

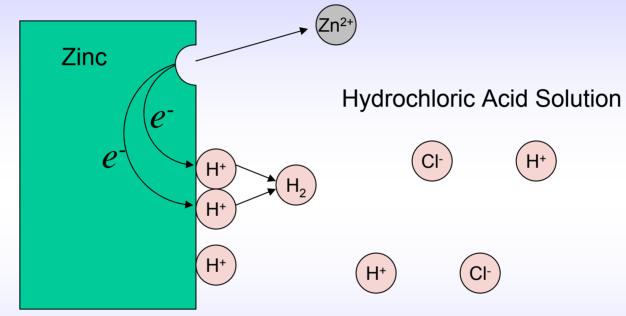
Solving the Galvanic Corrosion Issue In EMI Shielding

Harry Fuerhaupter Potters Industries Inc. Research & Development Center 280 Cedar Grove Road, Conshohocken, PA 19428 TEL: 610-651-4780 EMAIL: harry.fuerhaupter@pottersbeads.com

Outline

- What is galvanic corrosion
- Basic preventative measures
- Specific problem with conductive gaskets
- Unique behavior of conductive fillers
- New conductive filler for low aluminum corrosion

Types of corrosion


- 1. Uniform
- 2. Galvanic
- 3. Crevice
- 4. Pitting
- 5. Intergranular
- 6. Selective leaching
- 7. Erosion
- 8. Stress

Uniform corrosion

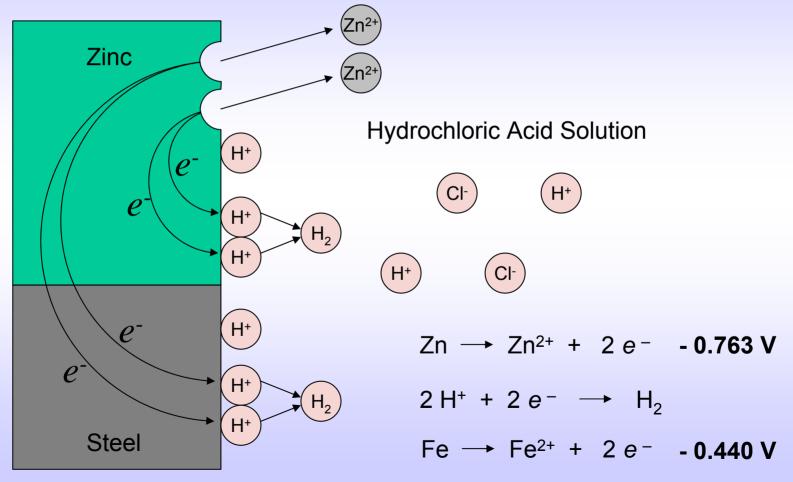
• Diagram of zinc in acid

- $Zn \rightarrow Zn^{2+} + 2e^{-}$
- $2 H^+ + 2 e^- \rightarrow H_2$

Galvanic Corrosion

• When two dissimilar metals contact each other in a corrosive environment, the less corrosion-resistant metal experiences *more corrosion* than when it is not in contact with the other metal.

Steel bolt in steel plate


Brass bolt in steel plate

Galvanic corrosion

• Diagram of zinc/steel in acid

Galvanic Corrosion

• The greater the *difference* in corrosion potential between two metals is, the greater the galvanic corrosion effect is.

Galvanic series of some metals in seawater

(*Corrosion Engineering*, Fontana and Greene, 1978)

Anodic (more corrosive)

General prevention

- Eliminate one of the conditions necessary for galvanic corrosion.
 - Corrosive environment
 - Dissimilar materials
 - Contacting surfaces
- Coating
- Material matching
- Size ratio of anode/cathode
- Add sacrificial element
 even more corrosive

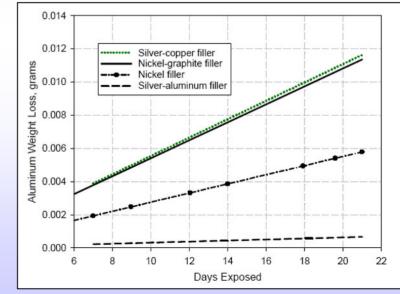
EMI Gaskets and Galvanic Corrosion

- Typically a concern with aluminum frames used in outdoor environment: base stations, aircraft, marine.
- Cannot avoid contact with aluminum because electrical contact is required.
- The fillers that are most galvanically similar to aluminum tend to oxidize and lose conductivity.

