LTspice IV Basic Lab Class

Presented by Thomas Mosteller ADI FAE

Copyright © 2017 Analog Devices. All rights reserved.

Why Use LTspice?

- ✤ Stable SPICE circuit simulation with
 - Unlimited number of nodes
 - Schematic/symbol editor
 - Waveform viewer
 - Library of passive devices
- Fast simulation of switch mode power supplies
 - Steady state detection
 - Turn on transient
 - Step response
 - Efficiency / power computations
- Advanced analysis and simulation options
 - Not covered in this lab class (sort of)
- Outperforms or as powerful as pay-for tools
 - In other words LTspice is free!
- Automatically builds syntax for common tasks

LTspice is also a great schematic capture / BOM tool

 Over 2500 macromodels of Linear Technology products

1400+ power products

SPICE = Simulation Program with Integrated Circuit Emphasis

How Do I Get LTspice and Documentation?

- Go to <u>http://www.linear.com/software</u>
- Left-Click on Download LTspice IV
- Follow the instructions to install

LTSPICE IV

LTspice IV

LTspice IV is a high performance SPICE simulator, schematic capture and waveform viewer with enhancements and models for easing the simulation of switching regulators. Our enhancements to SPICE have made simulating switching regulators extremely fast compared to normal SPICE simulators, allowing the user to view waveforms for most switching regulators in just a few minutes. Included in this download are LTspice IV, Macro Models for 80% of Linear Technology's switching regulators, over 200 op amp models, as well as resistors, transistors and MOSFET models.

- Download LTspice IV for Windows (Updated November 12, 2013)
- Download LTspice IV for Mac OS X 10.7+
- LTspice Information Flyer & Shortcuts
- · Mac OS X Shortcuts
- · LTspice Getting Started Guide
- LTspice Blog
- LTspice Demo Circuit Collection
- View Upcoming LTspice Seminars

Follow LTspice on Twitter!

View the LTspice Video Channel

How Do I Get Started using LTspice?

How Do I Get Started Using LTspice?

- <u>Demo Circuits</u>: Use one of the 100's demo circuit available on linear.com
 - Designed and Reviewed by Factory Apps Group
 - Go to <u>http://www.linear.com/software</u> or browse through the part's webpage (right column)
- ✤ <u>JIG Files</u>: Use a pre-drafted test fixture (JIG)
 - Provides a good starting point, but is not production-ready
 - Used to prove out part models, and are not complete designs.
 - Components are typically "ideal" components and will need to be modified based on your operating conditions
- Blank: Use the schematic editor to create your own design
 - LTspice contains models for most LTC power devices and many more

Demo Circuits on linear.com

Go to http://www.linear.com/software or ...

LTspice IV

LTspice IV is a high performance SPICE simulator, schematic capture and waveform viewer with enhancements and models for easing the simulation of switching regulators. Our enhancements to SPICE have made simulating switching regulators extremely fast compared to normal SPICE simulators, allowing the user to view waveforms for most switching regulators in just a few minutes. Included in this download are LTspice IV, Macro Models for 80% of Linear Technology's switching regulators, over 200 op amp models, as well as resistors, transistors and MOSFET models.

- Download LTspice IV for Windows (Updated November 12, 2013)
- Download LTspice IV for Mac OS X 10.7+
- LTspice Information Flyer & Shortcuts
- Mac OS X Shortcuts
- LTspice Getting Started Guide
- LTspice Blog
- LTspice Demo Circuit Collection
- View Upcoming LTspice Seminars

Follow LTspice on Twitter!

View the LTspice Video Channel

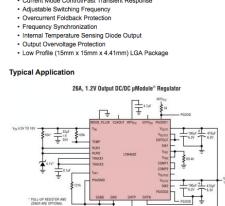
LTC3788-1 Demo Circuit - High Efficiency Dual 12V/24V Boost Converter with Rsense Current Sensing (4.5-24V to 24V @ 5A & 12V @ 10A)	2013-11- 18	LTC3788-1
LTC6090 Demo Circuit - Wide Dynamic Input-Output Range High Voltage Integrator	2013-11- 13	LTC6090
LT6105 Demo Circuit - Current Sense Amplifier Monitors Both +15V and -15V Supplies	2013-11- 11	LT6105
LT8302 Demo Circuit - µPower No-Opto Isolated Flyback Converter (10-30V to 5V @ 2.2A)	2013-11- 07	LT8302
LT3090 Demo Circuit - Negative Linear Regulator with Current Monitor (-5V to -1.25V @ 600mA)	2013-11- 05	LT3090
TC1625 Demo Circuit - High Efficiency Step-Down Converter (5-28V to 3.3V @ 4.5A)	2013-10- 28	LTC1625
LTC2053 Demo Circuit - Unidirectional Current Sense Circuit for 1V Supply (0A to 10A)	2013-10- 28	LTC2053

What if I'm browsing the part's webpage?

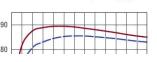
Demo Circuits on linear.com (cont.)

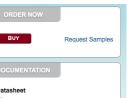
Go to the part's webpage

http://www.linear.com/product/LTM4620


EMO BOARDS Output Voltage Range: 4.3 v to 16V DC/DC BRCUITS ±1.5% Maximum Total DC Output Error Reliability	NOW
ACKAGING ACKAGING Features Complete Standalone Dual Output Power Supply MULATE Complete Standalone Dual Output Power Supply MULATE Complete Standalone Dual Output Power Supply MULATE Complete Standalone Dual Output Power Supply MUla Instructure Complete Standalone Dual Output Power Supply Datasheet ELTM66 DocUMEN Datasheet Datasheet Datasheet Datasheet Datasheet Datasheet Datasheet Datasheet	Reque
RDER INFO Complete Standalone Dual Output Power Supply IMULATE - Dual 13A or Single 26A Output EMO BOARDS - Wide Input Voltage Range: 4.5V to 16V IRCUITS - ±1.5% Maximum Total DC Output Error	
IMULATE - Dual 13A or Single 26A Output Datasneet EMO BOARDS - Wide Input Voltage Range: 4.5V to 16V Imulai Linkeg: DC/DC IRCUITS - ±1.5% Maximum Total DC Output Error Reliability	HAHON
Wide Input Voltage Range: 4.5V to 16V M LTM46: EMO BOARDS • Output Voltage Range: 0.6V to 2.5V DC/DC IRCUITS • ±1.5% Maximum Total DC Output Error Reliability	
Culture Voltage Kange: 0.00 to 2.50 Culture Voltage Kange: 0.00 to 2.50 t.1.5% Maximum Total DC Output Error	20 - Dual 13A or Sing uModule Regulator
Reliability	piviodule Regulator
Multiphase Current Sharing with Multiple LTM4620s Up to 100A	
IDEOS • Differential Remote Sense Amplifier	Reliability Data
Overcurrent Foldback Protection	ower Density: 26A µN tor Keeps Cool in Tig
Internal Temperature Sensing Diode Output Output Overvoltage Protection Low Profile (Shm x 15mm x 4.41mm) LGA Package	ase A or Single 26A DC/
Integra Constraints	e Step-Down Regula ed Heat Sink Deliver
ackaging pplication Notes 26A, 1.2V Output DC/DC µModule" Regulator	
aterials Declaration & RoHS	20 Demo Circuit - Hig cy 4-Phase 50A Step e Regulator (4.5-16V

