Implications of HDTV Technology on Circuit and System Design

> John Lopinto President Communications Specialties, Inc.

> > www.commspecial.com

Today's Topics

- HDTV Standards for Broadcast Applications
- HDTV Implications on Broadcast Facilities
- HDTV Implications on Consumer TV
- Worldwide HDTV Activities

A Little Terminology

- SD: Standard Definition TV
 - The TV we've known and loved for the past 55 years.
 - Based on the NTSC or PAL standards
- **HD**: High Definition TV
 - Dozens permutations of resolution and timing
 - Most common "1080i" and "720p"
- **3G-HD**: The transmission of full 1080p/60 uncompressed HDTV over a single link

- Standard Definition (SD)
 ITU-R BT-601
 - Defines how video is represented in a digital manner
 - Samples color information half as often as luminance (4:2:2)
 - SMPTE 259
 - Defines how BT-601 is then transmitted in a serial manner
 - Applies to both PAL and NTSC timing formats

- High Definition (HD) Uncompressed
 - Several standards define HD resolutions
 - SMPTE 274: 1920 x 1080
 - 1080i and 1080p
 - SMPTE 260: 1920 x 1035
 - 1035i
 - SMPTE 296: 1280 x 720
 - 720p
 - SMPTE 295: 1920 x 1080 @50 Hz
 - 1080i/50

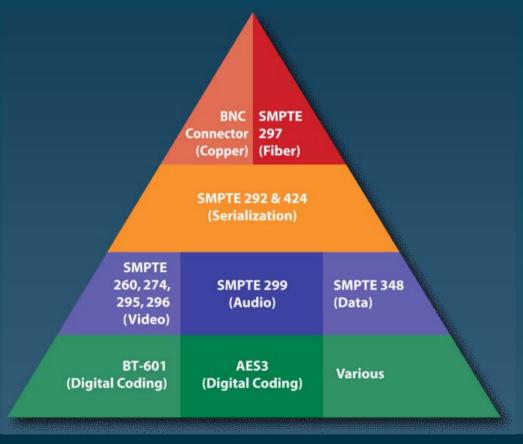
Audio and Data for HD – SMPTE 299: 24-bit audio format

- How AES3 digital audio is mapped into HD stream – SMPTE 292
- Up to 16 audio channels
- SMPTE 348: General packet data transport within SMPTE 292

• High Definition (HD)

- Different frame rates are defined for various applications and backward compatibility with NTSC and PAL
- In Hertz: 60, 59.94, 50, 30, 29.96, 25, 24, 23.98
 - Some are interlaced (i), some progressive (p)
- Not all spatial resolutions are defined at all frame rates

• High Definition (HD)


- One standard defines HD transmission
 - SMPTE 292
 - Defines how the video, audio and data standards are transmitted in a serial manner over copper
 - Defines other electrical parameters
 - Rise time, jitter, amplitude
 - Defines the valid combinations of resolution and frame rate

- High Definition (HD)
 - SMPTE 292
 - Defines the transmission Data Rate (uncompressed)
 - 1.485 Gb/s
 - 1.485/1.001 Gb/s
 - 1.485 Gb/s is used for whole number vertical sync frequencies
 - 60, 50, 30, 25, 24 Hertz
 - 1.485/1.001 Gb/s is used to sync (genlock) with NTSC
 - 59.94, 29.96, 23.98 Hertz

- 3Gb/s High Definition (3G-HD)
 SMPTE 424
 - Defines the Data Rate
 - 2.97 Gb/s
 - 2.97/1.001 Gb/s
 - Supports 1080p/50 and 1080p/60
 - Uses just one coax or fiber signal path
 - Single-link
 - Some facilities are installing for the future

- Fiber Optics for HD and SD
 - SMPTE 297: One standard defines fiber optic transmission for 3G-HD, HD and SD
 - LC connector is "preferred", others are "optional"
 - Defines: jitter, rise time, amplitude and data rate accuracy for HD and SD serial data transmitted over fiber

