Realize Your Product Promise®

HFSS Hybrid Finite Element and Integral Equation Solver and Savant for Large Scale Electromagnetic Design and Simulation

Agenda

- Overview of Simulation Trends and Technologies
- ANSYS Simulation Technologies Overview
- ANSYS Electromagnetic Simulation Techniques
- HFSS-FEM
- HFSS-IE
- Hybrid FE-BI
- Hybrid IE-Regions
- Physical Optics
- Savant
- Examples

The Problem: Installed Antenna Performance

- Antennas often designed in isolation or under ideal conditions
- Mounting antennas on realistic platforms changes performance
- Impacts overall RF system performance
 - Need to know installed performance early in the design cycle!

ANSYS EBU Product Portfolio

Advantages

Complementary Technology

- HFSS: Antenna Design
- Savant: Installed Performance

Extremely Fast

- Multicore, GPU and MPI
- Consumer or Scientific grade GPUs

Low Memory Requirements

Most jobs require < 8 GB of RAM

Accuracy

- Physics models not found in other ray tracing tools
- Intuitive
 - Powerful GUI with thorough Help/Tutorials

ANSYS Simulation Technologies

• Finite Element Method

HFSS

- Efficiently handles complex material and geometries
- Volume based mesh and field solutions
- Fields are explicitly solved throughout entire volume

Integral Equations

• HFSS-IE

- Efficient solution technique for open radiation and scattering
- Currents solved only on surface mesh
- Efficiency is achieved when structure is primarily metal

Hybrid Finite Element – Integral Equations

ANSYS Simulation Technologies

Physical Optics

- HFSS-IE
- High frequency approximation
- Ideal for electrically large, smooth objects
- Currents are approximated in illuminated regions and set to zero in shadow regions

ANSYS[®]

• 1st order interactions

Ray Tracing
 Savant Extends physical optics (PO) to multiple bounces with GO ray tracing Asymptotic technique Complimentary capability to full-wave solvers Electrically large platforms (i.e., many wavelengths in dimension)

High Frequency Technique: Physical Optics

- Physical Optics
- HFSS-IE

10

 Ideal for electrically large, conducting and smooth objects

🚯 Insert HFSS-IE Design

General Options Expression Cache Def	aults	
Initial Mesh Options		
🔽 Do Lambda Refinement		
Lambda Target: 0.25	Use Default Value	
🔲 Use Free Space Lambda		
Adaptive Options		
Maximum Refinement Per Pass:	30 %	
Minimum Number of Passes:	1	
Minimum Converged Passes:	1	
- Solver Options		
✓ Use Advanced Options		
Use PO Solver		
C Use distributed memory mo	del	
Use Defa	ults	
	OK Cano	el

High frequency asymptotic solver available inside of HFSS-IE designs

- Currents are approximated in illuminated regions and set to zero in shadow regions
- First order interaction only, single bounce
- Source excitation from HFSS Far Field Data-Link of incident plane wave

Usage

- Applications include
 - Electrically large RCS, Antenna Placement, Reflector Analysis
- Quickly estimate performance of electrically large problems
- Full wave solution is beyond computation resources

Savant's Methodology: SBR+

Shooting and Bouncing Rays

- Asymptotic technique
 - Complimentary capability to full-wave solvers
 - Electrically large platforms (i.e., many wavelengths in dimension)
- Extends physical optics (PO) to multiple bounces with GO ray tracing
- Material Modeling: Dielectric/Magnetic stacks, Fresnel table import
- SBR+ ?
 - Build on traditional SBR with additional physics
 - Physical Theory of Diffraction (PTD) Edge Correction
 - Uniform Theory of Diffraction (UTD) Edge Rays
 - Creeping Wave
 - Driving philosophy
 - Use full array of GTD/UTD methods to "paint" currents on platform body
 - Radiate painted currents to field observers, Rx antennas
 - All models/mechanisms work together to improve accuracy

Realize Your Product Promise®

XX

Hybrid Methods

FE-BI

IE-Regions

Finite Element – Boundary Integral

- Mesh truncation of infinite free space into a finite computational domain
- Alternative to ABC or PML radiation boundary conditions
- Hybrid solution of FEM and IE
- IF solution on outer faces
- FFM solution inside of volume
- **FE-BI Advantages**
- Arbitrary shaped boundary
 - Conformal and discontinuous to minimize solution volume
- Reflection-less boundary condition
 - High accuracy for radiating and scattering problems
- No theoretical minimum distance from radiator
 - Reduce simulation volume and simplify problem setup

© 2015 ANSYS, Inc. 13

November 19, 2015

ANSYS Confidential

Finite Element – Boundary Integral: Example Problem

- FE-BI can be used to significantly reduce required computer resources
- Large volume of air inside of radome can be removed from the FEM solution domain
 - Air volume would be required if using PML or ABC
- Two FE-BI surfaces will be applied
 - Conformal to radome
 - Conformal to horn antenna (10 GHz)

	10 GHz	RAM (GB)	Elapsed Time
	ABC	15	70min
	FE-BI	7	30min
15	© 2015 ANSYS, Inc.	November 19, 2015	ANSYS Confident

IE-Regions

© 2015 ANSYS, Inc.