Cathodic (less corrosive)	Gold Graphite Silver 18-8 Stainless Steel
Anodic (more corrosive)	Nickel Copper Steel or iron Aluminum

• The most conductive filler materials (silver or silver-coated) are resistant to oxidation, but they have large galvanic difference to Al.

The ideal filler would be *galvanically similar to aluminum* and *resistant to oxidation*.

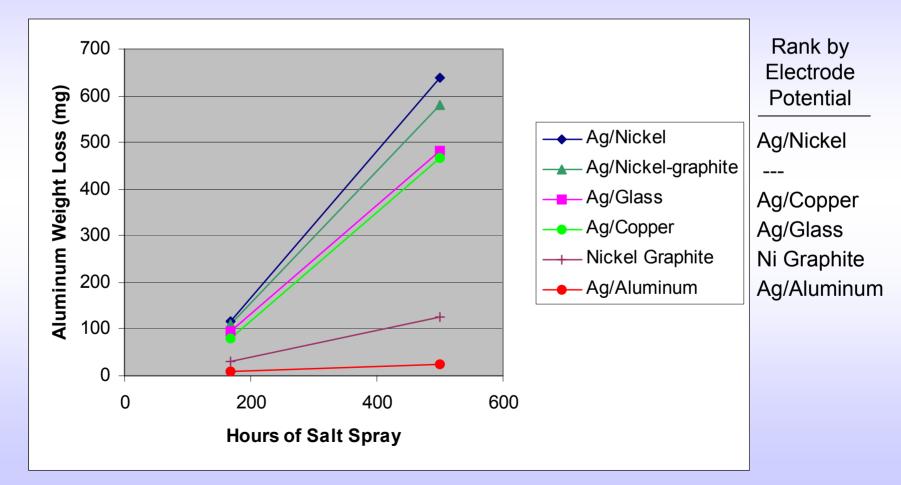

Unique Properties of Coated Powders

 A paper presented at IEEE EMC 2004* showed that the powder behaved galvanically more like the core material than the coating.

Open circuit potentials measured in 5% NaCl

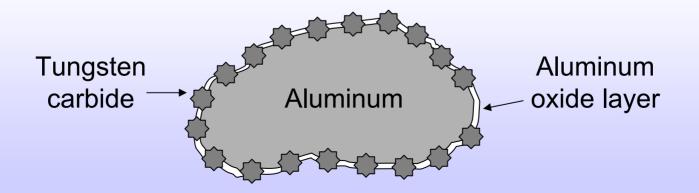
	Potential
Material Vol	ts vs. SCE
Silver filled silicone elastomer	-0.086
Silver-nickel filled silicone elastomer	-0.100
Silver wire	-0.106
Nickel-graphite filled silicone elastom	er -0.157
Silver-copper filled silicone elastomer	-0.100 -0.106 er -0.157 -0.161 -0.281 -0.367
Silver-glass filled silicone elastomer	-0.281
Nickel metal	-0.367
Nickel filled silicone elastomer	-0.411
Silver-aluminum filled silicone elaston	ner -0.746
Aluminum metal	-1.181

Salt Spray Corrosion


* A.R. Pawlowych, "Galvanically compatible elastomeric gasketing material for EMI shielding applications".