Suggested Oscillators


C6908 - Dual Output scillator with Spread pectrum Modulation Or Click Here For More Options

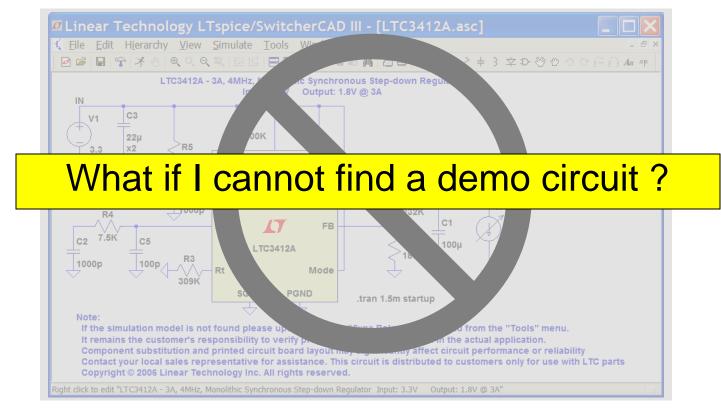

We Also Recommend C2974 - Quad Digital Power upply Manager with EEPROM

C4370 - Two-Supply iode-OR Current Balancing ontroller

1.2V Efficiency vs Iout

- ale 26A
- Module ight Spaces
- C/DC lator with ers up to
- ep-Dowr SV to 1V 🕯
- LTM4620 Demo Circuit High Efficiency 6-Phase 75A Step-Down µModule Regulator (4.5-16V to 1V@75A)
- LTM4620 Demo Circuit High Efficiency 8-Phase 100A Step-Down µModule Regulator (4.5-16V to 1V @ 100A)
- 🖌 LTM4620 Demo Circuit High Efficiency Dual 13A Step-Down µModule Regulator (4.5-16V to 1.5) @ 13A & 1.2V @ 13A)

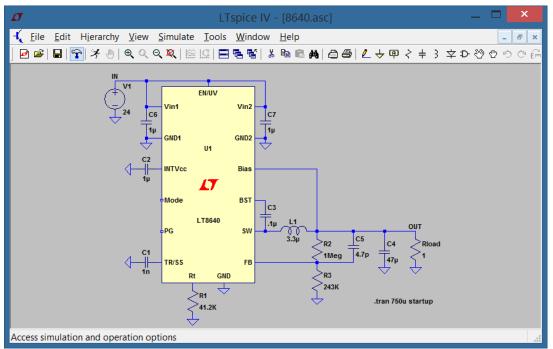
LTspice 🚱


- LTM4620 Demo Circuit High Efficiency 4-Phase 50A Step-Down µModule Regulator (4.5-16V to 1V @ 50A)
- LTM4620 Demo Circuit High Efficiency 6-Phase 75A Step-Down µModule Regulator (4.5-16V to 1V@75A)
- LTM4620 Demo Circuit High Efficiency 8-Phase 100A Step-Down µModule Regulator (4.5-16V to 1V @ 100A)
- LTM4620 Demo Circuit High Efficiency Dual 13A Step-Down µModule Regulator (4.5-16V to 1.5 V @ 13A & 1.2V @ 13A)

What are Demo Circuits ?

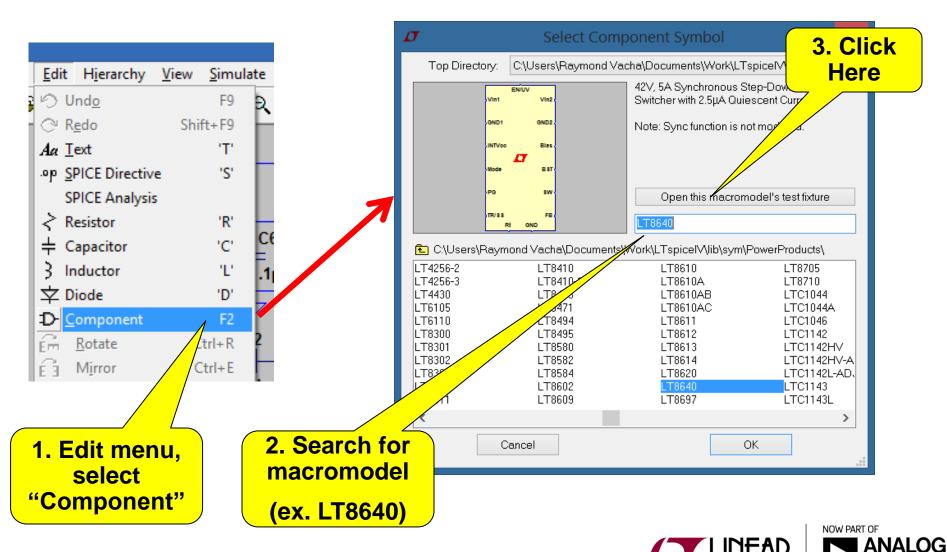
Circuits designed and reviewed by factory apps group

- It remains the customer's responsibility to verify proper and reliable operation in the actual application
- Printed circuit board layout may significantly affect circuit performance and reliability
 NOW PART OF

