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BACKGROUND - 1 

D

 A perfectly conducting (PEC) object 

scatters an incident electromagnetic 

(EM) wave of wavelength l. 

 The scattered fields can be 

represented as integrals over the 

scattering surface. 

 These integrals become much simpler 

when the observer is in the Far Field. 

 Knowing where the Far Field begins is 

essential both for computational and 

measurements reasons. 

 The question then is: how far from the 

scatterer is the Far Field? 

NOTES:  

1. Instead of a scatterer, we may have a radiator, in which case we 

talk about the radiated fields. 

2. D is the characteristic dimension of the object: the largest distance 

between any two points on the object. 
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BACKGROUND - 2 

D

r'
 The most frequently quoted formula 

for determining the Far Field region is 

 We call this the traditional formula 

(TF). 

 This formula has worked very well on 

many occasions. 

 But not well at all on others 

• In the next few slides we show 

cases where it has not worked 

and attempts at improving it. 

This formula comes about by 

considering the phase error in 

Green’s function OR the discrepancy 

between a spherical and a planar 

wave front. 

22D
r

l
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BACKGROUND - 3 

While measuring the scattering cross section of cylindrical 

bodies, Knott and Senior* observed that "Large errors can be 

incurred in measurements at the standard Far Field distance**, 

especially of bodies characterized by strong edge 

scattering…Errors as great as 6 dB can occur and it may be 

necessary to exceed the usual Far Field distance** by a factor 

of 5 or more to reduce the error to 1 dB". 

 

*E. F. Knott and T. B. A. Senior, "How Far is Far?", IEEE Trans. 

Antennas Propagat., Vol. AP-22, No. 5, 1974, pp. 363-369. 

 

**As given by the TF. 
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BACKGROUND - 4 

Carver and Newell* state that the TF "is inadequate for pattern 

measurements in connection with space-borne SAR antennas". 

 

 

*K. R. Carver and A. C. Newell, "SAR Antenna Calibration 

Techniques", Proc. of the 1978 Syn. Aperture Radar Technol. 

Conf. (NASA Document ID 19780022509, downloadable from 

http://ntrs.nasa.gov/search.jsp?R=19780022509). 
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BACKGROUND - 5 

* R. C. Hansen, "Measurement Distance Effects on Low Sidelobe 

Patterns", IEEE Trans. Antennas Propagat., vol. AP-32, No. 6, pp. 

591-594, 1984. 

 Hansen* studied the error produced by the TF in calculating the 

sidelobe level of an antenna array, and how this error reduces by 

using a factor larger than the factor 2 in the TF. 

 

 In the next slide we show the principal results he obtained using a 

line source with a Taylor distribution. 
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BACKGROUND - 6 

 Graph of sidelobe change 

(dB) as a function of multiples 

of the TF. 

 

 SLR: Sidelobe Level Ratio 

(main to first sidelobe). 

 

 Example: for a 40 dB SLR, we 

need to go almost 10 times 

farther out than what the TF 

predicts in order to have a 

sidelobe change of only 0.1 

dB. 
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BACKGROUND - 7 

 Yaghjian* suggests the formula 

22D
r l

l
  

commenting that "the added l covers the possibility of the 

maximum dimension D of the antenna being smaller than a 

wavelength". 

 No other justification is provided.  

* A. D. Yaghjian, "An Overview of Near-Field Antenna 

Measurements", IEEE Trans. Antennas Propagat., vol. AP-34, No. 

1, pp. 30-45, 1986. 
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BACKGROUND - 9 

Laybros and Combes* studied dipoles of length up to one 

wavelength and their results indicate that the Far Field begins 

at a distance much greater than the TF dictates. 

 

 

 

 

 

*S. Laybros and P. F. Combes, "On Radiating-Zone Boundaries 

of Short, l / 2, and l Dipoles", IEEE Antennas Propagat. Mag., 

Vol. 46, No. 5, Oct. 2004.  
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BACKGROUND - 10 

Abdallah et al.* conducted numerical experiments using thin-

wire dipoles of three different sizes. They concluded that the 

dipole must be at least five wavelengths long (D ≥ 5l) for the TF 

to hold.  

 

 

 

 

*M. N. Abdallah, T. K. Sarkar, M. Salazar-Palma and V. 

Monebhurrun, "Where Does the Far Field of an Antenna Start?" 

