



By

# **DR. WILLIAM J. SEMBLER, PH.D., P.E.** UNITED STATES MERCHANT MARINE ACADEMY

JOINT ASME/ISA/IEEE PES-IAS LI SECTIONS TECHNICAL MEETING AND SEMINAR FARMINGDALE STATE COLLEGE OF NY 17 NOVEMBER 2010

# **PRESENTATION**

- 1. INTRODUCTION
- 2. TYPES OF FUEL CELLS
- 3. ADVANTAGES OF A SOLID-OXIDE FUEL CELL
- 4. SINGLE-CELL SOFC PARAMETRIC STUDY
- 5. MULTI-CELL SOFC ANALYSIS
- 6. FUEL CELL USE IN MARINE APPLICATIONS
- 7. SOFC HYBRID SYSTEMS TO GENERATE SHIPBOARD ELECTRICAL POWER
- 8. OVERALL CONCLUSIONS
- 9. QUESTIONS

The opinions expressed herein are those of the author and do not reflect any official position or policy of the United States Department of Transportation, Maritime Administration, or U.S. Government.

## **INTRODUCTION**

# WHAT IS A FUEL CELL?

>A DEVICE THAT CONVERTS CHEMICAL ENERGY INTO ELECTRICAL ENERGY

>DISCOVERED BY WILLIAM GROVE IN 1839

>BASIC FUEL CELL CONSISTS OF <u>TWO ELECTRODES</u> SEPARATED BY AN <u>IONIC-CONDUCTING ELECTROLYTE</u>

><u>IONS</u> FORMED AT ONE ELECTRODE ARE CONDUCTED THROUGH THE ELECTROLYTE

>LIBERATED ELECTRONS PASS THROUGH AN EXTERNAL CONDUCTOR CREATING A <u>DIRECT CURRENT</u>

#### THE POTENTIAL USE OF FUEL CELLS TO GENERATE SHIPBOARD ELECTRICAL POWER FUEL-CELL VOLTAGE



Fuel Cell Voltage vs. Current Density

Thermodynamically reversible (Nernst) voltage generated by a fuel cell

$$\mathsf{E} = \frac{-\Delta \overline{\mathsf{g}}_{\mathsf{f}}}{\mathsf{n}_{\mathsf{fuel}}} (\mathsf{F})$$

F = Faraday constant, 9.6485 E4 C/mol of electrons

Maximum current produced by a fuel cell with 100% utilization of a fuel and sufficient oxidizer:

#### Voltage Losses in a Fuel Cell

> Activation Losses. Energy required to drive electrochemical reactions; reduced as the rates of the electrochemical reactions within a fuel cell increase.

#### **>**Fuel Crossover and Internal Currents.

• Internal current conducted through electrolyte.

• Fuel supplied to a fuel cell that diffuses and migrates through the electrolyte.

➢ Ohmic Losses. Resistance to the transport of electrons in the electrodes, interconnectors, and electrical circuit (including contact resistance) and to the conduction of ions through the electrolyte.

Concentration or Mass Transport Loss. Due to a reduction in the concentrations of the reactants and an increase in the concentrations of the products at the electrode-electrolyte interfaces relative to the bulk concentrations.

$$i_{max} = n_{fuel} (F) \dot{N}_{fuel} (1000 \frac{mol}{kmol})$$

# WHY THE INTEREST IN FUEL CELLS?

>WHEN SUPPLIED WITH HYDROGEN AND OXYGEN, PRODUCTS ARE ELECTRICITY, WATER AND HEAT – <u>NO POLLUTANTS</u> ARE PRODUCED.

>CAN BE MORE EFFICIENT THAN A TYPICAL DIESEL-ENGINE – EMISSIONS WITH FUELS OTHER THAN HYDROGEN WILL TYPICALLY BE LESS THAN THOSE PRODUCED BY A COMPARABLY SIZED DIESEL ENGINE.

><u>HEAT</u> GENERATED CAN BE UTILIZED IN OTHER SYSTEMS OR COMPONENTS.

## **TYPES OF FUEL CELLS**

<u>Alkaline Fuel Cell (AFC)</u>: One of the earliest types of cells used. Electrodes are separated by a liquid electrolyte consisting of a solution of potassium hydroxide in water. Some electrodes are made from carbon-supported catalysts that are mixed with poly-tetrafluoroethylene (PTFE) and rolled onto a nickel mesh. Alternatively, porous Raney nickel and silver have been used for anodes and cathodes, respectively. AFCs were used in the U.S. Apollo Space Program in the late 1960s and 1970s and are currently used in the Space Shuttle

> Proton Exchange Membrane Fuel Cell (PEMFC): Contains two porous carbon electrodes separated by a thin solid polymer electrolyte that is coated on both sides with a platinum-based catalyst. Dupont Nafion® is a commonly used electrolyte material. PEMFCs were used in the U.S. Gemini Space Program in the mid 1960s.

Phosphoric Acid Fuel Cell (PAFC): The electrolyte consists of phosphoric acid that is contained within the pores of a matrix of silicon carbide held together with a small amount of PTFE. Electrodes are typically constructed from porous graphite that is coated with a platinum (Pt) catalyst.

# **TYPES OF FUEL CELLS (contd.)**

Molten Carbonate Fuel Cell (MCFC): The electrolyte consists of a molten mixture of lithium and either potassium or sodium carbonates suspended in a porous chemically inert ceramic lithium-oxide matrix. Commonly used electrode materials include porous sintered nickelchromium/nickel-aluminum alloy for anodes and nickel oxide for cathodes.

Solid Oxide Fuel Cell (SOFC): A solid ceramic electrolyte is located between two porous electrodes. Zirconia stabilized with a small percentage of yttria (Y2O3), referred to as YSZ, is a common electrolyte material. A typical SOFC anode is made from a cermet consisting of nickel in a YSZ skeleton, and a common cathode material is strontiumdoped lanthanum manganite (LSM).

## FUEL-CELL COMPARISON

| TYPE                             | AFC                                                               | PEMFC                                 | PAFC                                             | MCFC                                                                            | SOFC                                                                                               |  |  |
|----------------------------------|-------------------------------------------------------------------|---------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|
| Reforming                        |                                                                   | External only                         |                                                  | Internal an                                                                     | Internal and External                                                                              |  |  |
| Fuels                            |                                                                   | H <sub>2</sub>                        |                                                  | H <sub>2</sub> 8                                                                | H₂& CO                                                                                             |  |  |
| Oxidizers                        |                                                                   | 0 <sub>2</sub>                        |                                                  | O2 & CO2                                                                        | 0 <sub>2</sub>                                                                                     |  |  |
| Mobile Ion                       | он                                                                | F                                     | i <sup>+</sup>                                   | CO3 <sup>2-</sup>                                                               | 0 <sup>2 -</sup>                                                                                   |  |  |
| Anode Exhaust                    | Excess Fuel & H <sub>2</sub> O                                    | Exces                                 | s Fuel                                           | Excess Fuel, H <sub>2</sub> O (if<br>H <sub>2</sub> in fuel), & CO <sub>2</sub> | Excess Fuel, H <sub>2</sub> O (if<br>H <sub>2</sub> in fuel), & OO <sub>2</sub> (if<br>OO in fuel) |  |  |
| Cathode Exhaust <sup>A</sup>     | Excess Oxidizer                                                   | Excess Oxi                            | dizer & H <sub>2</sub> O                         | Excess Oxidizer                                                                 |                                                                                                    |  |  |
| Typical Operating<br>Temperature | 50 to 200 C                                                       | 30 to 100 C                           | 205 to 220 C                                     | 650 C                                                                           | 800 to 1000 C <sup>B</sup>                                                                         |  |  |
|                                  | Lower activation<br>loss at cathode than<br>with acid electrolyte | Suitable for portable<br>applications | Water management<br>simplified with<br>100% acid | 250+ KW units<br>commercially<br>available                                      | ts High temperatures<br>y reduce ohmic<br>losses                                                   |  |  |
|                                  |                                                                   |                                       | electrolyte                                      | CO can be u                                                                     | ) can be used as a fuel                                                                            |  |  |
| Advantages                       | Low cost                                                          | solid electrolyte                     | Low-cost<br>electrolyte                          | High waste heat for<br>cogeneration                                             | Highest waste heat<br>avaiable                                                                     |  |  |
|                                  | electrolyte                                                       | Good start-stop<br>capability         | High Reliability                                 | Non-precious-meta<br>us                                                         | al catalysts may be<br>ed                                                                          |  |  |
|                                  | Non-precious-metal<br>catalysts may be<br>used                    | High power density                    | density Mature technology material degredati     |                                                                                 | Planar can have<br>high power<br>densities                                                         |  |  |
|                                  |                                                                   |                                       |                                                  |                                                                                 | Solid electrolyte                                                                                  |  |  |