16

- In a hybrid FEM-IE solution, IE Regions allow uniform regions of free space or dielectric to be removed from the FEM solution
- Metal objects can be solved directly with an IE solution applied to surface
 - Removes need for air box to surround metal objects
- Dielectric regions can be replaced with an IE Region on the boundary of uniform dielectric material
 - Solution inside of dielectric is solved using IE

November 19, 2015

Surface current

IE-Regions: Example Problem

IE-Region Applied to RCS of Electricaly Large Dielectric Sphere

• Hybrid FEM-IE solution of scattering from dielectric sphere using IE-Regions

18

 Uniform volume of dielectric removed by applying IE-Region to surface of dielectric sphere

Radius = 900mm, $\varepsilon_r = 4$, F = 1GHz

Hybrid Solution

- With the addition of IE regions, a fully hybridized solution of FEM and IE is capable of solving electrically large problems more efficiently
- FEM and IE
- FE-BI
 - Truncate an FEM solution space with any arbitrary surface using a boundary integral

• IE-Regions

- When used along with FE-BI, conducting objects outside of FEM solution space can be solved directly with IE, eliminating the need for conducting objects to be enclosed in an air volume
- Homogenous dielectric volumes can be removed from the FEM solution and replaced with the equivalent IE solution in the region, useful when dielectric regions are electrically large requiring large FEM solution volume

19 © 2015 ANSYS, Inc.

November 19, 2015

Realize Your Product Promise®

Examples

Array on Spacecraft Using FE-BI

- 7 Element Helix Antenna Array integrated on satellite platform
 - Dielectric solar panels and antenna supports do not make this problem ideal for HFSS-IE
- Inclusion of solar panels create an electrically large model
 - 64 λ wide at 3.5 GHz
- Using ABC or PML boundary would require an Airbox equal to 21k λ^3
- FE-BI can reduce the required Airbox to 1.2k λ³

ABC or PML would be applied to much larger Airbox

FE-BI applied to conformal Airbox

Array on Spacecraft Using FE-BI: Results

- Array platform integration simulated with conformal FE-BI
 - RAM requirements reduced by 10x
 - RAM reduction as a result of removing the surrounding free space
- Only possible using FE-BI

22

Boundary Type	Airbox Volume	Number of Domains	Total RAM (GB)
ABC	$21k \lambda^3$	34	210
FE-BI	1.2k λ³	12	21
10X Less			
eve Inc. Novemb	or 10, 2015	ANEVE Confidenti	

NNSYS

Reflector Analysis Using IE-Regions

- Multiple techniques have been developed to analyze reflector antennas using HFSS
 - Full HFSS Solution Model entire solution space using only HFSS
 - High level of fidelity also requires most computer resources
 - Data Link Solutions Source feed excitation modeled separately from reflector
 - Data link solutions only include 1 way coupling from source excitation to reflector

Reflector Analysis Using IE-Regions: Setup

 Analysis of electrically large reflector antennas may benefit from multi-step design approach utilizing several simulation methodologies

HFSS to HFSS-IE or PO Data-link:

- Source excitation solved in HFSS
- Used as data linked excitation into a Physical Optics or HFSS-IE simulation

Hybrid Solution - FE-BI and IE-Region

- Full wave simulation performed using a hybrid solution in HFSS
 - IE-Region applied to reflector
 - FE-BI applied around feed

November 19, 2015

Reflector Analysis Using IE-Regions: Results

FEM Solution with FE-BI

- Full wave solution possible using hybrid FEM-IE solution, enabled with FE-BI and IE-Regions
 - Agreement between methods only show small difference in peak and side lobe levels
- Offset fed reflector
 - Backscatter and blockage not fully included in either data-linked simulation – effects would be more significant for center fed reflector

RHCP Gain IERegion 40.00 **Full Wave Solution** 30.00 **HFSS to IE Data-Link** 20.00 **HFSS to PO Data-Link** (Ugg) 10.00 IB (RHCP 0.00 -10.00 -20.00 -30.00 30.00 120.00 150.00 0 00 60.00 90.00 Theta [deg] 180.00 IE solution on reflector **ANSYS**[®] 25 © 2015 ANSYS, Inc. November 19, 2015 **ANSYS** Confidential