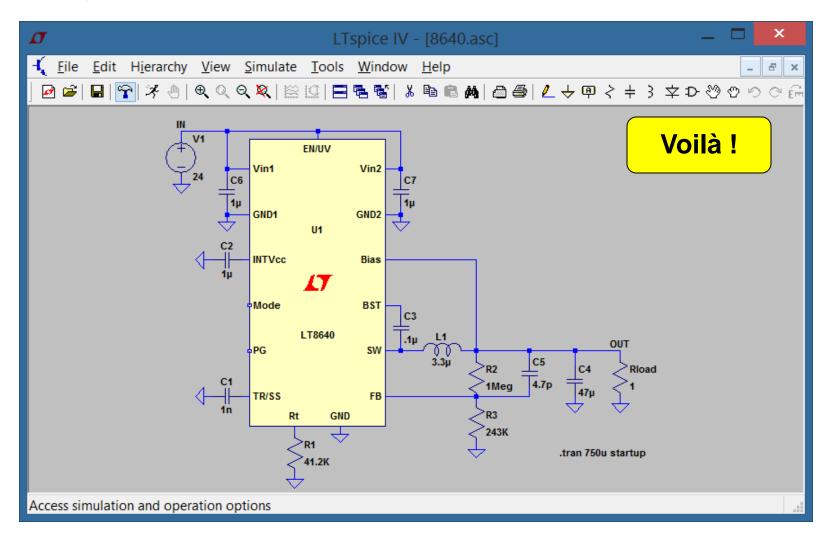

How Do I Get Started Using LTspice?

- <u>Demo Circuits</u>: Use one of the 100's demo circuit available on linear.com
 - Designed and Reviewed by Factory Apps Group
 - Go to <u>http://www.linear.com/software</u> or browse through the part's webpage (right column)
- ✤ <u>JIG Files</u>: Use a pre-drafted test fixture (JIG)
 - Provides a good starting point, but is not production-ready
 - Used to prove out part models, and are not complete designs.
 - Components are typically "ideal" components and will need to be modified based on your operating conditions
- Blank: Use the schematic editor to create your own design
 LTspice contains models for most LTC power devices and many more

Pre-drafted Test Fixture


- These simulations / designs are not production-ready
- Used to prove out part models, and are not complete designs.
- Components are typically "ideal" components and will need to be modified based on your operating conditions

- It remains the customer's responsibility to verify proper and reliable operation in the actual application
- Printed circuit board layout may significantly affect circuit performance and reliability



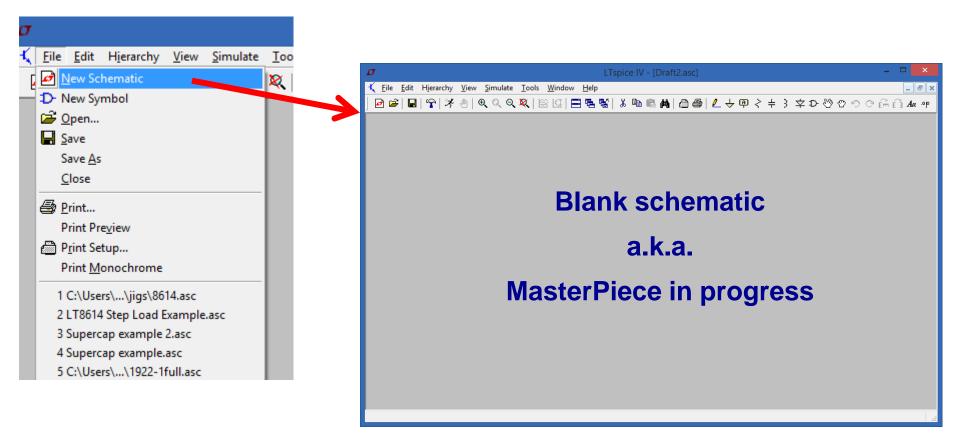
Opening a Test Fixture

DFV

Opening a Test Fixture

How Do I Get Started Using LTspice?

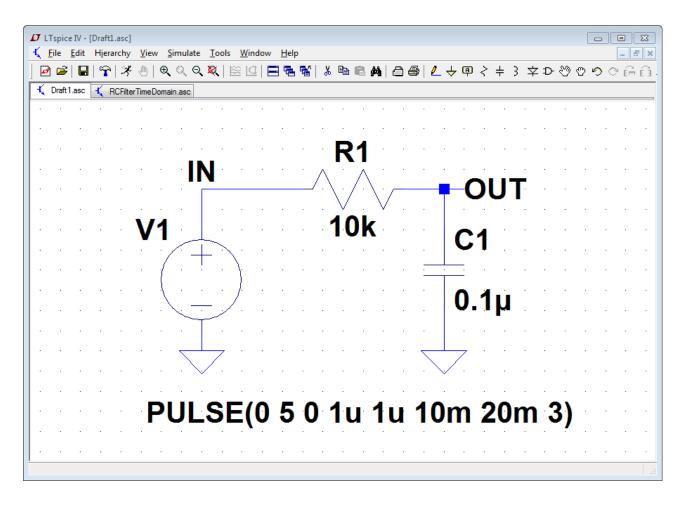
- <u>Demo Circuits</u>: Use one of the 100's demo circuit available on linear.com
 - Designed and Reviewed by Factory Apps Group
 - Go to <u>http://www.linear.com/software</u> or browse through the part's webpage (right column)
- ✤ <u>JIG Files</u>: Use a pre-drafted test fixture (JIG)
 - Provides a good starting point, but is not production-ready
 - Used to prove out part models, and are not complete designs.
 - Components are typically "ideal" components and will need to be modified based on your operating conditions


<u>Blank</u>: Use the schematic editor to create your own design

LTspice contains models for most LTC power devices and many more

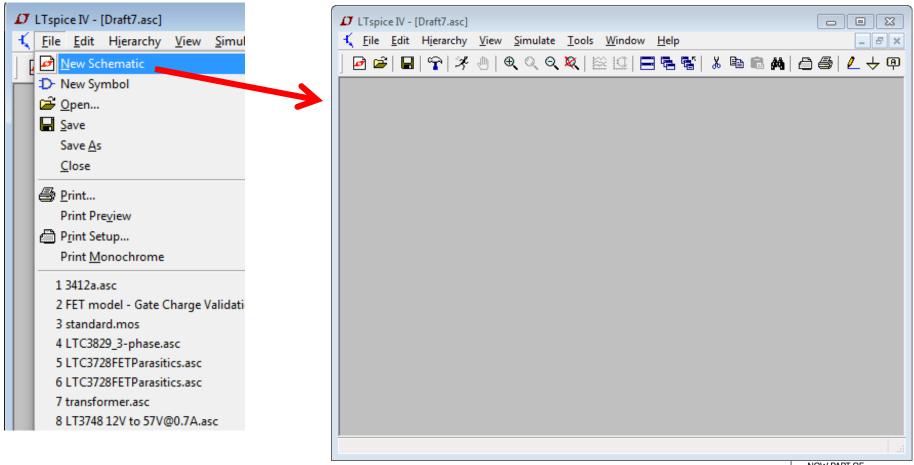
Start With a New Schematic

To open up a blank schematic screen select "File" Menu and "New Schematic"



