
1

Improving the Performance of Your

NI LabVIEW Applications

Dan Hedges

Senior Software Engineer

LabVIEW Performance Group

2

Agenda

• How to find performance problems

 Benchmarking

 Profiling

• Understanding LabVIEW under the hood

 Memory usage

 Execution system

3

Optimization Cycle

Benchmark

• Evaluate Performance

• Identify Problem Areas

Optimize

• Improve efficiency

• Improve Speed

4

Benchmarking Code Execution

“Timing Template (data dep)” – LabVIEW Shipping Example

5

Benchmarking Code Execution

Calibration Code

Analysis

“Benchmark Project” – LabVIEW Real-Time Shipping Example

6

Tools for Measuring Resource Usage

(Windows)

• Task Manager

• Perfmon

7

Windows Task Manager
•Gives user a rough idea of

whether memory or CPU is

the bottleneck

•Can be helpful in

identifying memory leaks

•View»Select Columns …

allows you to add additional

stats

8

Perfmon
•Allows you to monitor

•Processors

•Disk I/O

•Network Tx/Rx

•Memory/Paging

•Access by typing

“perfmon” into the

Windows Run dialog

9

Why Should You Profile Your VIs?

• Performance improvements are most effective in

the 20 percent

• Guessing which 20 percent is difficult

• 80 percent of the execution time is spent in
20 percent of the code

The 80/20 rule of software performance

10

VI Profiler

• Tools >> Profile >> Performance and Memory…

11

Demo – VI Profiling

12

LabVIEW Desktop Execution Trace

Toolkit

Threads, CPU

and Memory

VIs

Multiple

Sessions

• Detailed

execution

traces

• Thread and VI

information

• Measurement

of execution

time

13

Profiling and Benchmarking Summary

To answer this question: Use these tools:

What is my current performance? Benchmark VIs

What are my limiting resources? Task Manager, Perfmon

How much time are each of my VIs taking? VI Profiler

In what order are events occurring? LabVIEW Desktop Execution Trace Toolkit

14

Under LabVIEW’s Hood

Memory
Management

Execution
System

15

What Is In Memory?

Panel Diagram

Compiled
Code

Data

16

VIs in Memory

• When a VI is loaded into memory

 We always load the data

 We load the code if it matches our platform

(x86 Windows, x86 Linux, x86 Mac, PowerPC Mac)

 We load the panel and diagram only if we need to

(for instance, we need to recompile the VI)

17

Panel and Diagram Data

• How many bytes of memory does this VI use?

• The answer depends on:

 Is the panel in memory?

 Is the environment multi-threaded?

18

Execute, Operate and Transfer Data

• Populated by
Code

4K Execute
Data

• Copy for Indicator
4K Operate

Data

• Temporary
Buffer

4K Transfer
Data

19

Avoid Loading Panels, Save Memory

20

Wire Semantics
• Every wire is a buffer

• Branches typically create copies

21

Optimizations by LabVIEW

The theoretical 5 copies become 1 copy operation

Copy

Output is “in place” with input

22

The “In Place” Algorithm

• Determines when a copy needs to be made

 Weighs arrays and clusters higher than other types

• Algorithm runs during compilation, not execution

 Does not know the size of an array or cluster

• Relies on the sequential aspects of the program

 Branches may require copies

23

Bottom Up

In-place information is propagated bottom up

Increments array in place

Copy because

of increment No copies required

Branched wire

24

Showing Buffer Allocations

25

The In-Place Element Structure

Allows you to explicitly modify data “in place”

26

Example of In Place Optimization
Operate on each element of an array of waveforms

27

Make the First SubVI “In Place”

changes into…

28

SubVI 2 Is Made “In Place”

Changes into …

29

SubVI 3 Is Made “In Place”

Changes into …

30

Final Result: Dots Are Hidden

31

Building Arrays

There are a number of ways to build arrays and

some are better than others

Bad

•Reallocates array memory on

every loop iteration

•No compile time optimization

32

Building Arrays

There are a number of ways to build arrays. Try to

minimize reallocations.

Best

•Memory preallocated

•Indexing tunnel eliminates

need for copies

33

Demo – Effects of Memory

Optimization

34

Under LabVIEW’s Hood

Memory
Management

Execution
System

35

VIs Are Compiled
0011101001010

1010001000111

1110101010101

0001011100010

1100101100110

0011101001010

1010001000111

1110101010101

0001011100010

1100101100110

0011101001010

1010001000111

1110101010101

0001011100010

36

VIs Are Compiled: “Clumps”
Clump 1

Clump 2

Clump 0 Clump 0

37

Clump 2 Sleeping

Clump 1 Sleeping

Clump 0 Sleeping

VIs Are Compiled: “Clumps”

Completion of diagram:

Divide nodes, display of

indicators, then VI exit

Start of diagram:

Reads controls, then

schedules Clumps 1

and 2

 Then sleeps ...
Bottom for loop

indicator is updated

Clump 0 Scheduled

 Sleep ...

Top for loop

indicator is updated

Clump 0 Scheduled

 Sleep ...

Clump 0 Clump 1

Clump 2

Clump 0

38

Single-Threaded LabVIEW

CPU Thread

User Interface

Loop

Code

Execution

Coroutines

39

Exec

Thread

Multithreaded LabVIEW

CPU

UI Loop

Thread

Exec

Thread

messages

Exec

Thread

Exec

Thread

40

Exec

Thread

LabVIEW on a Multicore Machine

CPU1

UI Loop

Thread

Exec

Thread

Exec

Thread

Exec

Thread
messages

CPU0

41

Some Operations Require the UI

Thread

Call Library Nodes

Control/Indicator Property Nodes

Front Panel Control References

42

Execution Properties

43

Reentrant VIs

• Reentrancy allows one subVI to be called

simultaneously from different places

 Requires extra memory for each instance

• Use reentrant VIs in two different cases

 To allow a subVI to be called in parallel

 To allow a subVI instance to maintain its own state

44

LabVIEW 2010 Compiler

• Generates code that runs faster, ~30%

• Takes longer to run (~5x-7x)

 SSE
Instructions

SubVI Inliner
Register

Candidates
Dead Code
Elimination

Loop Invariant
Code Motion

Common
Subexpression

Elimination
And more

45

Demo – Effects of Execution

Optimization

46

Next Steps

• LabVIEW Help

In LabVIEW

• ni.com/multicore

• ni.com/devzone

On the Web