## FUEL-CELL COMPARISON (CONTD.)

| ТҮРЕ          | AFC                                                                                                                                                                                   | PEMFC                                                      | PAFC                      | MCFC                                                               | SOFC                                                     |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------|--------------------------------------------------------------------|----------------------------------------------------------|--|--|
|               | CO <sub>2</sub> reacts with<br>electrolyte                                                                                                                                            | Requires expensi<br>cata                                   | ve precous-metal<br>alyst | Corrosive molten<br>electrolyte                                    | Least mature type                                        |  |  |
|               | Electrolyte must be periodically replenished to makeup for evaporation $ \begin{array}{c}             Electrolyte must be dosely managed to prevent flooding electrodes \end{array} $ |                                                            |                           | Electrolyte must be<br>heated above                                | Heating required at startup                              |  |  |
|               |                                                                                                                                                                                       | Extended startup<br>time to limit<br>temperature           |                           |                                                                    |                                                          |  |  |
|               |                                                                                                                                                                                       | prevent flooding                                           | replenished to            | Stresses from                                                      | gradients                                                |  |  |
| Disadvantages |                                                                                                                                                                                       | electrodes                                                 | makeup for<br>evaporation | freeze-thaw cyde<br>of electrolyte during<br>startup &<br>shutdown | High temperatures<br>can lead to material<br>degradation |  |  |
|               | Water must be<br>removed form<br>anode to prevent                                                                                                                                     | Bipolar plaes<br>separating cells in a<br>stack are costly | Stack cooling<br>required | CO <sub>2</sub> must often be<br>recycled from<br>anode to cathode | Planar can be limited<br>in size and difficut<br>to seal |  |  |
|               | electrolyte diution                                                                                                                                                                   | CO can poisen c                                            | atalyst in anode          | Materials can be re                                                | elatively expensive                                      |  |  |
|               |                                                                                                                                                                                       |                                                            | Poor tolerance to sulfur  |                                                                    |                                                          |  |  |

<sup>A</sup> Cathode exhaust also includes nitrogen and other non-O<sub>2</sub> components contained in any air supplied to the cathode. <sup>B</sup> Intermediate-temperature SOFCs with operating temperatures from 873 K to 1073 K are also being developed

## **ADVANTAGES OF SOLID-OXIDE FUEL CELLS**

>SOFCS HAVE THE HIGHEST OPERATING TEMPERATURES – GREATEST AMOUNT OF WASTE HEAT.

>STEAM GENERATED IN ANODE CAN BE UTILIZED FOR INTERNAL FUEL REFORMING.

>SOLID ELECTROLYTE – ELIMINATES NEED TO MONITOR ELECTROLYTE CHEMISTRY, WILL NOT BE AFFECTED BY VESSEL MOTION.

>CARBON MONOXIDE (CO) CAN BE UTILIZED AS A FUEL – WILL NOT POISON THE CELL.

>HIGH SOFC OPERATING TEMPERATURES – REDUCES IONIC RESISTANCE IN ELECTROLYTE AND ELECTRONIC RESISTANCE IN THE ELECTRODES; PRECIOUS-METAL CATALYSTS NOT REQUIRED.

## PLANAR SOLID-OXIDE FUEL CELL



Planar Solid-Oxide Fuel Cell Schematic

Electrochemical reactions in an SOFC supplied with hydrogen (H<sub>2</sub>) and/or carbon monoxide (CO) as fuel and oxygen (O<sub>2</sub>) as an oxidizer:

 $0_2 + 4 e^- \rightarrow 2 0^{2-}$ 

Cathode:

Anode:

 $2 \ \mathrm{H_2} + 2 \ \mathrm{O^{2-}} \rightarrow 2 \ \mathrm{H_2O} + 4 \ \mathrm{e^-}$ 

 $2\;\mathrm{CO}+2\;\mathrm{O}^{2-}\rightarrow 2\;\mathrm{CO}_2+4\;\mathrm{e}^-$ 

Negative oxygen ions from air supplied to the cathode are formed at the cathode-electrolyte interface.

These oxygen ions are conducted through the electrolyte.

> These ions combine with hydrogen molecules  $(H_2)$  at the anode-electrolyte interface and form water  $(H_2O)$ .

Electrons separated from the oxygen ions are conducted through an external electrical circuit that joins the anode to the cathode creating direct current.

➢ When the electrons return to the cathode, they combine with the incoming oxygen to form new oxygen ions, and the aforementioned process is repeated.

## SINGLE-CELL SOFC PARAMETRIC STUDY USING CFD

- > OBJECTIVE
- > THERMAL BOUNDARY CONDITIONS
- FUEL & AIR TEMPERATURES, FLOW RATES AND PRESSURES
- > FUEL & AIR FLOW ORIENTATION
- > FLOW-CHANNEL DIMENSIONS
- > OPTIMUM CELL CONFIGURATION
- > CONCLUSIONS OF PARAMETRIC STUDY

## WHAT IS THE OBJECTIVE OF THIS PARAMETRIC STUDY?

> To determine the effects of changing various parameters on the performance of a Solid-Oxide Fuel Cell (SOFC) CFD model.

> To verify that the effects of these changes predicted by the CFD analyses were consistent with fuel-cell theory.

> To use the CFD results to develop an optimized singlecell SOFC.

## **THERMAL BOUNDARY CONDITIONS**



## FUEL & AIR INLET TEMPERATURES



> Two Inlet temperatures analyzed: <u>1123 K & 750 K.</u>

➢ Higher fuel and air inlet temperatures resulted in higher average electrolyte temperatures.

➤ This reduced the Nernst voltage but increased the cell voltage produced when the current density was less than 1400 mA/cm<sup>2</sup>.



## FUEL & AIR HEATERS



**SOFC with Air and Fuel Heaters** 

➢ If the fuel and air being supplied to an SOFC are to be heated by the cell's anode-exhaust and cathodeexhaust gas streams, <u>the</u> <u>temperatures of the fuel and air</u> <u>entering the fuel cell will be limited</u> <u>by</u>

<u>The exhaust-gas temperatures</u>

• <u>The heat transfer achievable in the</u> <u>fuel and air heat exchangers</u>.

## FUEL & AIR HEATERS





➤ The heat transferred from the SOFC exhaust gas in the air and fuel heaters was <u>not</u> <u>sufficient to heat the fuel or the</u> <u>air to the desired 1123 K</u>.

≻ If the air and fuel temperatures at the inlet to the SOFC were reduced to the values at the air- and fuelheater outlets, the SOFC's exhaust-gas temperatures and the air and fuel heater-outlet would be temperatures reduced, which would reduce SOFC exhaust-gas the temperatures to even lower values.

➢ When air and fuel were both supplied to the SOFC at a temperature of <u>750 K</u>, the anode-exhaust gas <u>was hot</u> <u>enough to heat the incoming air</u> <u>and fuel to 750 K.</u>

## FUEL FLOW RATE





➤ The <u>fuel utilization factor</u>, U, is the ratio of the fuel (hydrogen) mass flow rate required divided by the fuel mass flow rate supplied.

> U was varied from 30% to 90%

The increased mass flow rate of fuel associated with a reduced fuel utilization factor had a cooling effect on the cell and resulted in a reduced electrolyte temperature.

This reduction in temperature resulted in an <u>increase in the Nernst voltage</u>,

➤ A reduction in fuel utilization also increases the reactant concentration at the anode-electrolyte interface, which <u>reduces</u> <u>concentration losses and helps to increase</u> <u>cell voltage.</u>

> Due to an increase in the Ohmic losses and, to a lesser extent, in the activation losses with the reduction in temperature, the cell voltage did not rises as steeply as the Nernst voltage when U was reduced, and it eventually leveled off.

## FUEL FLOW RATE



vs. Fuel Utilization

## **AIR FLOW RATE**





The <u>air ratio</u>, R, is the <u>ratio of the air mass flow</u> rate supplied divided by the air mass flow rate required.