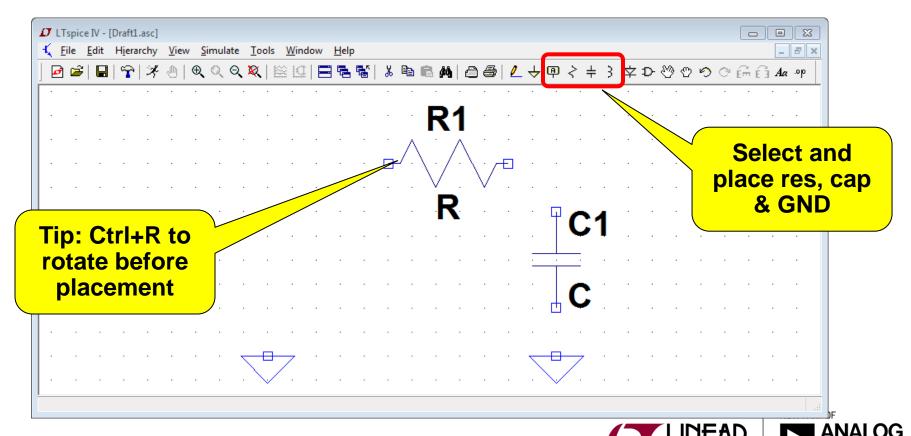
Using the Schematic Editor in LTspice

How to Wire up a Simple RC Circuit

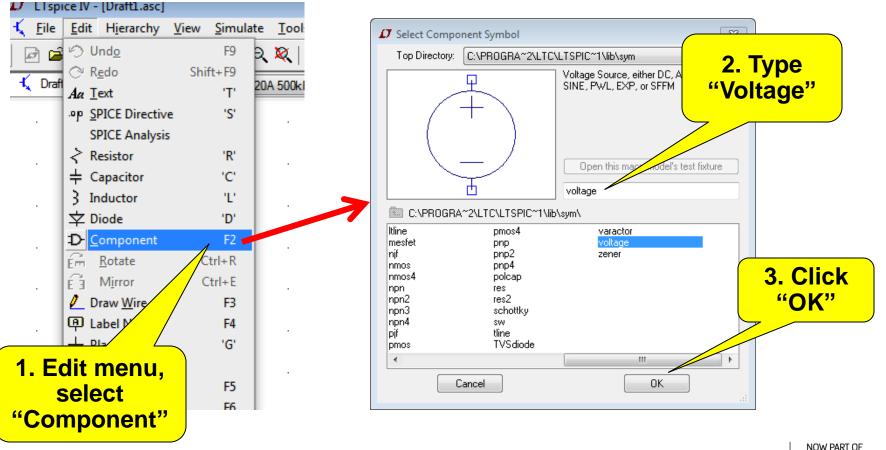

The completed exercise:

How to Wire up a Simple RC Circuit (cont.) Step 1: Open up a blank schematic screen

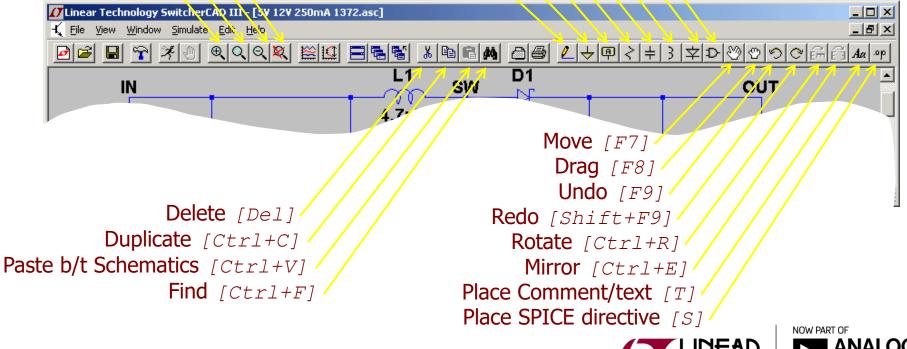
✤ Select "File" Menu and "New Schematic"



How to Wire up a Simple RC Circuit (cont.)

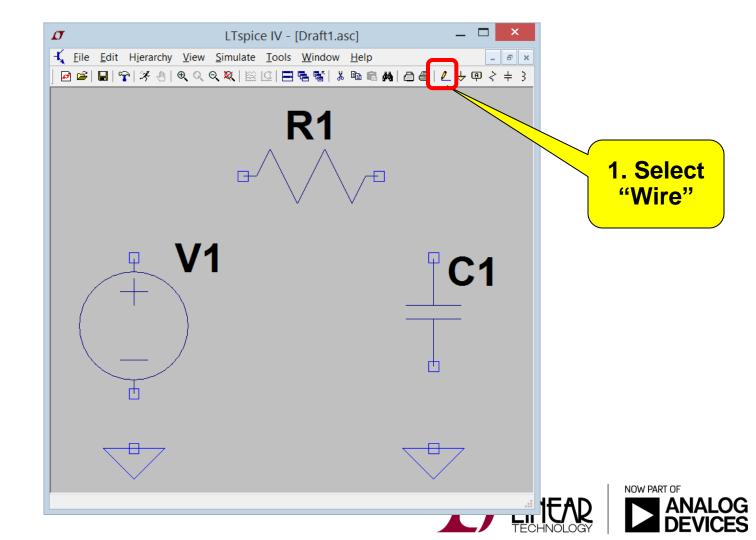

- Step 2: Add the passives and grounds
 - Using the toolbar, select Resistor, Capacitor and Ground. Place these symbols on the schematic as shown below. Use Ctrl+R to rotate before placement.

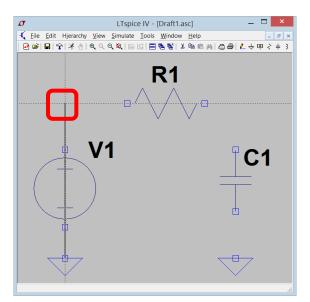
How to Wire up a Simple RC Circuit (cont.)