Boundary Type	Airbox Volume	Total RAM (GB)	Elapsed Time (hours)
Full HFSS solution (FEM Only, DDM)	37k λ ³	163.5 (1 st pass)	2.7 (1 st pass)
Full Wave Hybrid FEM-IE	8.6 λ^3 (Feed Only)	>32X5Less	>10X 🖬 ster
HFSS to IE Data-Link	NA	3.4	0.2
HFSS to PO Data-Link	NA	0.4	1 minute
26 © 2015 ANSYS, Inc. November 19, 2015	ANSYS Confidential		

Hybrid Solution for Antenna Placement Analysis Using IE-Regions

- Antenna performance modeled with placement in proximity to human head
 - Cell phone platform and antenna with complex material properties and geometry are ideally modeled using FEM solution
 - The uniform, high dielectric properties of the head are ideally modeled using IE solution

• Hybrid Solution

- An internal dielectric IE Region can be applied to head geometry to reduce computational size and improve efficiency
- FEM solution is applied remaining volume

ANSYS

November 19, 2015

Hybrid Solution for Antenna Placement Analysis Using IE-Regions: Results

Hybrid Solution for Antenna Placement Analysis Using IE-Regions

- Antenna performance modeled with placement in proximity to human head inside vehicle
 - Cell phone platform and antenna with complex material properties and geometry are ideally modeled using FEM solution
 - The uniform, high dielectric properties of the head are ideally modeled using IE solution
 - The car is ideally modeled using IE-Region
- Hybrid Solution Setup
 - An internal dielectric IE-Region can be applied to head geometry to reduce computational size and improve efficiency
 - An exterior metallic IE-Region is applied to car model
 - FEM solution is applied remaining volume

FEM solution around body and cell phone IE solution applied to dielectric human body using IE-Regions

Hybrid Solution for Antenna Placement Analysis Using IE-Regions: Results

ANSYS Confidential

Hybrid FEM-IE Solution

November 19, 2015

© 2015 ANSYS, Inc.

30

Physical Optics (PO) for Electrically Large

Simulations

High frequency asymptotic solver

 Scattering and antenna placement of electrically large objects

RCS of PEC Sphere

© 2015 ANSYS, Inc.

31

- Highlights capabilities and limitation of physical optics
- Creeping wave effects not accounted for by PO
- When electrical size of sphere becomes large, full wave solution converges with physical optics solution

November 19, 2015

Physical Optics for RCS of Electrically Large Structures Good correlation between full wave

International Space Station (ISS): Antenna Placement and Blockage Simulations

Multiple antenna and communication channels operating on and around the ISS are subject to blockage due to the large structure

- Physical Optics allows us to model important navigational and communications challenges
 - Degradation of communications due to adjusting solar panels on ISS
 - Blockage of GPS signals used by docking vehicles

Physical Optics for S-Band Communications on ISS Antenna Blockage

Realize Your Product Promise®

ANSYS°

Savant

Antenna Models

- From HFSS
 - Far-field radiation patterns
 - Current sources
- Built in parametric models
 - Dipoles, monopoles, loops, slots
 - Pyramidal and Conical horns
 - Parametric Beam
- Array Design Tool
 - Linear, Rectangular, Elliptical & By File
 - Weighting and phasing of elements
- Near-Field to Current Sources
 - Third Party CEM tools
 - Measured Data (Microwave Vision Group)

November 19, 2015

ANSYS Confidential

Accuracy: Creeping Wave

Accuracy: UTD Diffraction Rays

HFSS & Savant Integrated Workflow

Value Proposition

- Extend the capabilities of HFSS users to address much larger problems
- Enhance the investment in HFSS and other ANSYS tools
- Rapid simulations allow for many iterations during design cycle
- Optimize amount of testing required
- Advanced diagnostic features help users to understand results
- Recognized as best-in-class ray tracing technology
 - Shooting and Bouncing Rays (SBR)

GPU and MPI Examples

- CPU and GPU
 - Monopole on 737-800
 - 40,000 angular samples
 - 3 to 4 GHz, 40 MHz steps
 - 747,820 rays hit CAD

Configuration	Time	Speedup
1 CPU Core	12 hrs, 18 min	-
4 CPU Cores	3 hrs, 12 min	4x
1 CPU Core, 1 GPU	10.7 min	>70x
4 CPU Cores, 2 GPU	6.2 min	>118x

- CPU, GPU and MPI
 - 94 GHz Antenna on UH-60

Configuration	Time	Speedup	
1 Node, 6 cores, 2 GPU	720 sec	÷	
5 Nodes, 30 CPU cores, 10 GPUs	143 sec	5x	

Computer hardware costs \$20K

November 19, 2015

Workflow + Hardware Acceleration

Summary

Realize Your Product Promise®

ANSYS°

Thank You!