R was varied from <u>2 to 6</u>

> During operation with a fixed fuel utilization factor of 70%, the air-to-fuel ratio increased from approximately <u>48 when the air ratio was 2.0 to a</u> value of 143 when R was equal to 6.0.

The significantly greater mass flow on the cathode side absorbed more heat from the electrolyte.

> When the air flow rate was doubled or tripled, there was a <u>larger drop in the electrolyte</u> temperature than when the fuel flow rate was increased by the same ratio.

> The <u>reduction in temperature</u> with higher air ratios did result in an <u>increase in the Nernst</u> voltage.

Despite the increase in the oxygen concentration at the cathode-electrolyte interface, increasing the air flow resulted in an even greater increase in the cell's Ohmic losses (due to the drop in temperature) and <u>caused the cell voltage to drop</u>.

## AIR FLOW RATE



## FUEL & AIR FLOW RATE





➢ Due primarily to the reduction in temperature, <u>operation with an air ratio</u>, <u>R</u>, of 6.0 and a fuel-utilization factor, U, of 30% resulted in a higher Nernst voltage than operation with an air ratio of 2.0 and a fuel-utilization factor of 70%.

➤ The beneficial effects of the increased Nernst voltage and reactant concentrations with increaded air & fuel flow were all but nullified by the detrimental effects of the reduced cell temperature, and the cell voltage values for both sets of air and fuel flow rates were virtually identical up to a current density of approximately 1500 mA/cm<sup>2</sup>.

> After this point, the increased air and fuel flow during operation with R = 6 and U = 30% did prevent the drop in cell voltage ordinarily associated with concentration losses, and the <u>operating</u> <u>range of the cell was significantly</u> <u>increased</u>.

## FUEL & AIR FLOW RATE





> When the air ratio was increased and more air was supplied to the cell, the pressure drop within the cathode-flow channels increased.

> As the <u>current density was increased with</u> <u>a fixed air mass flow rate</u>, <u>this pressure</u> <u>drop increased</u> due to the higher operating temperatures and the resulting increased expansion of the air, which resulted in higher fluid velocities within the cathodeflow channels and increased friction losses.

➢ When the <u>fuel utilization was reduced</u> and more fuel was supplied to the cell, the <u>pressure drop within the anode-flow</u> <u>channels increased</u>.

➢ As the <u>current density was increased with</u> <u>a fixed fuel mass flow rate</u>, <u>this pressure</u> <u>drop increased</u> due to the higher operating temperatures and the resulting increased expansion of the fuel during operation at higher current densities, which resulted in higher fluid velocities within the anode-flow channels and increased friction losses.

#### **OPERATING PRESSURE**





Operating Pressure varied from <u>1 to 15 atm</u>.

≻The <u>Nernst voltage</u> produced by an SOFC <u>increases with the</u> <u>partial pressure of the reactants</u>.

This also results in an increase in the cell voltage.

## **OPERATING PRESSURE**





➢ <u>As the cell voltage increased with a</u> <u>constant current</u>, less heat was generated in the cell (because more useful work was performed) and there was a <u>slightly lower</u> <u>electrolyte temperature</u>.

➢Compressing the incoming fuel and air also <u>adds heat to these gases</u>, which could enable them to be supplied to a fuel cell at an increased temperature. This would tend to <u>increase electrolyte</u> <u>temperatures</u>, <u>anode and cathode</u> <u>exhaust temperatures</u>, and possibly the <u>cell voltage</u>.

➢ When the air and fuel compressor electrical loads are considered, <u>the net</u> <u>power produced was reduced as the</u> <u>operating pressure increased.</u>

➢ Using a pressurized cell is recommended <u>only if there is another</u> <u>reason to compress the fuel and air</u>, such as to permit a gas turbine to be used as part of an SOFC-hybrid system.

## FLOW ORIENTATION



Simulations were conducted with <u>counterflow, crossflow, and parallel-</u> <u>flow configurations</u>.

During operation with <u>lower current</u> <u>densities</u>, <u>cell-voltage values for all</u> <u>three configurations were virtually</u> <u>identical</u>.

> During operation with <u>higher current</u> <u>densities</u>, the <u>counterflow arrangement</u> <u>did produce slightly higher cell voltages</u>.

➢ With the exception of a slight divergence at the high-current-density end of the curve, the average electrolyte temperatures with the counterflow and parallel-flow configurations were almost identical and were generally slightly greater than the average electrolyte temperature with the crossflow arrangement.

A higher temperature results in more waste heat for use in a hybrid system.

### FLOW ORIENTATION



Orientation (1400 mA/cm<sup>2</sup>)

➤ The differential temperature across the electrolyte with counterflow was significantly less than that of the parallel-flow cell and was close to the maximum differential temperature across the electrolyte in the crossflow cell.

Limiting the differential temperature across various parts of a fuel cell <u>reduces</u> <u>stresses resulting from uneven thermal</u> <u>expansion.</u>

➢ <u>The counterflow arrangement</u> was considered to be the <u>preferred choice</u> for the planar SOFC analyzed.

## **FLOW-CHANNEL DIMENSIONS**



**SOFC Flow-Channel Arrangement** 

> The effect of <u>flow-channel size</u> was determined by performing a series of analyses with various channel dimensions.

➤ To be able to differentiate between the effects of changes in the channel width and those resulting from changes in the channel height, this study was divided into two parts:

1. <u>Simulations performed with</u> <u>different channel and rib widths</u> but with a constant channel height.

2. <u>Simulations performed with</u> <u>different channel heights</u> but with constant channel and rib widths.

## FLOW-CHANNEL AND RIB WIDTH



<u>Nine</u> different <u>channel-</u> and rib-width combinations were analyzed.

➤ The channel and rib width selected resulted in a whole number of complete channels across the width of the cell.

> The <u>height</u> of all of the channels was set equal to 1 mm.

#### FLOW-CHANNEL AND RIB WIDTH



Larger rib widths reduced the resistance to the electrical current conducted through the ribs.

increasing the rib width enabled the cell to develop a higher cell voltage.

➢ Wider ribs also reduced the area over which incoming oxygen was in contact with the upper surface of the cathode and made it more difficult for the oxygen to diffuse through the cathode.

Due to the improved oxygen diffusion, the <u>operating range</u> in terms of current density was <u>typically higher for the cells with</u> <u>thinner ribs</u>.

 $\blacktriangleright$  <u>Rib width had little effect on the</u> <u>diffusion of hydrogen</u> through the anode. This was expected due to the relatively low diffusion resistance of hydrogen when compared to that of oxygen.

### FLOW-CHANNEL AND RIB WIDTH



Effect of Channel / Rib Width on  $O_2$  Diffusion Through Cathode (Current Density = 680 mA/cm<sup>2</sup>) Effect of Channel / Rib Width on  $H_2$  Diffusion Through Anode (Current Density = 680 mA/cm<sup>2</sup>)

## **FLOW-CHANNEL HEIGHT**



SOFC Cell Flow-Channel Height Detail (1.5 mm Channel & 0.5 mm Rib Widths)

Four different flow-channel heights were evaluated.

> The channel and rib widths were set equal to 1.5 mm and 0.5 mm, respectively.

### **FLOW-CHANNEL HEIGHT**



➢ At any given current density, the <u>cell voltage</u> <u>developed increased</u> as the <u>channel height was reduced</u> due to the reduced electrical resistance in the cells with shorter ribs.

### FLOW-CHANNEL HEIGHT





➤ A disadvantage of reduced flowchannel height is an <u>increased</u> <u>pressure drop within the flow</u> <u>channels.</u>

The magnitude of the pressure drop in the cathode-flow channels was significantly higher than that in the anode-flow channels.

➤ This was due, primarily, to the relatively <u>high air/fuel ratio of 48</u> in terms of mass that was maintained during the flow-channel study, which is typical of fuel-cell operation and resulted in a much higher air-flow rate when compared to the flow rate of the fuel.

## **OPTIMIZED SINGLE-CELL CONFIGURATION**



**Final SOFC Single-Cell Configuration** 

> A <u>flow-channel width of **1.333 mm**</u> with the corresponding <u>rib width of</u> **0.667 mm** was selected because it resulted in the production of reasonably high cell-voltage values and in an operating range with current densities as high as 1200 mA/cm<sup>2</sup>.