Step 3: Add the voltage source

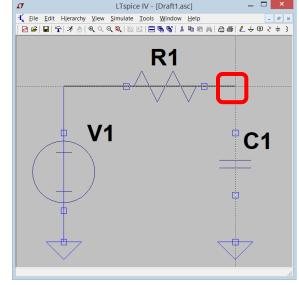
 Select "Edit" Menu and "Component". From the component window, start typing "voltage" in the dialog box, and click "OK"

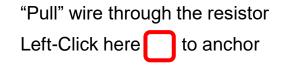
Toolbar and Keyboard Shortcuts

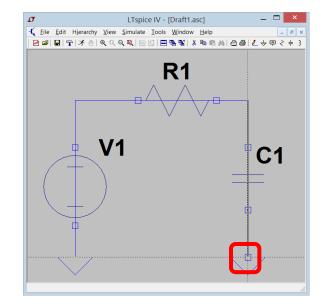

Zoom In Pan Zoom Out Autoscale Place Circuit Element [F2] Place Diode [D] Place Inductor [L] Place Capacitor [C] Place Resistor [R] Label Node [F4] Place Ground [G] Draw Wire [F3]


How to Wire up a Simple RC Circuit (cont.)

Step 4: Wire up the circuit


Using the toolbar, select Wire




How to Wire up a Simple RC Circuit (cont.)Step 4: Wire up the circuit (cont.)

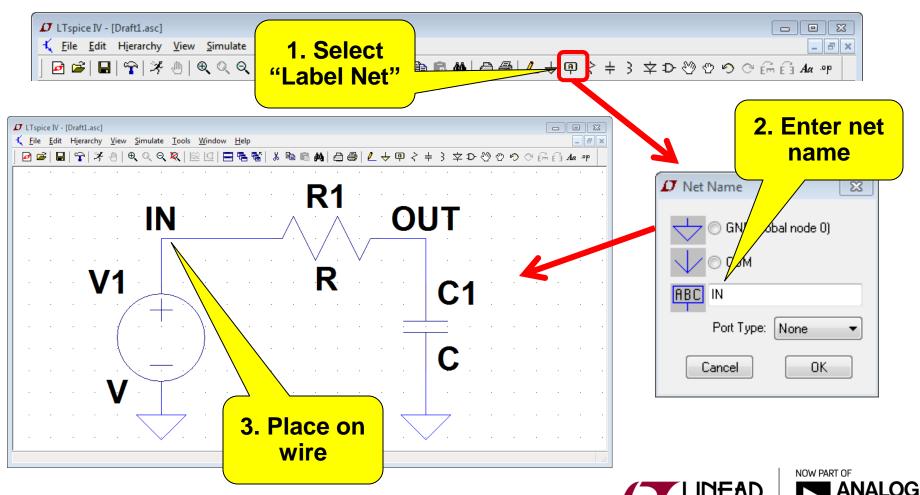
Left-Click ground "Pull" wire up through the source Left-Click here to anchor

"Pull" wire down through the capacitor

Left-Click here finish

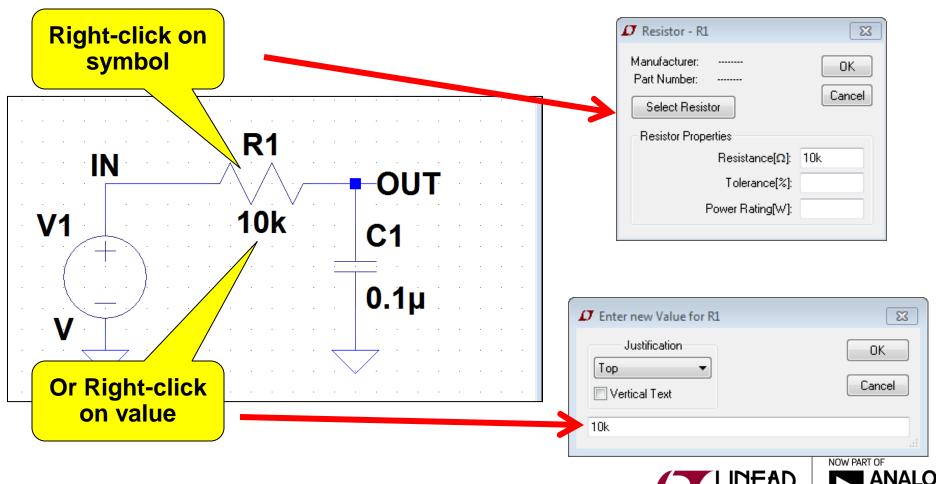
to anchor &

Hint: Press the ESC key at any time to clean up the schematic



How to Wire up a Simple RC Circuit (cont.)

Step 5: Add net labels


Using the toolbar, select Label Net. Label the input/output nodes as shown below

How to Wire up a Simple RC Circuit (cont.)

Step 6a: Component values

Right-Click on each component symbol to change its value as shown below

Using Labels to Specify Units for Component Attributes

- ✤ K = k = kilo = 10³
- MEG = meg = 10^6
- ✤ G = g = giga = 10⁹
- ✤ T = t = tera = 10¹²

- ✤ M = m = milli = 10-3
- ✤ U = u = micro = 10-6
- ♦ N = n = nano = 10-9
- ✤ P = p = pico = 10-12
- ✤ F = f = femto = 10-15

<u>Hints</u>

• Use *MEG* (or meg) to specify 10⁶, not *M*

Enter 1 for 1 Farad, not 1F

Editing Components

Right-Click on the component to edit attributes

Manufacturer: OK Pat Number: OK Select Resistor Cancel Select Resistor Cancel Select Resistor Select Inductor Resistor Properties Select Inductor Resistance[\Omega]: 16.9K Tolerance[%]: 1 Power Rating[W]: 0.1 Series Resistance[\Omega]: 3.2	🛛 Resistor - R1	1 Inductor - L1	D Capacitor - C2
Parallel Besistance[Q]: 47206	Part Number: OK Select Resistor Cancel Resistor Properties Resistance[Ω]: Tolerance[%]: 1	Part Number: 744766122 WE-GF Select Inductor Show Phase Dot _ Inductor Properties Inductance[H]: 221 Peak Current[A]: 0.18 Series Resistance[Ω]: 3.2	Part Number: Type: Select Capacitor Capacitor Properties Capacitance[F]: 221 Voltage Rating[V]: RMS Current Rating[A]: Equiv. Series Resistance[Ω]:

 You can also edit the visible attribute and label by pointing at the text with the mouse and then right-clicking

Mouse cursor will turn into a text caret

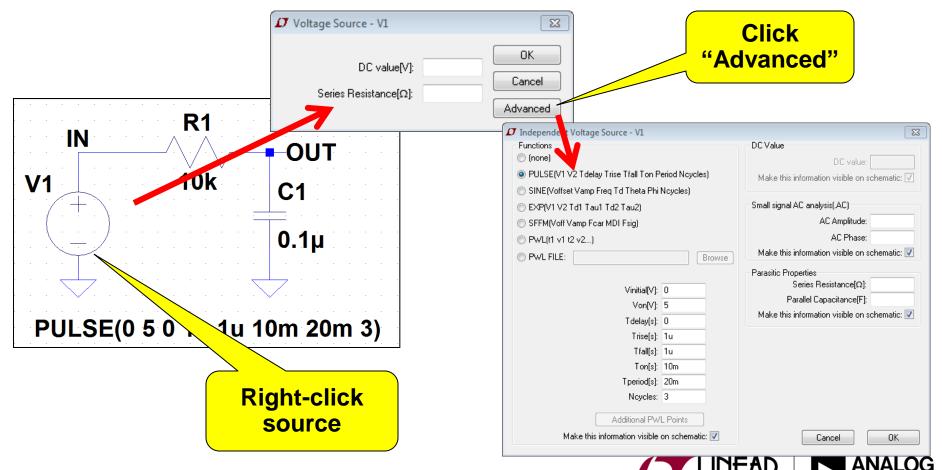
σ	Enter new Value for R1	×	σ	Enter new Value for L1	×	σ	Enter new Value for C	2 ×
Ju Left Vertic	stification v al Text	OK Cancel	[Top □ V [22]	Justification v ertical Text	OK Cancel	Left	Justification v rtical Text	OK Cancel

TECHNOLOGY

DEVI

Component Database

- Resistors, capacitors, inductors, diodes, Bipolar transistors, MOSFET transistors, JFET transistors, Independent voltage and current sources
- You can access a database of known devices


IT	R	esistor - I	R1	×		σ	Indu	ictor	- L1		2	×	σ	Capacito	r - C2	>	
P	Select Resistor Resistor Propert		%]: 1			Part Nu Sele		122 W		Ca nase D 22µ)K ncel)ot		Manufacturer: Part Number: Type: Select Cap Capacito	 pacitor roperties Capar		OK Cancel	
σ		andard Resisto		<	σ	Sel	ect Stock Induct	n · . or	×	<u>2</u> 2	σ		Soloct	Stock Capacit			×
	List All Re	d Edit Database sistors in Database	OK Cancel			Q	uit and Edit Database All Inductors in Databa		OK Cancel	20 227			Quita	nd Edit Database		OK Cance	2
R[Ω] 16.90K	Mfg. Part No.	Power[W] 0.100	Tolerance[%]		L[µH] 22.0	Mfg. Wurth Elektroni	Part No.	lpk[A] 0.180	Rser[Ω] ^	Ω)		uF) Mfg	. type	Part No.	Voltage[V]	Rser[Ω]	~
16.50K		0.100	1.00			Murata	LQH2MCN220K0	0.185	2.100				OSCA Al electrolytic		2.5	0.250	
17.40K 16.20K		0.100 0.100	1.00 1.00			Sumida	CDRH2D18BLDN	0.300	0.320			22.0 AVX	Tantalum	TAJA226M004	4.0	3.500	- 1
17.80K		0.100	1.00			Murata Murata	LQH3NPN220NG LQH3NPN220MG	0.340 0.340	1.100 1.100			22.0 AVX	Tantalum	TAJB226M006	6.3	2.500	
15.80K		0.100	1.00			Murata Taiyo Yuden	NR3010T-220M	0.340	1.030			22.0 TDK	×5R	C3225X5R0J22	6.3	0.001	
18.20K		0.100	1.00			Taiyo Yuden	NR4010T-220M	0.360	0.870			22.0 Nichico	n Al electrolytic	UPR0J220MAH	6.3	2.400	
15.40K		0.100	1.00 1.00 ¥		22.0	Taiyo Yuden	NR3012T-220M	0.375	0.630 🗸			22.0 Sanyo	Al electrolytic	6CE22GA	6.3	2.300	¥
1. 18 /UK					C					÷					NOW	PART OF	

How to Wire up a Simple RC Circuit (cont.)

Step 6b: Source parameters

 Right-Click on the voltage source and enter the parameters shown below under the "Advanced" tab.

How to Wire up a Simple RC Circuit (cont.)

Step 6b: Source parameters

 Right-Click on the voltage source and enter the parameters shown below under the "Advanced" tab.

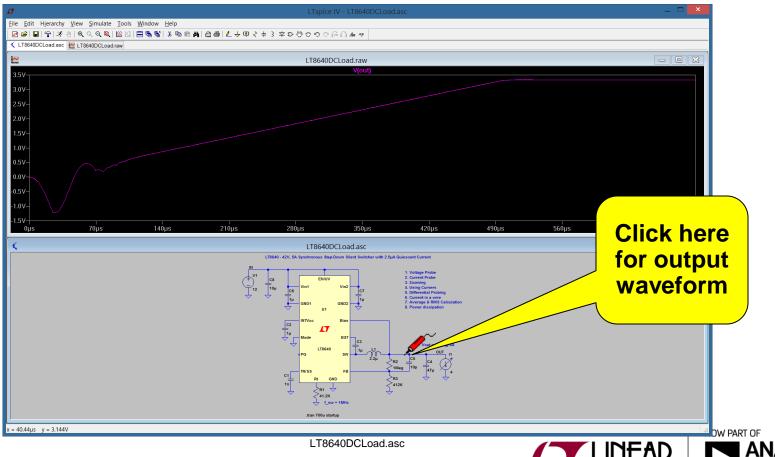
Independent Voltage Source - V1		EX .
Functions © (none)		DC Value
 PULSE(V1 V2 Tdelay Trise Tfall Ton Period Ncycl 	lesì	DC value:
 SINE(Voffset Vamp Freq Td Theta Phi Ncycles) 	,	Make this information visible on schematic: $\overline{arsigma}$
© EXP(V1 V2 Td1 Tau1 Td2 Tau2)		Small signal AC analysis(.AC)
SFFM(Voff Vamp Fcar MDI Fsig)		AC Amplitude:
○ PWL(t1 v1 t2 v2)		AC Phase:
O PWL FILE:	Browse	Make this information visible on schematic: 📝
		Parasitic Properties
Vinitial[V]: 0		Series Resistance[Ω]: Parallel Capacitance[F]:
Von[V]: 5		Make this information visible on schematic: 🔽
Tdelay[s]: 0	_	
Trise[s]: 1u Tfall[s]: 1u	-	
Ton[s]: 10m	-	
Tperiod[s]: 20m	_	
Ncycles: 3		
Additional PWL Points		
Make this information visible on schema	tic: 🔽	Cancel OK
		TECHNOLOG