IEEE Trans. Antennas Propagat. Mag., vol. 58, No. 5, pp. 115-

124, Oct. 2016. 
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BACKGROUND - 11 

More definitions of the Far Field from: 

C. Capps, "Near Field or Far Field?", EDN Magazine, pp. 95-102, August 

16, 2001. (http://www.edn.com/design/communications-

networking/4340588/Near-field-or-far-field-) 

http://www.edn.com/design/communications-networking/4340588/Near-field-or-far-field-
http://www.edn.com/design/communications-networking/4340588/Near-field-or-far-field-
http://www.edn.com/design/communications-networking/4340588/Near-field-or-far-field-
http://www.edn.com/design/communications-networking/4340588/Near-field-or-far-field-
http://www.edn.com/design/communications-networking/4340588/Near-field-or-far-field-
http://www.edn.com/design/communications-networking/4340588/Near-field-or-far-field-
http://www.edn.com/design/communications-networking/4340588/Near-field-or-far-field-
http://www.edn.com/design/communications-networking/4340588/Near-field-or-far-field-
http://www.edn.com/design/communications-networking/4340588/Near-field-or-far-field-
http://www.edn.com/design/communications-networking/4340588/Near-field-or-far-field-
http://www.edn.com/design/communications-networking/4340588/Near-field-or-far-field-
http://www.edn.com/design/communications-networking/4340588/Near-field-or-far-field-
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BACKGROUND - 9 

 It appears then that there is a degree of 

uncertainty as to where the Far Field begins. 

 

 In what follows, we will use a mathematical 

approach to examine the issues involved and 

reach a new set of formulas.  
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BASIC SETUP 

 A PEC cylinder of radius a scatters an EM 

wave. 

 The magnetic intensity of the scattered field is 

given by  

     
e

, ( ) ,
4

ikR
s

S

g R dS g R R
R



     H r J r r r

r' : field or observation point 

r : source or integration point on surface S of cylinder 

J(r) : total linear current density on surface of cylinder 

 

This expression is unnecessarily complicated. 

Without loss of generality, we will use a simpler one. 

2a

D

r'

r
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BASIC SETUP SIMPLIFIED 

We let the radius of the cylinder go to zero, ending 

up with a thin wire. 

 In the process, the source point becomes 

ˆ ,
2 2

D D
zz z   r

while, for the linear current density, we write 

( )
ˆ( )

2

I z
z

a
J r

 and for the distance function 

 2 2ˆ ˆˆ2 , , /R r z r zr z r r r            r r

D

z
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OBJECTIVES 

 The expression for the magnetic intensity becomes 

     
/2

/2

1ˆ ˆˆ ˆ( ) ( ) , /
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s
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 In the Far Field, we drop the 1 / R term in the integrand, and we 

approximate Green's function in amplitude and phase by the function 

 Below, we will define the Far Field region in terms of the penalties we 

are willing to accept in making these three simplifications. 
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GREEN'S FUNCTION: ERROR IN AMPLITUDE 

 The amplitude of Green's function is 1 / R 

We define the relative error in amplitude, h , by 

   1/ 1 /
1 ,

1 /

a

a

a

R R R
R r

R R
h


   

On which we impose the error bound 

0 , 0h    

Which ultimately implies that 

 This is the definition of the Far Field region for the relative amplitude 

error being smaller than .  

OR
2

D

r


 2

a D
r
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GREEN'S FUNCTION: ERROR IN PHASE - 1 

 The exact phase is kR. 
 

 The approximate phase is  

 

 In effect, we have replaced the distance function by its two-term Taylor 

series expansion about u = (z / r') = 0. 

 
What is the error we commit? It is the remainder in Taylor's Theorem 

with a Remainder. For our case 

 

  

 

 This is an exact expression with R1 the remainder. 

 ˆˆ1
z

kr z r
r
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GREEN'S FUNCTION: ERROR IN PHASE - 2 

 The remainder is given by 

    

 

2 2 2
2 21 1

1 2 3/2
2

1
1 1

ˆˆ1 2 ˆˆ1

2 2ˆˆ1 2

d z r u u z ru u
R

du z r u u

    
 

    

10 u u 

 STRATEGY: Maximize the remainder and then bound it to get an 

expression for the Far Field region. 

 

 First maximize with respect to (wrt) 

 

by taking the first derivative of R1 and setting it to zero.  

ˆˆw z r 
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GREEN'S FUNCTION: ERROR IN PHASE - 3 

 The relevant zeros are given by 

 

 At these values, the second derivative is 
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maximum 
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GREEN'S FUNCTION: ERROR IN PHASE - 4 

 The remainder maximized wrt w is 
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2
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• The next step is to 

maximize the 

remainder wrt u1. 

• Note that this is a 

strictly increasing 

function of u1
2. 
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GREEN'S FUNCTION: ERROR IN PHASE - 5 

D

z

r'

z1

z

 We recall that 

 

 

 

 

 But, from amplitude condition, 
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GREEN'S FUNCTION: ERROR IN PHASE - 6 

 We impose the phase error bound 

 

 

 

 Which, in combination with the previous statement, yields 

 

 

 

 

 This is the definition of the far-field region for the phase error being 

smaller than  /b. 

 
 Note that if we set   0, b  8, we recover the TF since B(0) = 0.5. 

 

 1max 1
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2
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 From above, the scattered field is 

 

 

 

 In the Far Field, we keep this term and we drop this term. 

