

	Po	ower	Am	olifie	r Ope	rating	Class	Sumr	nary		
Operating Class			A	AB	В	c	D	E	F	D1	F Inverse
Conduction Angle	Θ	Deg- rees	360	360 180 180 <180 <td>·</td> <td>·</td>						·	·
Gain Reduction To Class A		dB		3	6	8	6	6	6	6	6
Ideal Efficiency	η	%	50	65	78	85	100	100	100	100	100
Efficiency Reduction	k		1-Vo/Vcc				1- 2Vo/Vcc	See Notes	1- Vo/Vcc	1- Vo/Vcc	1- Vo/Vcc
Efficiency at Reduced Power			Poor	Good	Very Good	Poor	Poor, Class D, D1, E, and F need to be driven hard to obtain square wave pulse required for high η				
Frequency	fo	GHz	<≈100				<≈20 MHz KW P <≈20 <≈2 GHz Watts P				
Harmonic Suppression	nfo		Short 2f0			Short All nf0	Series Lo resonant	eries LC circuit esonant at fo Open odd n		ren n Id n	Open even n Short odd n
Peak Transistor Voltage	Vmax	Volts	2Vcc-Vo				Vcc-Vo	3.5Vcc- 2.5Vo	2Vcc-Vo		V0+(Vco -Vo)π
Pout/Pin Gain Linearity			Good Fair Good Poor				Poor (Good with system solution)				
Supply Voltage	Vcc	Volts									
Knee Voltage	Vo	Volts	1								

Modeling GaN HEMT Comparison of example FET models used for GaAs, silicon, and GaN FET/HEMT devices.

	FET Models	Approx. Number of Parameters	Electrothermal (Rth-Cth) Model	Geometry Scalability Built-In	Original Device Context
	Curtice3 [12]	59	No	No	GaAs MESFET
	Motorola Electrothermal (MET) [25]	62	Yes	Yes	LD MOSFET
	CMC (Curtice/ Modelithics/Cree) [26]	55	Yes	Yes	LD MOSFET
	BSIMSOI3 [24]	191	Yes	Yes	SOI MOSFET
	CFET [5]	48	Yes	Yes	HEMT
	EEHEMT [13]	71	No	Yes	HEMT
	Angelov [14]	80	Yes	No	HEMT/MESFET
	Angelov GaN [11]	90	Yes	No	HEMT
	Auriga [4]	100	Yes	Yes	HEMT
Cree (Modified Fager - Statz) 18+ Yes Yes HEMT					

L. Dunleavy, C. Baylis, II, W. Curtice, and R. Connick, Modeling GaN: Powerful but Challenging," IEEE Microwave Magazine, pp82- 96, October 2010.

GaN Power Amplifier Design -111

Modeling GaN HEMT Comparison of example FET models used for GaAs, silicon, and GaN FET/HEMT devices.

Cree (Modified Fager - Statz) 18+			Yes	Yes	HEMT
_	Auriga [4]	100	Yes	Yes	HEMT
	Angelov GaN [11]	90	Yes	No	HEMT
	Angelov [14]	80	Yes	No	HEMT/MESFET
	EEHEMT [13]	71	No	Yes	HEMT
	CFET [5]	48	Yes	Yes	HEMT

Electrothermal Models

[4] Y. Tajima, "Introduction of new large signal model (LS7) for MESFET family of devices," presented at Workshop 38th European Microwave Conf.: WFR-15: Advances in Model-based HPA Design, Amsterdam, The Netherlands, Oct. 2008.

[5] W. R. Curtice, User's Guide for the C_FET Model for Agilent's Advanced Design Simulator. Washington Crossing, PA: W. R. Curtice Consulting, June 2004.

[11] I. Angelov, K. Andersson, D. Schreurs, D. Xiao, N. Rorsman1, V. Desmaris, M. Sudow, and H. Zirath, "Large-signal modelling and comparison of AlGaN/GaN HEMTs and SiC MESFETs," in Proc. Asia-Pacific Microwave Conf. 2006, Dec. 2006, pp. 279–282.

L. Dunleavy, C. Baylis, II, W. Curtice, and R. Connick, Modeling GaN: Powerful but Challenging," IEEE Microwave Magazine, pp82- 96, October 2010.

Foundry	Device Technology	Wafer Dia. (in.)	Power Figure of Merit	Max Frequency	Comments
HRL	0.15 μm GaN HEMT, on 50 μm SiC	3	0.84W Pout, 14.7% PAE, 1.4W/mm	88 GHz	Owned by Boeing and GM
Northrop	0.2 μm GaN HEMT	3	1.13W Pout, 23.3% PAE,	55 GHz	Captive
Grumman	on 100 μm SiC		3.96W/mm @38V		Foundry
Raytheon	GaN HEMT SiC CPW	4	-	W-band, 17V	Captive Foundry
TriQuint	0.25µm GaN HEMT	3	5-7W/mm	18 GHz	Indep. Foundry
	0.15µm GaN HEMT	-	3 5W/mm	35 GHz	R&D results
BAE 0.2m	m Non field Plate H	EMT, ft = 5	0 GHz, fmax = 220 GHz, 5	5W/mm, 46%	PAE at 30 GH

PA Design Steps						
 Step 1: – Examine IV Curves and note k 	nee voltage (one point on					
load line) and no current point – Note input dc voltage for no ga	at Vgs = 95 V ate current					
 Determine Vgs for 100 ma of c AWR circuit GaN HEMT WIMAX 	urrent X PA Step1					
 Step 2: Examine Load Pull data and do max power at Pin = 30 dBm 	etermine optimum load for					
 Determine circuit using transn length of line of length theta a 	nission line. Hint try a nd impedance Zmatch					
 Examine Pout vs Pin and Pout Optimize circuit for operation 	t vs freq at Pin = 30 dBm over full frequency					
 AWR CITCUIT GAN HEMT WIMAX © 2014 Niehenke Consulting Inc. 	GaN Power Amplifier Design -118					

	 Results: Step 2 Optimize circuit for Pout > 43 dBm, PAE > 80% with Pin = 30 dBm and f = 3.5 GHz 						
 Optimize Pin = 30 							
Frequency (GHz)	DB(Re(Pcomp(POR	DB(PGain(PORT_1,	PAE(PORT_1,PORT				
3.5	42.101	12.101	83.812				
© 2014 Niehenke Consu	liting Inc.		GaN Power Amplifier Design -124				