Running and Probing a Circuit in LTspice

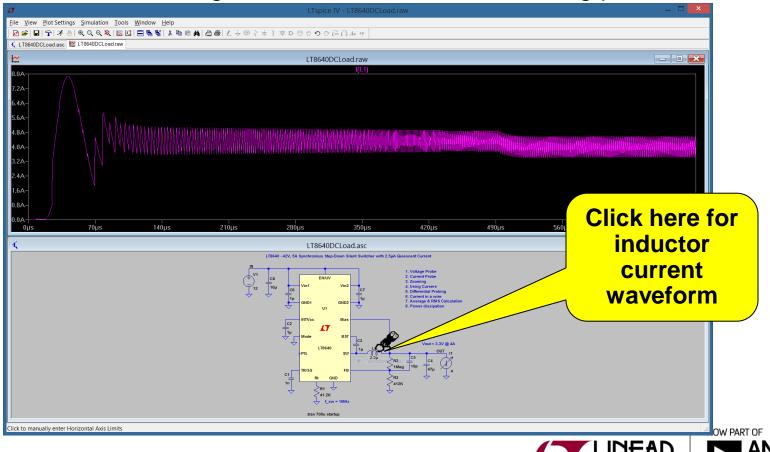
Running a Circuit Simulation

- Access the LT8640 circuit
 - Click File ---> Open, and navigate to the LTspice Lab folder on your desktop. Look for the file titled "LT8640DCLoad.asc"
 - Or click "c" symbol on the right
 - Hotlink Nomenclature:

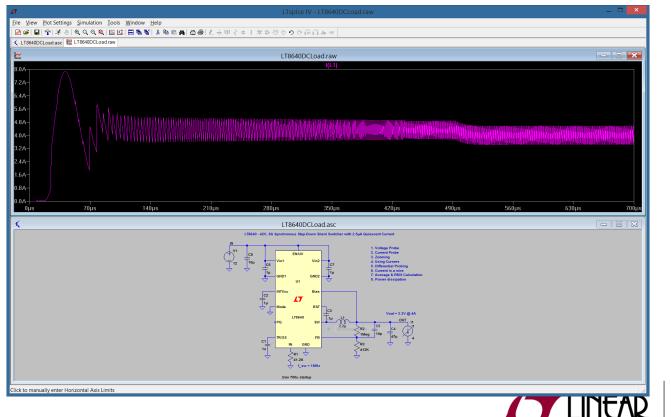
- Class exercise
- S Solution to exercise
 - Circuits to explore at your leisure


31

LT8640DCLoad.asc


Viewing Voltage Waveforms

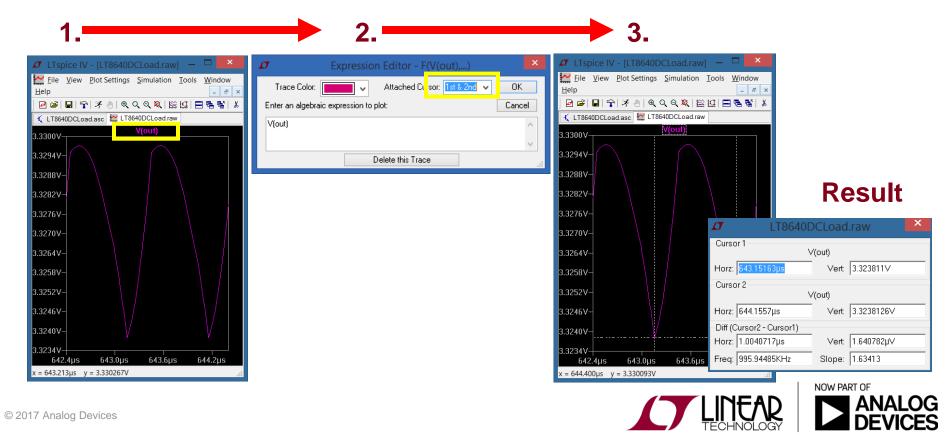
- Plot the voltage on any wire by Left-Clicking it
 - Tip: All Demo Circuits have INs and OUTs clearly labeled to help you quickly select them


Viewing Current Waveforms

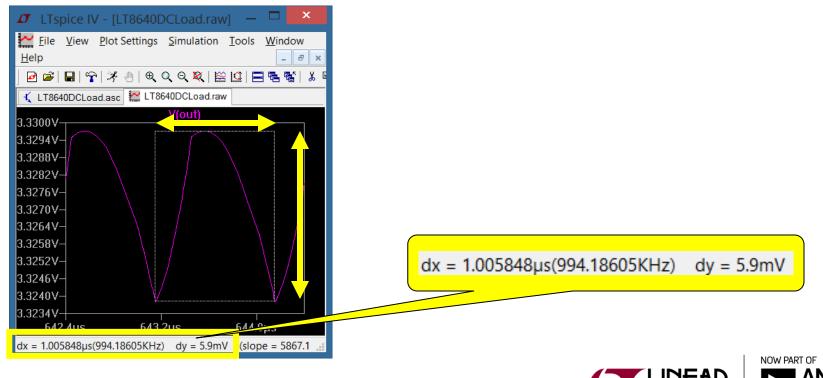
- Plot the current through any component by Left-Clicking on the body of the component
 - Current flowing into a node is defined as being positive

Zooming In and Out on a Waveform

- In the waveform window, use the mouse to zoom in and out. Click and drag a box about the region you wish to see drawn larger
- Using the toolbar, click on "Zoom full extents", to zoom back out