> The <u>channel height</u> selected for the <u>anode-flow channels was 0.25</u> <u>mm</u>, which resulted in the highest cell voltage when compared to the other channel heights evaluated. The pressure drop in the anode-flow channels with this height did not exceed <u>15 Pa</u>.

➢ On the cathode side, the pressure drop with a 0.25 mm channel height would exceed 1800 Pa. To limit this pressure drop to less than 200 Pa, a height of 0.75 mm was selected for the cathode-flow channels.

#### THE POTENTIAL USE OF FUEL CELLS TO GENERATE SHIPBOARD ELECTRICAL POWER CONCLUSIONS OF SINGLE-CELL PARAMETRIC STUDY

#### **Thermal Boundary Conditions**

➢As predicted by theory, conditions resulting in <u>higher cell temperatures</u> typically <u>resulted in lower</u> <u>thermodynamically reversible or Nernst voltages</u>. These higher temperatures were achieved by changing the SOFC's boundary conditions to reduce or eliminate heat transfer to the surroundings and by preheating the fuel and air supplied to the cell.

➢ Because the higher temperatures also reduced Ohmic and, when operating with low to moderate current densities, activation losses, <u>the cell voltages</u> <u>being produced often increased.</u>

#### Air & Fuel Flow Rates

➢Increasing air and fuel concentrations also increased the Nernst voltage, together with the range of current densities over which the cell could operate.

➢ Due to the <u>cooling created by the increased flow</u> rates, the <u>improvement in the cell voltage produced</u> <u>was either reduced</u> (in the case of increased fuel flow) <u>or eliminated</u> (in the case of increased air flow).

#### **Air & Fuel Inlet Pressures**

>Increasing the pressure at which fuel and air were supplied to the SOFC resulted in <u>higher cell</u> voltages.

➤ This benefit was <u>eliminated</u> when <u>the air- and</u> <u>fuel-compressor electrical loads were considered</u>.

> It is beneficial to pressurize an SOFC <u>only when</u> the compressed gas will be used for another purpose.

#### **Air & Fuel Flow Orientation**

➤A <u>counterflow</u> arrangement resulted in <u>cell</u> voltages and electrolyte temperatures that were almost identical to or slightly greater than values with parallel-flow and crossflow configurations.

➤The electrolyte's differential temperature in the counterflow cell was significantly less than the value in the parallel-flow cell and was close to the maximum differential temperature across the electrolyte in the crossflow cell, which helps to limit thermal stress.

#### <u>CONCLUSIONS OF SINGLE-CELL PARAMETRIC STUDY</u> (continued)

#### **Air & Fuel Flow-Channel Dimensions**

➤The use of wider ribs separating adjacent flow channels reduced the resistance to the electrical current conducted through the ribs.

➢ Because it also reduced the area over which incoming oxygen was in contact with the electrode surfaces, <u>the use of wider ribs impeded</u> <u>the diffusion of oxygen through the cathode</u>.

A similar effect did not occur on the diffusion of hydrogen through the anode.

# Reducing channel height reduced electrical resistance.

➢ It also increased the pressure drop within the channels. This effect was more pronounced in the cathode flow channels due the significantly larger air flow rate when compared to the fuel flow rate.

#### **Overall Result**

Based on all of the aforementioned CFD simulations, <u>an optimum cell configuration was</u> established.

➢ It is believed that the process described could be <u>repeated by fuel-cell designers to better</u> predict the effect of various changes on the performance of a cell before it is manufactured and tested.

# **SOFC MULTI-CELL ANALYSES**

- > OBJECTIVE
- > SOFC MULTIPLE-CELL ANALYSIS
- > MULTI-CELL ADJUSTMENT FACTORS
- > CONCLUSIONS OF MULTI-CELL ANALYSIS

## **OBJECTIVE OF MULTI-CELL STUDY**

➤ A typical single-cell fuel cell is capable of producing less than one volt of direct current.

➤ To produce the voltages required in most industrial applications, <u>many individual</u> <u>fuel cells must typically be stacked together</u> and connected electrically in series.

Computational fluid dynamics (CFD) can be helpful to <u>predict fuel-cell</u> <u>performance before a cell is actually built and tested.</u>

> To perform a CFD simulation using a <u>3-dimensional model of an entire fuel-cell</u> <u>stack</u> would require a considerable amount of <u>time and multi-processor computing</u> <u>capability</u> that may not be available to the designer.

➤ To <u>eliminate the need to model an entire multi-cell assembly</u>, a study was conducted to determine the <u>incremental effect on fuel-cell performance</u> of adding individual solid-oxide fuel cells (SOFC) to a multi-fuel-cell stack.

➤As part of this process, a series of simulations was conducted to establish a <u>CFD-nodal density</u> that would <u>produce reasonably accurate results but that could also be</u> used to create and analyze the relatively large models of the multi-cell stacks.

#### THE POTENTIAL USE OF FUEL CELLS TO GENERATE SHIPBOARD ELECTRICAL POWER SOFC MULTI-CELL ANALYSES



## **SOFC MULTI-CELL ANALYSES – CELL VOLTAGE**

![](_page_40_Figure_2.jpeg)

➢ Because of the size of the <u>6-cell stack</u> CFD model (1.1 million finite-volume cells, 1.42 million nodes), data was obtained for this stack only during operation with a current density of <u>1200 mA/cm<sup>2</sup></u>

![](_page_40_Figure_4.jpeg)

### **SOFC MULTI-CELL ANALYSES – CELL VOLTAGE**

![](_page_41_Figure_2.jpeg)

Average Voltage per Cell vs # Fuel Cells in Stack 1.33 mm Channel Width x 0.67 mm Rib Width x 0.75 mm / 0.25 mm Channel Height; Tin = 750K, 0 Heat Flux Boundary 1.2 1.1 -0 mA/cm2 1.0 0.9 400 mA/cm2 0.8 800 mA/cm2 0.7 0.6 1200 mA/cm2 0.5 0.4 2 3 5 0 6 1 # of Fuel Cells in Stack

Voltage per Cell (V)

➤ The <u>average voltage</u> produced by each cell in the stacks analyzed remained <u>relatively constant</u> or <u>increased very slightly</u> as the number of fuel cells in the stack increased.

## **SOFC MULTI-CELL ANALYSES – CELL VOLTAGE**

| SOFC Voltage vs Number of<br>Fuel Cells in Stack |                 |                                                       |                                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|--------------------------------------------------|-----------------|-------------------------------------------------------|--------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| # Fuel<br>Cells in<br>Stack                      | Total<br>Vstack | V <sub>Avg</sub><br>per#<br>Fuel<br>Cells in<br>Stack | ∆V <sub>Avg</sub><br>per#<br>Fuel<br>Cells in<br>Stack | <b>∆</b> % | 00.0<br>00.0<br>00.0 Cetta<br>00.0 Cotta<br>00.0 Cotta<br>0 |  |  |  |  |
|                                                  | v               | v                                                     | v                                                      | %          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 1                                                | 0.5024          | 0.5024                                                | -                                                      | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 2                                                | 1.0113          | 0.5057                                                | 0.0033                                                 | 0.647%     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 3                                                | 1.5199          | 0.5066                                                | 0.0010                                                 | 0.190%     | <u> </u><br>  _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 4                                                | 2.0284          | 0.5071                                                | 0.0005                                                 | 0.093%     | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 5                                                | 2.5369          | 0.5074                                                | 0.0003                                                 | 0.055%     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 6                                                | 3.0454          | 0.5076                                                | 0.0002                                                 | 0.037%     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |

![](_page_42_Figure_3.jpeg)

➢ As the <u>number of fuel cells in a stack was</u> increased, the <u>change in the average voltage</u> produced by each individual cell when another cell was added to the stack <u>was reduced and</u> <u>approached zero.</u>

### **SOFC MULTI-CELL ANALYSES – EXHAUST TEMPERATURE**

![](_page_43_Figure_2.jpeg)

![](_page_43_Figure_3.jpeg)

> The <u>cathode-exhaust temperatures</u> were <u>typically higher than the anode-</u> <u>exhaust temperatures</u>.

➤ The overall <u>cathode-exhaust</u> temperature increased very slightly as the <u>number of cells in the stack</u> was increased.

The overall <u>anode-exhaust</u> temperature dropped as more cells were added to the stack.