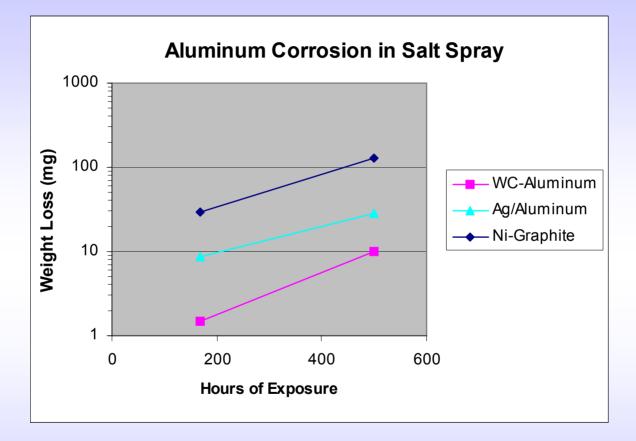
Repetition of salt spray experiment

Aluminum corrosion with fluorosilicone gaskets



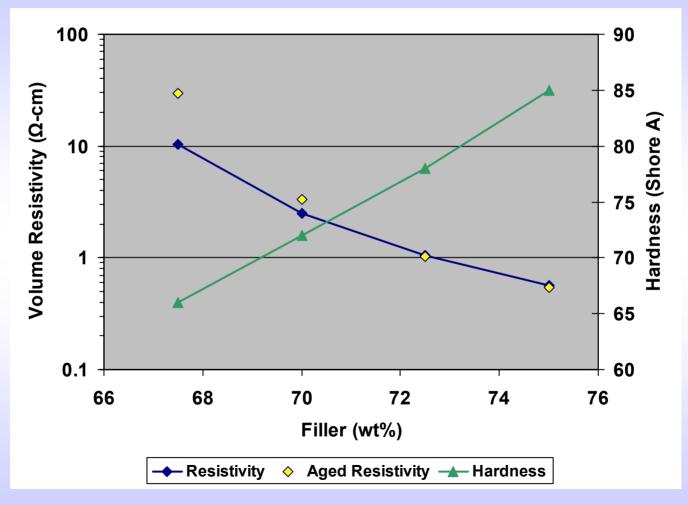
A new filler for EMI shielding

- **Objective** create a non-silver conductive particle with low corrosion properties but galvanically similar to aluminum.
- Untreated aluminum power is not conductive due to the natural oxide layer on the surface.
- The tungsten carbide penetrates the oxide layer and provides an electrical path to the aluminum core.
- Since tungsten carbide is galvanically inert, the filler creates virtually no galvanic corrosion on aluminum.


Galvan-O-Free Product Details

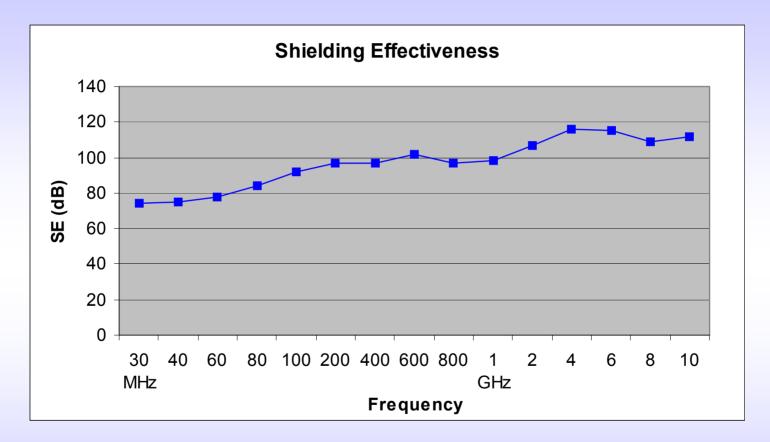
	GF-45 FIP Grade	GF-60 Molding Grade
Particle Size, µm D10 D50 D90	> 15 35 – 50 < 65	> 40 55 — 80 < 100
True Density	3.0 – 3.2	3.0 – 3.2
Tap Density, g/cc	1.7 – 1.9	1.7 – 1.9
Powder Resistivity, Ω-cm	< 0.8	< 0.8

WC-Aluminum Corrosion Testing



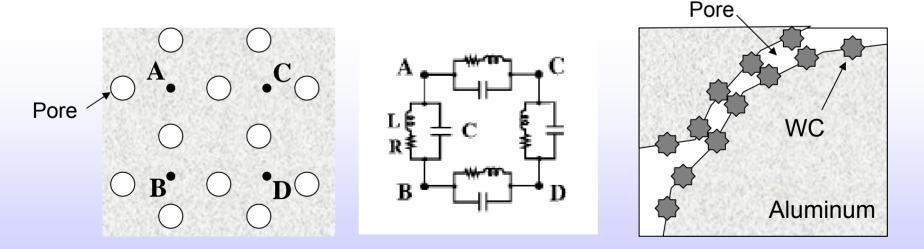
WC-Aluminum causes significantly less galvanic corrosion on aluminum than nickel/graphite and silver/aluminum