Uncompressed HDTV Standards Tree

www.commspecial.com

- A Few Observations
 - None of these resolutions have any compatibility with computer resolutions
 - Only one HD resolution, 1920x1080, matches the native resolution of some of the TVs on the market today
 - Worldwide preference is for 1080i/50 (PAL countries) and 1080i/59.94 (NTSC countries)
 - US is a mix of 1080i and 720p

- A Few Observations
 - 1080i broadcasters: CBS, NBC, HBO, Showtime, SNY, YES
 - 1/3 more detail in image than 720p (movies)
 - Frame rate is only 29.96i frames/second
 - 720p broadcasters: ABC, FOX, ESPN
 - Frame rate is 59.94p frames/second
 - Good for fast motion (football, NASCAR)

- Compatibility with SD Broadcasts
 - There is still the need to broadcast in SD
 - Impractical to do two separate SD and HD productions
 - Produce in HD, do SD "4:3 cutout" for SD
 - Produce in SD, do 4:3 up conversion to HD raster
 - No increase in detail, but image has HD timing
 - Lot's of new equipment needed to perform conversions either way

- Up converting SD Material
 - Most remote facilities are still SD 4:3
 - Stretch, crop, anamorphic lens,16:9 within 4:3 up convert ...???
 - Computer source material is mostly 4:3
 - Spatial resolution conversion needs to be dealt with properly
 - Target resolution has more BW than source

- Genlocking the Equipment
 - One timing reference is needed for both
 SD and HD signals within facility
 - HD equipment will reference timing to NTSC or PAL composite video

Vertical sync frequencies must be the same

 Equipment must have wide genlock phasing range – one vertical period

- Transmission Bandwidth
 - Some coax cable cannot handle the increased BW of HD (6x that of SD)
 - Practical distances for "HD" grade coax with equalization at receiving device
 - 300m for HD
 - 100m for 3G-HD

- Fiber will be used as backbone for facilities

- Audio Video Skew
 - Frame synchronizers and compressed video will be more commonplace
 - Audio could lead video by 10s or 100s of milliseconds as it propagates through plant
 - Intelligent audio delay equipment will be needed for synchronization

HDTV Implications on **Consumer Televisions** Image Data Compression - MPEG2 used for terrestrial broadcast – MPEG4, H.264 used for most all other modes of distribution Quality can vary greatly depending on BW allocated for a particular transmission - Compression ratios of 100:1 or greater

HDTV Implications on Consumer Televisions

- The Native Resolution Problem
 - Most all "HD" TVs today are based on computer, not HD, resolutions
 - 720p sets are really 1366x768
 - 99% of all plasmas are 1366x768 or 1024x768 or 1024x1024
 - Excellent circuits are needed for spatial scaling and de-interlacing

HDTV Implications on Consumer Televisions
The Trend in TV Displays
Most newer HDTVs have a native resolution of 1920x1080 ("full HD")

- Progressive scan
- Solves the scaling problem but not the de-interlacing problem
- Hint: fix the set-top box to 1080i so the display does not have to scale spatially

HDTV Implications on Consumer Televisions

- The HDMI Interface
 - Combines digital HDTV and audio on one connector
 - Some implementations will support 1080p
 - Will become essential for HD DVD players
 - Blu-Ray and HD-DVD
 - A new version, v1.3, will support 30-bit color depths (presently 24-bit)
 - In practice, this is a very "quirky" interface for several reasons

Worldwide HDTV Activities

- US: active transition to HD – Feb 17, 2009 for giving up analog channels
- North Asia: active transition to HD
 Northern China driven by 2008 Olympics
- Southern Asia: slow to adopt
- Europe: Making the transition by gov't mandate – being pushed by satellite
- South America, Aus/NZ: Almost nothing

Worldwide HDTV Activities

- HDTV Distribution is Changing
 - Compression algorithms allow for many more distribution channels than analog TV
 - Mobile phones (Europe and Japan)
 - The Internet (Apple iTV, YouTube)
 - Via Telephone lines
 - Fiber to the Home (FTTH)

Conclusions

- Follow the SMPTE standards in guiding your designs
- SD and HD equipment and facilities will continue to co-exist for years to come
- Fiber will become commonplace
- HDTV consumer products need to consider future trends and be made "idiot-proof"
- HDTV will be distributed in more ways than traditional TV outlets