> This difference in behavior was due, in part, to the <u>significantly large</u> <u>air/fuel ratio</u> (approximately 48) and the resulting cooing effect that the incoming air entering the cathodeflow channels in one cell had on the outgoing exhaust gas leaving the anode-flow passages in the cell above it.

#### **SOFC MULTI-CELL ANALYSES – EXHAUST TEMPERATURE**

![](_page_44_Figure_2.jpeg)

![](_page_44_Figure_3.jpeg)

#### **SOFC MULTI-CELL ANALYSES – EXHAUST TEMPERATURE**

|                            | Cathode-Exhaust Temperatures vs. # of Fuel Cells in SOFC Stack<br>Current Density = 1200 mA/cm <sup>2</sup> |                    |                    |                                               |                             |                       |         |     |       |  |  |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-----------------------------------------------|-----------------------------|-----------------------|---------|-----|-------|--|--|--|
| # Fuel<br>Cells in<br>SOFC | Cell #1<br>Tcathex                                                                                          | Cell #2<br>Tcathex | Cell #3<br>Tcathex | 3Cell #4Cell #5Cell #6exTcathexTcathexTcathex | Overall<br>Stack<br>Tcathex | ∆Tcathex              | ∆%      |     |       |  |  |  |
| Stack                      | к                                                                                                           | ĸ                  | к                  | ĸ                                             | к                           | к                     | к       | ĸ   | %     |  |  |  |
| 1                          | 1364.1                                                                                                      | N/A                | N/A                | N/A                                           | N/A                         | N/A                   | 1364.1  | -   | N/A   |  |  |  |
| 2                          | 1356.5                                                                                                      | 1375.2             | N/A                | N/A                                           | N/A                         | N/A                   | 1365.8  | 1.7 | 0.13% |  |  |  |
| 3                          | 1355.1                                                                                                      | 1363.2             | 1380.9             | N/A                                           | N/A                         | N/A                   | 1366.4  | 0.6 | 0.04% |  |  |  |
| 4                          | 1354.2                                                                                                      | 1360.6             | 1367.1             | 1384.5                                        | N/A                         | N/A                   | 1366.6  | 0.2 | 0.01% |  |  |  |
| 5                          | 1353.5                                                                                                      | 1359.3             | 1363.9             | 1369.7                                        | 1386.9                      | N/A                   | 1366.7  | 0.1 | 0.01% |  |  |  |
| 6                          | 1352.9                                                                                                      | 1358.5             | 1362.3             | 1366.1                                        | 1371.6                      | 1388.7                | 1366.7  | 0.0 | 0.00% |  |  |  |
|                            | Ar                                                                                                          | ode-Exha           | ust Temp<br>Curre  | eratures<br>ent Densit                        | vs. # of Fu<br>y = 1200 n   | el Cells ir<br>nA/cm² | SOFC St | ack |       |  |  |  |

| # Fuel<br>Cells in<br>SOFC | Cell #1<br>Tanex | Cell #2<br>Tanex | Cell #3<br>Tanex | Cell #4<br>Tanex | Cell #5<br>Tanex | Cell #6<br>Tanex | Overall<br>Stack<br>Tanex | ∆Tanex | ∆%     |
|----------------------------|------------------|------------------|------------------|------------------|------------------|------------------|---------------------------|--------|--------|
| Stack                      | к                | к                | к                | к                | к                | к                | к                         | к      | %      |
| 1                          | 1291.1           | N/A              | N/A              | N/A              | N/A              | N/A              | 1291.1                    | -      | -      |
| 2                          | 1281.9           | 1262.6           | N/A              | N/A              | N/A              | N/A              | 1272.2                    | -18.9  | -1.46% |
| 3                          | 1279.9           | 1261.0           | 1253.7           | N/A              | N/A              | N/A              | 1264.9                    | -7.4   | -0.58% |
| 4                          | 1279.7           | 1260.9           | 1254.2           | 1249.1           | N/A              | N/A              | 1261.0                    | -3.9   | -0.31% |
| 5                          | 1280.0           | 1261.3           | 1254.7           | 1250.5           | 1246.3           | N/A              | 1258.5                    | -2.4   | -0.19% |
| 6                          | 1280.4           | 1261.7           | 1255.3           | 1251.3           | 1248.1           | 1244.4           | 1256.9                    | -1.7   | -0.13% |

### **SOFC MULTI-CELL ANALYSES – EXHAUST TEMPERATURE**

![](_page_46_Figure_2.jpeg)

![](_page_46_Figure_3.jpeg)

➢ As the <u>number of fuel cells</u> in a stack was increased, the incremental effect of each additional cell was reduced and the changes in the both <u>the overall cathode-exhaust</u> <u>temperature</u> and the overall anode-exhaust temperature <u>both approached zero</u>.

## SOFC MULTI-CELL ANALYSES – 6-CELL STACK EXHAUST TEMPERATURE VARIATIONS

![](_page_47_Figure_2.jpeg)

6-Cell SOFC Stack

> For the <u>6-cell stack</u>, the <u>highest cathode-</u> <u>exhaust gas temperature</u> was at the <u>outlet from</u> <u>cell # 6</u> at the top of the stack.

The lowest cathode-exhaust temperature was at the <u>outlet from cell #1</u> located at the bottom of the stack.

➤ This temperature difference was due to the <u>effect of the insulated cathode tap</u> that is adjacent to the top of the cathode-flow channels in cell # 6 and <u>reduced the heat transferred from</u> the gas in these channels.

➢ In cell #1, however, the <u>upper surfaces of the</u> <u>cathode-flow channels are adjacent to the lower</u> <u>surfaces of the anode-flow channels</u> in cell #2. Consequently, the <u>cathode-exhaust gas leaving</u> <u>cell #1 gave up heat to the relatively cold fuel</u> <u>entering cell #2</u>.

➤ The opposite effect occurred in the anode-flow channels, and the <u>hottest anode-exhaust gas</u> <u>was at the outlet from cell #1</u> while the <u>lowest</u> <u>anode-exhaust temperature was at the outlet</u> <u>from cell #6.</u>

## SOFC MULTI-CELL ANALYSES – 6-CELL STACK EXHAUST TEMPERATURE VARIATIONS

![](_page_48_Figure_2.jpeg)

Temperature Distribution @ Inlet & Outlet of 6-Cell SOFC Normal to Flow Direction

# **MULTI-CELL ADJUSTMENT FACTORS**

![](_page_49_Figure_2.jpeg)

Multi-cell CFD results were <u>extrapolated</u> to develop estimates of the changes in the average voltage produced per cell in a stack and in the overall cathode- and anode-exhaust temperatures when the number of fuel cells in a stack exceeded six. ➢ It was found that <u>after the</u> <u>number of fuel cells in a stack</u> <u>reached approximately 50</u>, the <u>changes in the average voltage per</u> <u>cell and in the overall cathode- and</u> <u>anode-exhaust temperatures</u> <u>converged to zero</u>.

➢ Based on this, the total differences in the average voltage per cell and in the overall cathodeand anode-exhaust temperatures between single fuel-cell values and the converged values for the 50cell stack were determined, and adjustment factors that could enable single-cell CFD results to be modified to reflect multi-cell performance were developed.

➤This process was repeated for various current-density values.

# **CONCLUSIONS OF MULTI-CELL STUDY**

A process was followed in which five SOFC stacks, together with a single-cell SOFC, were analyzed using CFD.

A comparison of the results of these analyses enabled <u>adjustment factors to</u> <u>be developed</u> that can be used to develop an <u>estimate of the voltage produced</u> <u>by a multi-cell SOFC stack based on the results of a single-cell CFD analysis</u>.

Adjustment factors were also developed for the <u>cathode-exhaust and anode-exhaust temperatures</u>.

➤This process could <u>significantly reduce both the time and the computing</u> resources necessary to complete a preliminary SOFC design.

