{2}\right) /\left(R_{1}^{2} R_{2}\right)<\omega_{0}^{2} C_{T}^{2}$ apply.

The following example illustrates how this approximation can reduce the source impedance of a filter.

$$
\begin{aligned}
C_{2}= & \frac{1}{\omega_{0} \sqrt{R_{1} R_{2}-R_{2}^{2}}}=\frac{1}{2 \pi \times 10^{5} \sqrt{7.32 \times 6 \times 10^{5}-600^{2}}} \\
= & 792.6 \mathrm{pF} \\
C_{1}= & C_{\mathrm{T}}-\frac{1}{\omega_{0}} \sqrt{\frac{R_{1}-R_{2}}{R_{1}^{2} R_{2}}}=884.9 \times 10^{-12} \\
& -\frac{1}{2 \pi \times 10^{5}} \sqrt{\frac{7.32 \times 10^{3}-600}{7320^{2} \times 600}}=157.3 \mathrm{pF}
\end{aligned}
$$

Using the Tapped Inductor

(a)

(b)

An inductor can be used as an auto-transformer by adding a tap

Resonant circuit capacitor values can be reduced

Leakage inductance can wreak havoc

Effect of leakage inductance can be minimized by splitting capacitors which adds additional poles

Exponentially Tapered Network

Method of exponentially tapering a network to a higher (or lower) load impedance value with minimal effect on response

State Variable (Biquad) Bandpass Filter

All-PASS DELAY LINE SECTION

SINGLE TRANSFORMER HYBRID