We can then impose the amplitude condition 

 

 

 

 

We can show that 
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THE SECOND TERM IN THE INTEGRAL 

REPRESENTATION OF THE MAGNETIC FIELD - 1 

1

10 , 0R
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THE SECOND TERM IN THE INTEGRAL 

REPRESENTATION OF THE MAGNETIC FIELD - 2 

 From the last statement, we get 

 This is the magnitude condition on the Far Field for omitting the 

second term in the last factor of (2.6) in favor of the first. The 

superscript s,a signifies this omission. 

 
 It has the unique property that the right-hand side does NOT go to zero 

with D. 

𝑟𝑠,𝑎 >
10𝛾

𝑘
+
𝐷

2
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THE SECOND TERM IN THE INTEGRAL 

REPRESENTATION OF THE MAGNETIC FIELD - 3 

We re-examine the two terms for phase error 

 

 

 

 

 

Dropping the first term results in a phase of 90 deg. How close is it to the 

actual phase? 

We recall that 

 Then the actual phase (in degrees) is between 

 

 

 

 

   and 90 deg. Graphically (next slide) 
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THE SECOND TERM IN THE INTEGRAL 

REPRESENTATION OF THE MAGNETIC FIELD - 4 
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 The exact phase is somewhere between the two curves. 

 If  = 1, the phase error is less than 5.7 deg. 

 If  = 2 (more likely), the phase error is less than 0.6 deg. 

Despite the smallness of the error, we can derive a formula based on it 

(next slide). 
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THE SECOND TERM IN THE INTEGRAL 

REPRESENTATION OF THE MAGNETIC FIELD - 5 

We bound the difference between the approximate and exact phase 

 1tan , 0
2

kR
 




  

By expanding the arctangent in inverse powers of kR, we can show that 

 1 1 1
tan

2
1

2

kR
DkR

kr
r

   
 

   

From the two, we get the condition 

,

2

s p D
r

k




 



We first measure distance in wavelengths by writing 

 

 

 

 Then we have 

 

 

 

 And 

 

 

 The values of , b,  and  are application dependent. 

 

 We will refer to the four formulas above as , b, ,   in the graphs 

that follow. 
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SUMMARY OF THE FORMULAS 

,ff

r D
r d
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EXAMPLE 1: TYPICAL VALUES 

 = 0.05, a 5% relative error in amplitude. 

 = 2, a 20-dB drop of the 1/R-term relative to the k-term. 

b = 20, which keeps the phase error to below 9 degrees. 

0
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r f
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d 

Alpha = 0.05 Beta = 20 Gamma = 2

We see that   dominates for wire lengths up to 1.68 lambda, 

with  taking over up to 2 lambda. After that, the phase error 

formula dominates. 



30 

EXAMPLE 2: SMALL  = 0.01 (1 % rel. error in ampl.) 

 = 0.01,  b = 20,   = 2  
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Alpha = 0.01 Beta = 20 Gamma = 2

We see that   dominates for wire lengths up to 0.3215 lambda, 

with  taking over up to 10 lambda. After that, the phase error 

formula dominates. 

Note that for a 10-lambda wire, the Far Field begins at 500 

lambda! 
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EXAMPLE 3: LARGE b = 90 (2-deg. phase error) 

 = 0.05,  b = 90,   = 2  
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Alpha = 0.05 Beta = 90 Gamma = 2

We see that   dominates for wire lengths up to 0.8522 lambda, 

with the phase error formula taking over after that. Graph  plays 

no role here. 
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EXAMPLE 4: LARGE  = 3, (implies that kR > 1,000) 

 = 0.05,  b = 20,   = 3  
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Alpha = 0.05 Beta = 20 Gamma = 3

We see that   dominates for wire lengths up to 5.6921 lambda, 

with the phase error formula taking over after that. Graph  plays 

no role here. 
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EXAMPLE 5: TIGHT CONTROL OF PHASE 

 = 0.05,  b = 20,   = 90  

0
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Alpha = 0.05 Beta = 90 Delta = 90

We see that  dominates for wire lengths up to 0.4614 lambda, 

with the phase error formula taking over after that. Graph  plays 

no role here. 
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A NOTE 

* W. L. Stutzman and G. A. Thiele, Antenna Theory and 

Design, 3rd ed. New York: John Wiley & Sons, 2012. 

The approach we describe above is similar to that in Stutzman 

and Thiele*. The analysis, however, is quite different and does 

not require the distinction between short and long dipoles (or 

wires in our case). We also make the important distinction of 

including the error constraints in our formulas thus stressing 

the point that these formulas are not hardwired but depend on 

the case at hand. 
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CONCLUDING REMARKS 

 We developed formulas for locating the Far Field boundary. They 

 are based on an analysis of the integral representation for the 

scattered/radiated magnetic field. 

 are good for back-of-the-envelope calculations and, maybe, more. 

 

 A similar analysis may be feasible in the presence of an infinite, PEC 

plane. 

 

 Usually, planes are neither infinite nor perfect, and articles of interest 

(e.g., antennas) may not be PEC and may be attached to some 

complex platform. 

 A safe, quick and inexpensive way to proceed in such situations is 

to use computer simulations rather than formulas as above. 

 

 Thank you for your attendance and attention!  