# MARINE FUEL CELL USE

## >MILITARY VESSELS

# SMALL BOATS, WATER-TAXIES & FERRIES

## COMMERCIAL MARINE VESSELS

#### Military-Vessel Fuel-Cell Applications

| PROJECT                                              | DATE                                    | STATUS                                                                           | FC TYPE                 | ĸw      | FUEL                                  | VESSEL                                    | FC DEVELOPER<br>(Model)                                   |  |
|------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------|-------------------------|---------|---------------------------------------|-------------------------------------------|-----------------------------------------------------------|--|
|                                                      | 1980s                                   | Test Unit                                                                        | AFC                     |         |                                       | Class 205 Submarine U1                    |                                                           |  |
| Attack Submarines                                    | 1995 to 2013                            | 1 <sup>st</sup> Sub launched<br>March 2002                                       | (9) PEMFC<br>per Vessel | 34 ea   |                                       | (8) Class 212 A<br>Submarines             | Seimens AG<br>(SINAVY <sup>CIS</sup> BZM 34)              |  |
| Independent<br>Propulsion (AIP) by                   | 2000 to 2009                            | 1 <sup>st</sup> Sub launched<br>April 2004                                       | (2) PEMFC               | 120.00  |                                       | (7) Class 214 Submarines                  | Seimens AG                                                |  |
| How aldtsw erke-<br>Deutsche Werft<br>GmbH (HDW) and | 2004 to 2010                            | Ongoing                                                                          | per Vessel              | 120 ea. | Hydrogen w / metal<br>hydride storage | (2) Class 209 PN<br>Submarines            | (SINA VY <sup>OIS</sup> BZM<br>120)                       |  |
| other S/Ys for<br>German Navy and<br>for Export      | 2002 to 2010                            | Ongoing                                                                          | PEMFC                   |         |                                       | (3) Class 209 Submarine<br>Modernizations |                                                           |  |
|                                                      | 2006 to 2012                            | Ongoing                                                                          | PEMFC                   |         |                                       | (2) Dolphin Class<br>Submarines           |                                                           |  |
| Canadian Submarine<br>w / AIP                        | FC design started 1994                  | Test model 1999;<br>no installations                                             | PEMFC                   | 250     | Methanol                              | (4) Victoria Class SSKs                   | Ballard Pow er<br>Systems                                 |  |
| Spanish Submarine<br>w / AIP                         | Started July<br>2006                    | Ongoing                                                                          | PEMFC                   | 300     | Reformed Ethanol                      | S-80 Submarine                            | UTC Pow er                                                |  |
|                                                      | Started late<br>1980s                   | Lab test 1991                                                                    |                         | 130     | Hydrogen                              | Pirahnya-Class Midget<br>Submarines       | SKBK Special Boiler<br>Design Bureau<br>(Kristall-20 AIP) |  |
| Russian Submarines<br>w / AIP                        | Design<br>started<br>around 1998        | Intended for<br>installation during<br>vessel<br>construction or<br>modification |                         |         | Hydrogen w/<br>intermetallid storage  | Amur-Class Submarines                     | SKBK<br>(Kristall-27E AIP)                                |  |
| ltalian/Russian<br>Submarine w / AIP                 | Joint Venture<br>started<br>around 2004 | Mock-up model at<br>EURONAVAL<br>2006                                            |                         |         |                                       | S1000 Submarine                           |                                                           |  |
| U.S. Coast Guard                                     | 1995 to 1998                            | Conceptual<br>Design                                                             | (4) MCFC<br>per Vessel  | 625 ea  | Navy Distillate Fuel<br>(F-76)        | USCGC VINDICATOR                          | Energy Research<br>Corporation                            |  |

#### FC DEVELOPER FC TYPE PROJECT DATE STATUS KW FUEL VESSEL (Model) European Naval Conceptual Navy Distillate Fuel Ship's Service Fuel Cell -500 2000 to 2005 PEMFC (F-76) Naval Frigates Design Frigate U.S. Navy Ship of Large Naval Combatant 1987 Various 100 Various the Future Study Ship Studies by Arctic Energy Ltd. U.S. Navy R&D 1989 Various 50 Various Small Submersibles NOAA Study (12) MCFC 1994 180 ea. Diesel Oil TAGOS Vessel PEMFC, Office of Naval Ship Impact Study MCFC, PAFC, Research Enabling 1993 Various Naval Destroyer & Corvette Technologies Project SOFC Energy Research (4) MCFC Conceptual 650 ea. Navy Distillate Fuel Corporation Design (F-76) 2500 PEMFC Ballard / McDermott Phase 1: Ballard Pow er 1997 to 1999 Apx. 2 PEMFC Hydrogen Systems Lab Demonstration Fuel Navy Distillate Fuel **McDermott** 20 U.S. Navy Ship (F-76) Technology, Inc. Processor Service Fuel Cell (SSFC) Program Demo Integrated Various Surface Vessels IFP for Navy Distillate Fuel **McDermott** Fuel Processor 500 PEMEC (F-76) (IFP) Unit Lab Technology, Inc. Phase 2: Tested 2004 2000 to 2008 1<sup>st</sup> Generation FC MCFC 625 Fuel Cell Energy, Inc. Demo Unit being Lab Tested Logistics Fuel (JP-5, JP-8, F-76, MGO) U.S. Navy Advanced 2<sup>nd</sup> Generation FC PEMEC & 2008 to 2010 **Fuel Cell Program** SOFC System Palmer-Kumar Conceptual 2006 SOFC 20.000 Methane Nuclear Aircraft Carrier **Combined Cycle** Design

#### Military-Vessel Fuel-Cell Applications (contd.)

| PROJECT                                         | DATE                                     | STATUS                                                       | FC TYPE   | ĸw      | FUEL                                                                                              | FUEL VESSEL                                   |                                                                    |
|-------------------------------------------------|------------------------------------------|--------------------------------------------------------------|-----------|---------|---------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|
| ICEU Passenger<br>Boat                          | 1999                                     | Planned as EXPO<br>2000 Project                              | PEMFC     | 10      | Hydrogen in metal hydride                                                                         | MS Weltfrieden                                |                                                                    |
| etaing GmbH<br>Passenger Boat                   | built in 2000                            | First operated June<br>2000 in Bonn then<br>moved to Leipzig | AFC       | 6.9     | Hydrogen in metal hydride                                                                         | gen in metal hydride Boat<br>the <i>Hydra</i> |                                                                    |
|                                                 | 1998                                     |                                                              |           | 0.1     |                                                                                                   | Hydroxy 100                                   | David Cale arman                                                   |
| EIVD, Switzerland                               |                                          | Small leisure boats<br>built                                 | PEMFC     | 0.3     | Compressed Hydrogen                                                                               | Hydroxy 300                                   | Paul Scherrer                                                      |
|                                                 | 2003                                     |                                                              |           | 3       |                                                                                                   | Hydroxy 3000                                  |                                                                    |
| Ansaldo Richerche                               | 1998                                     | Tested on Lago<br>Maggiore, Italy                            | PEMFC     | 40      | Gasified liquid hydrogen                                                                          | 90-Passenger Boat                             | Nuvera Fuel Cells                                                  |
| Duffy-Herreshoff<br>Water Taxi                  | 2002 to 2003                             | Tested in New port<br>Beach, CA, 2003                        | (4) PEMFC | 1.5 ea. | Millenium Cell Hydrogen<br>on Demand <sup>™</sup> (sodium<br>borohydride)                         | 30-ft, 18-Passenger<br>Water Taxi             | Anuvu, Inc.<br>(Pow er-X <sup>™</sup> )                            |
| San Francisco WTA<br>Commuter Ferry             | Design<br>Started 2002                   | Pending                                                      | (2) PEMFC | 120 ea. | Hydrogen in metal hydride                                                                         | 24-m, 49-Passenger<br>Treasure-Island Ferry   | Anuva, Inc. or<br>UTC Pow er                                       |
| Pearl Harbor USS<br>Arizona Memorial<br>Shuttle | Initial Funds<br>Obligated<br>Sept. 2003 |                                                              |           | 75      | Compressed Hydrogen                                                                               | 149-Passenger<br>Launch                       |                                                                    |
| Sailing Yacht                                   | 2005                                     | Trials during 2005                                           | PEMFC     | 10      | Hydrogen by electrolysis<br>(pow ered by w ind<br>turbine & propeller)<br>stored in metal hydride | HaveBlue XV1<br>42-ft MKII<br>Sailboat        | Hydrogenics<br>(HyPM)                                              |
| Sailing Yacht                                   | 2005                                     |                                                              | DMFC      | 0.05    | Methanol SY Mamelie                                                                               |                                               | Max Pow er /<br>Smart Fuel Cell<br>(MFC AHD-100)                   |
| DCH Water Taxi                                  | 2001                                     | Demo San<br>Francisco, CA,<br>Oct. 2001                      | PEMFC     | 1       | Compressed Hydrogen                                                                               | 18-ft, 9-Passenger<br>Water Taxi              | DCH Technologies,<br>Inc. / Enable <sup>™</sup> Fuel<br>Cell Corp. |