WC-Aluminum in Fluorosilicone Gasket



Aging = 48 hours at 200C

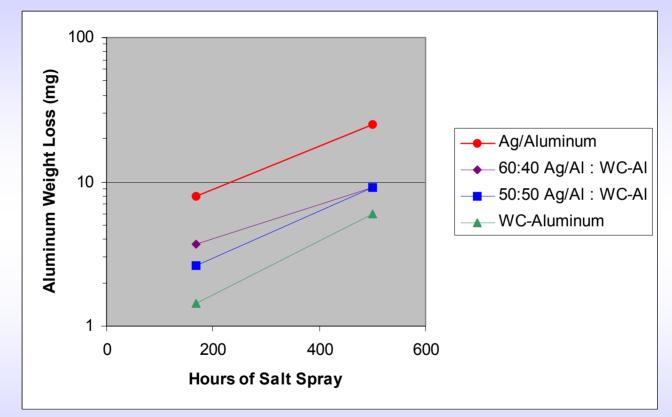
WC-Aluminum Shielding Effectiveness


WC-Aluminum has excellent shielding effectiveness between 30MHz and 10 GHz

Theory of shielding at 1 $\Omega\text{-}cm$

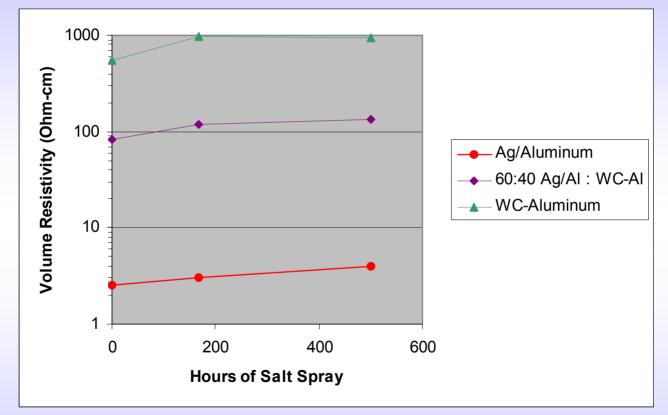
- Porous materials with relatively high volume resistivity have shown shielding capability
 - Nickel-loaded black rice husk: 80 dB @ 30 MHz to 60 dB @ 1.5 GHz
 Journal of Materials Science, 39 (2004), pp. 6209 6214
 - Carbonized wood ceramic: 50 dB from 30 MHz to 1 GHz
 Journal of Porous Materials, 4 (1997), pp. 269 275

WC-Aluminum conductive filler applications


- WC-Aluminum filler materials have the right combination of properties to meet the challenges of corrosive environments.
- Some environments where WC-Aluminum could offer improved EMI gasket performance include:
 - High salt environments marine
 - Outdoor enclosures exposed to various weather
 - High sulfur environments, such as exposure to fuel vapors
 - Strong chemical exposure, such as bleach for disinfection
 - Large thermal variations, *e.g.* aerospace and automotive
- Since WC-Aluminum contains no silver, the cost is closer to nickel-graphite.

Additional considerations

Blending WC-Aluminum and Ag/Aluminum


The amount of aluminum corrosion caused by Ag/Aluminum can be reduced by addition of WC-Aluminum

Additional considerations

Blending WC-Aluminum and Ag/Aluminum

The gasket resistivity of WC-Aluminum can be significantly decreased by addition of Ag/Aluminum

Summary

Reduction of galvanic corrosion in EMI gaskets can be accomplished by remembering a few key rules:

For finger stock – match materials and keep contact area small

If possible, keep corrosive elements out with secondary seal

For conductive elastomer gaskets in contact with aluminum substrate, Ag/Aluminum and WC-Aluminum have the lowest corrosion potential