#### Small Boat, Water-Taxi, & Ferry Fuel-Cell Applications

#### Small Boat, Water-Taxi, & Ferry Fuel-Cell Applications (contd.)

| PROJECT                                               | DATE                       | STATUS                                                                 | FC TYPE   | ĸw       | FUEL                             | VESSEL                                                     | FC DEVELOPER<br>(Model)                                          |  |
|-------------------------------------------------------|----------------------------|------------------------------------------------------------------------|-----------|----------|----------------------------------|------------------------------------------------------------|------------------------------------------------------------------|--|
| Prototype Yacht                                       | 2003 to 2005               | Demo on Lake<br>Constance,<br>Germany, Oct.<br>2003                    | PEMFC     | 4.8      | Hydrogen                         | 12-m Yacht <i>No. 1</i>                                    | MTU-Friedrichshafen<br>("Cool Cell") / Ballard<br>Pow er Systems |  |
| EC / German-Czech<br>ZEW/SHIPS                        | Started Nov.<br>2006       | In service on Alster<br>lake, Hamburg,<br>Aug. 2008                    | (2) PEMFC | 48 ea.   | Hydrogen                         | 25.6-m, 100-Passenger<br>Vessel FCS<br><i>Alsterwasser</i> | Proton Motor Fuel Cell<br>GmbH (PM 600)                          |  |
| H2Vacht GmbH                                          | Started in                 | Prototype launched<br>in Elbe River 2005                               | PEMFC     | 1.2      | Compressed Hydrogen              | 5.8-m, 6-Person<br>Motorboat                               | Ballard Pow er<br>Systems                                        |  |
|                                                       | 2004                       | Exhibited at<br>H2Expo 2006                                            | (2) PEMFC | 1.4 ea.  |                                  | 6.75-m, 8-Person<br>Motorboat                              | (Nexa® Pow er<br>Module)                                         |  |
| Ecofys & Dutch<br>Know ledge Ctr. For<br>Yachbuilding | Launched<br>Summer 2006    | Introduced during<br>Frisian Nuon Solar<br>Challenge                   | PEMFC     |          | Compressed Hydrogen in canisters | Sloop <i>Xperiance</i>                                     |                                                                  |  |
| Fuel Cell Boat BV<br>H-ferry Project                  | 2007-2008                  |                                                                        | PEMFC     | 60 to 70 | Compressed Hydrogen              | 24-m, 100-Passenger<br>Amsterdam<br>River U Ferry          |                                                                  |  |
| Iceland SMART-H2<br>(APU)                             | Test planned<br>June 2008  |                                                                        | PEMFC     | 10 to 15 | Hydrogen                         | 150-Passenger Whale-<br>Watching Ship <i>Elding</i>        | Ballard Pow er<br>Systems                                        |  |
| Beneteau Oceanis<br>Clipper 411 (APU)                 | FC installed<br>mid-2007   | Tested during 2007<br>Atlantic Rally for<br>Crusiers                   |           | 1        | LPG                              | 41-ft sailing yacht<br><i>Emerald</i>                      | Voller Energy Group<br>(Emerald)                                 |  |
| University of<br>Birmingham [50]                      | Launched<br>Sept. 2007     | Protium Project                                                        | PEMFC     | 5        | Hydrogen in metal<br>hydride     | 12-ton Canal Boat<br>Ross Barlow                           | EMPA Laboratories                                                |  |
| Shanghai Maritime<br>University                       | Tested in 2005             | Displayed at 6th<br>Int'l. Industry<br>Exhibition in<br>Shanghai, 2005 | PEMFC     | 2        | Hydrogen                         | 4.8-m, 2-Passenger<br>Boat                                 |                                                                  |  |
| Brunnert-Grimm AG<br>Runabout                         | Deliveries<br>planned 2008 | Displayed at<br>INTERBOOT 2007                                         |           |          | Compressed Hydrogen              | Cobolt 233 ZET                                             | zebotec GmbH                                                     |  |

#### COMMERCIAL MARINE FUEL-CELL APPLICATIONS

| PROJECT                                         | DATE                        | STATUS                                                          | FC TYPE                         | ĸw            | FUEL                                           | VESSEL                                                               | FC DEVELOPER<br>(Model)                        |
|-------------------------------------------------|-----------------------------|-----------------------------------------------------------------|---------------------------------|---------------|------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|
| Arctic Energy Ltd.                              | 1984                        | Study for U.S.<br>Maritime<br>Administration                    | PAFC                            | 30 to 60      | Methanol                                       | Surface Ship Auxiliary<br>Pow er / Training Ship                     |                                                |
| U.S. Maritime<br>Administration                 | 1998                        | Study                                                           | MCFC                            | 3000          | Compressed Natural Gas                         | Container Ship                                                       |                                                |
|                                                 |                             |                                                                 | PEMFC                           | 0000          | Liquid Hydrogen                                | 140-m RO/RO Fast                                                     |                                                |
| EU / FC-SHIP                                    | July 2002 to                | Final Report                                                    | MCFC, SOFC                      | 2000          | Low sulfur diesel, LNG                         | Ferry (Auxiliary Power)                                              |                                                |
| Conceptual Design                               | July 2004                   | issued July 2004                                                | PEMFC                           | 400           | Compressed Hydrogen<br>Gas                     | 30-m Habor Ferry<br>(Propulsion)                                     |                                                |
|                                                 | 2003 to 2005                | Feasability Study                                               | SOFC / MCFC                     |               |                                                |                                                                      |                                                |
|                                                 | Phase 1:<br>2003 to 2006    | Demonstrated at exhibitions 2006                                | PEMFC                           |               | Hydrogen                                       | Viking Fellowship 1:84<br>Scale Model                                |                                                |
| DNV / Eureka -<br>Fellow SHIP                   | Phase 2:<br>Ongoing         | Ship testing<br>started Dec. 2009                               | MCFC                            | 320           | LNG                                            | Eidesvik Offshore OSV<br>MV <i>Viking Lady</i><br>(Auxiliary Pow er) | MTU CFC Solutions<br>GmbH (HotModule)          |
|                                                 | Phase 3:<br>Ongoing         | Ship installation planned                                       | (4) Hybrid w /<br>steam turbine | 1000 ea.      |                                                | Eidesvik Offshore OSV<br>(Propulsion)                                |                                                |
| EU / METHA PU                                   | 2007 to 2010                | Lab test started<br>Oct. 2007, Ship<br>installation May<br>2010 | SOFC                            | 20            | Renew able Methanol                            | Wallenius Marine<br>Car Carrier MV <i>Undine</i>                     | Wärtsilä Corp.<br>(WFC20α)                     |
|                                                 |                             | Design Study                                                    |                                 | 250           |                                                |                                                                      | Wärtsilä Corp.                                 |
| EU / NEW<br>H-SHIP                              | 2004 to 2005                | ldentify barriers to $H_2$ on ships                             |                                 |               | Hydrogen                                       | lcelandic Fishing<br>Vessels                                         |                                                |
| EU/MC-WAP                                       | 2005 to 2010                | Study of MCFC<br>on ships, APU<br>test planned                  | MCFC                            | 500           | Diesel oil                                     | RO/RO, RO-PAX,<br>Cruise, Fast Ships                                 | Ansaldo Fuel Cells                             |
| Wallenius Marine                                | Scale Model<br>Planned 2005 | Concept ship for 2025                                           |                                 |               | Hydrogen from solar,<br>w ind and w ave pow er | E/S <i>Orcelle</i> 250-m<br>10,000-car RO/RO                         |                                                |
| Offshore Ship<br>Designers Group<br>"Green Tug" | Design<br>Started 2008      | 1st Tug Planned<br>for 2010                                     | (2) PEMFC                       | 100 kW<br>ea. | Compressed Hydrogen                            | Hydrogen Hybrid<br>Harbor Tug (HHHT)                                 | NedStack fuel cell<br>Technology BV<br>(PS100) |

# ANALYSES OF SOFC HYBRID SYSTEM TO GENERATE SHIPBOARD ELECTRICAL POWER

![](_page_58_Picture_1.jpeg)

## Large Marine Propulsion Diesel Engine (Courtesy of Wärtsilä Corp.)

OVER 85,000 COMMERCIAL-MARINE VESSELS 99% POWERED BY DIESEL ENGINES

# **FUEL-CELL GT/ST-1P HYBRID SYSTEM**

![](_page_59_Figure_2.jpeg)

# **FUEL-CELL ST-1P HYBRID SYSTEM**

![](_page_60_Figure_2.jpeg)

# **FUEL-CELL ST-2P HYBRID SYSTEM**

![](_page_61_Figure_2.jpeg)

#### **SOFC HYBRID SYSTEM ANALYSES CONDITIONS**

➢Four Hybrid cycles evaluated: SOFC w/Single-Pressure Steam Turbine (ST-1P), SOFC w/Dual-Pressure Steam Turbine(ST-2P), SOFC w/Gas Turbine & Single-Pressure Steam Turbine (GT-1P), and SOFC w/Gas Turbine & Dual-Pressure Steam Turbine (GT-2P).

>Four Steam Pressures Considered: 45 bar, 30 bar, 15 bar, and 7.5 bar

>Two Condensing Pressures Considered: 0.05 bar and atmospheric pressure

 $\succ$  Values of current were varied from 5 A to 30 A.

>Turbogenerator and auxiliary efficiencies determined based on SNAME guidelines

> The minimum pinch point used between the SOFC-exhaust gas and the steam or feedwater temperatures was set at 15 °K.

>The total net power produced by each system was set at 4000 kW (Based on a typical container ship requirement), and the output voltage from the system was set at 440 V.

#### SOFC HYBRID SYSTEM ANALYSES CONDITIONS (contd.)

➢For many of the analyses conducted, the fuel was assumed to be composed of 100% hydrogen. However, methane (CH4) and methanol (CH3OH) were also used in some of the analyses.

>Oxygen supplied to the cathode as a component in air at a temperature of 298 °K with 40% relative humidity.

>The air ratio used ranged from 1.5 to 4 and the fuel utilization factor was varied from 90% to 55%

>The SOFC was assumed to be operating at full load under steadystate conditions; partial-load conditions or transient loads were not considered.

>The maximum steam temperature at the superheater outlet was limited to 783  $^{\circ}$ K (950  $^{\circ}$ F).

>The efficiency of the inverter required to convert the direct current produced by the SOFC to alternating current was assumed to equal 95%.

>Overall cycle efficiencies were based on fuel lower-heating values (LHV).

![](_page_64_Figure_1.jpeg)

Single-Steam **Pressure System Pinch-Point Diagram** 

**Dual-Steam Pressure** System Pinch-Point Diagram

# ALTERNATE-FUEL DIRECT-INTERNAL REFORMING (DIR)

![](_page_65_Figure_2.jpeg)

# **ALTERNATE-FUEL PERFORMANCE**

![](_page_66_Figure_2.jpeg)

#### Reactions occurring during DIR of Methane:

Steam Reforming: $CH_4 + H_2O = 3H_2 + CO$ Water-Gas Shift: $CO + H_2O = H_2 + CO_2$ 

Reactions occurring during DIR of Methanol:

| Steam Reforming:        | $CH_{3}OH + H_{2}O = 3H_{2} + CO_{2}$ |
|-------------------------|---------------------------------------|
| Methanol Decomposition: | $CH_3OH = 2H_2 + CO$                  |
| Water-Gas Shift:        | $CO + H_2O = H_2 + CO_2$              |
| Methanation:            | $CO + 3H_2 = CH_4 + H_2O$             |

#### SOFC/HSRG HYBRID CYCLE ANALYSIS PROCEDURE

![](_page_67_Figure_2.jpeg)

#### **FUEL-CELL HYBRID SYSTEM ANALYSES RESULTS**

![](_page_68_Figure_2.jpeg)

#### **FUEL-CELL HYBRID SYSTEM EFFICIENCY RESULTS**

| Comparison of Emmissions & Efficiency |       |                |                |                 |                    |                              |  |  |  |  |
|---------------------------------------|-------|----------------|----------------|-----------------|--------------------|------------------------------|--|--|--|--|
| Cycle                                 |       | Hybri          | d SOFC-H       | RSG Sys         | tem                | Diesel-<br>Engine-<br>Driven |  |  |  |  |
|                                       |       | GT-1P          | ST-1P          | ST-1P           | ST-1P              | Generator                    |  |  |  |  |
| Net Overall Power                     | kW    | 4000           | 4000           | 4000            | 4000               | 4000                         |  |  |  |  |
| Fuel                                  |       | H <sub>2</sub> | H <sub>2</sub> | CH <sub>4</sub> | CH <sub>3</sub> OH | MDO                          |  |  |  |  |
| LHV @ 298 K                           | kJ/kg | 1.2E+05        | 1.2E+05        | 5.0E+04         | 2.0E+04            | 4.3E+04                      |  |  |  |  |
| Fuel Inlet Flow                       | kg/h  | 220            | 265            | 557             | 1458               | 780                          |  |  |  |  |
| Single-Cell Vcell                     | v     | 0.701          | 0.624          | 0.554           | 0.523              | -                            |  |  |  |  |
| SOFC Net Power                        | kW    | 2571           | 2793           | 2629            | 2439               | -                            |  |  |  |  |
| Steam-Turbogenerator<br>Net Power     | kW    | 624            | 1207           | 1371            | 1561               | -                            |  |  |  |  |
| Gas-Turbine Generator<br>Net Power    | kW    | 805            | 0              | 0               | 0                  | -                            |  |  |  |  |
| Net Overall Power                     | kW    | 4000           | 4000           | 4000            | 4000               | 4000                         |  |  |  |  |
| Exhaust-Gas Flow                      | kg/h  | 10,170         | 12,282         | 13,170          | 13,839             | 31,000                       |  |  |  |  |
| Nitric Oxide (NO)                     | g/kWh | 2.670          | 0.645          | 0.922           | 1.591              | 13.9                         |  |  |  |  |
| Nitrogen Dioxide (NO <sub>2</sub> )   | g/kWh | 0.025          | 0.000          | 0.000           | 0.000              | inc in NO                    |  |  |  |  |
| Carbon Monoxide (CO)                  | g/kWh | 0.0            | 0.0            | 0.0             | 0.0                | 1.10                         |  |  |  |  |
| Carbon Dioxide (CO <sub>2</sub> )     | g/kWh | 0.0            | 0.0            | 241.1           | 500.7              | 690                          |  |  |  |  |
| Sulfur Oxides (SOx)                   | g/kWh | 0.0            | 0.0            | 0.0             | 0.0                | 2.10                         |  |  |  |  |
| Methane (CH <sub>4</sub> )            | g/kWh | 0.0            | 0.0            | 0.0             | 0.0                | 0.09                         |  |  |  |  |
| Hydroxide (OH)                        | g/kWh | 0.254          | 0.031          | 0.000           | 0.138              | -                            |  |  |  |  |
| Particulate Matter (PM)               | g/kWh | 0.00           | 0.00           | 0.00            | 0.00               | 0.73                         |  |  |  |  |
| Overall Efficiency                    | %     | 54.6           | 45.2           | 51.7            | 49.6               | 43                           |  |  |  |  |

# **OVERALL CONCLUSIONS**

>SOFC-Hybrid Systems in table above have higher overall efficiencies and produce substantially less CO<sub>2</sub>, NOx, SOx, and PM when compared to the diesel engine shown

➢ HIGHEST OVERALL EFFICIENCY ACHIEVED IN THIS STUDY WAS SLIGHTLY LESS THAN 55% BASED ON THE OPERATION OF THE SOFC W/GAS-TURBINE & SINGLE-PRESSURE STEAM TURBINE (GT-1P) HYBRID SYSTEM

► IN MOST CASES, USING A GAS TURBINE IMPROVED OVERALL EFFICIENCY BECAUSE:

-THE HEAT OF COMPRESSION IN AIR AND FUEL COMPRESSORS REDUCED THE LOAD ON THE FUEL AND AIR HEATERS AND RESULTED IN A HIGHER AFTERBURNER EXHAUST TEMPERATURE.

-THE HIGHER SOFC OPERATING PRESSURE RESULTED IN HIGHER CELL VOLTAGE AND MORE POWER PER UNIT FUEL.