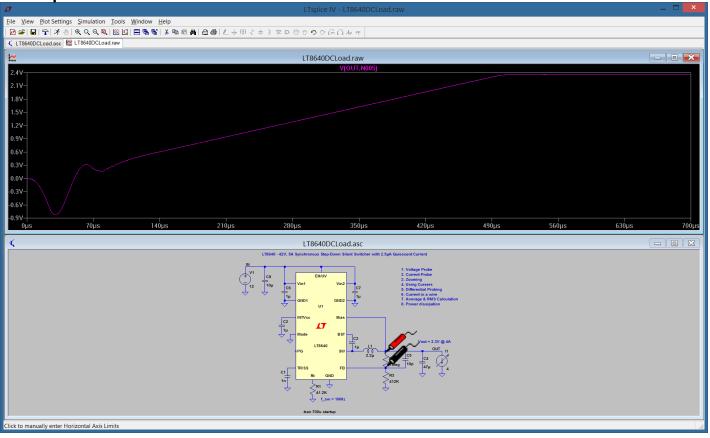


NOW PART OF


Measuring V, I and Time in the Waveform (Measurement Using Cursors)

- 1. Right-Click on the waveform name in the waveform window
- 2. For "Attached Cursor", select "1st & 2nd"
- 3. Position cursors to make desired measurements

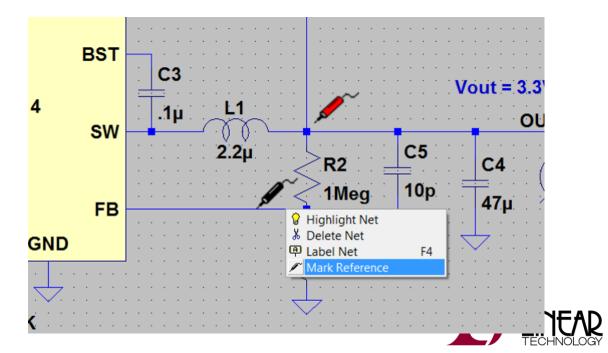
Measuring V, I and Time in the Waveform (Measurement Using Zoom Window)


- 1. Drag a box about the region you wish to measure
 - ✤ Left-Click, drag, and hold
- 2. View the lower left corner of the window for the status bar. The dx and dy measurement data is displayed here.
- 3. Use Undo from the File menu or press "F9"

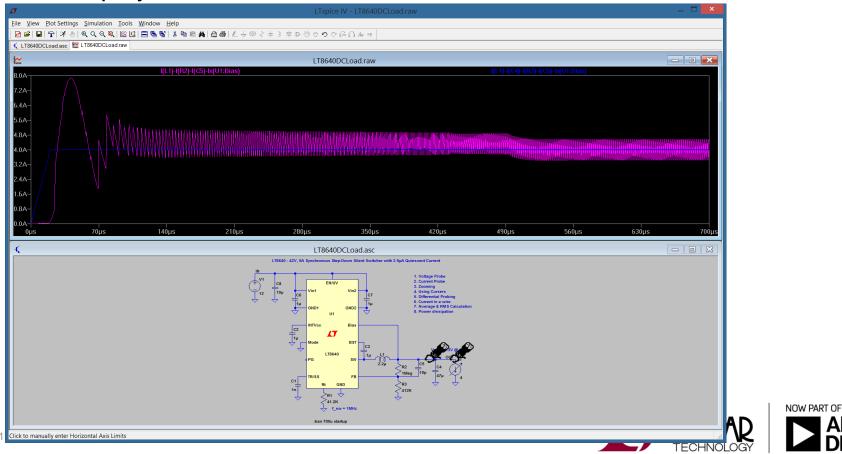
Viewing Differential Voltage Waveforms

Left-Click on one node and drag the mouse to another node

- Red voltage probe at the first node
- ✤ Black probe on the second



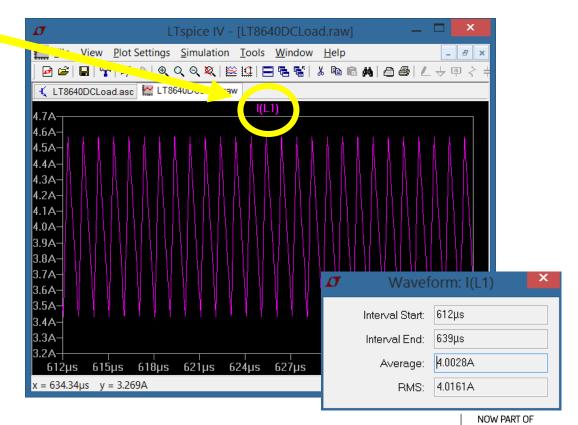
Viewing Differential Voltage Waveforms


- To create a measurement reference node, Right-Click on the desired node and select "Mark Reference"
 - A black voltage probe is anchored to the selected node
- All measurements in the circuit are now referenced to the node with the black probe
- Hit the ESC key to remove the reference mark

NOW PART OF

Viewing Wire Current Waveforms

- Plot the current through any wire by Alt-Left-Clicking on the wire
 - An ammeter will appear to indicate that the wire current will be displayed

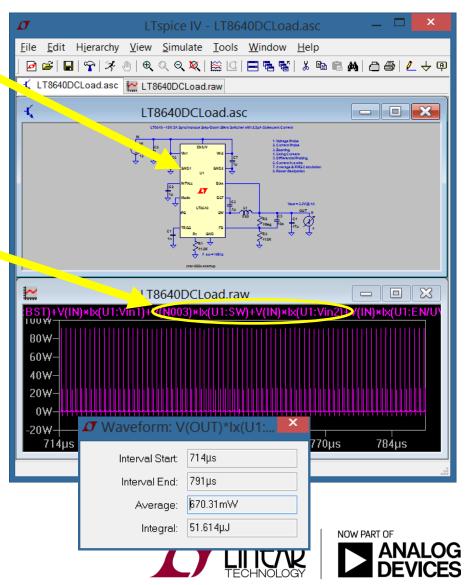


Average & RMS Calculations

- Average & RMS Current, Voltage, or Power Dissipation
 - Calculated only for the visible area of the plot window
- Click on inductor L1 to display the inductor current waveform
 - Ctrl-Left-Click the I(L1) trace label in the waveform view

Example:

Measure average and RMS current for inductor in LT8640 circuit. Zoom in as shown for this waveform.

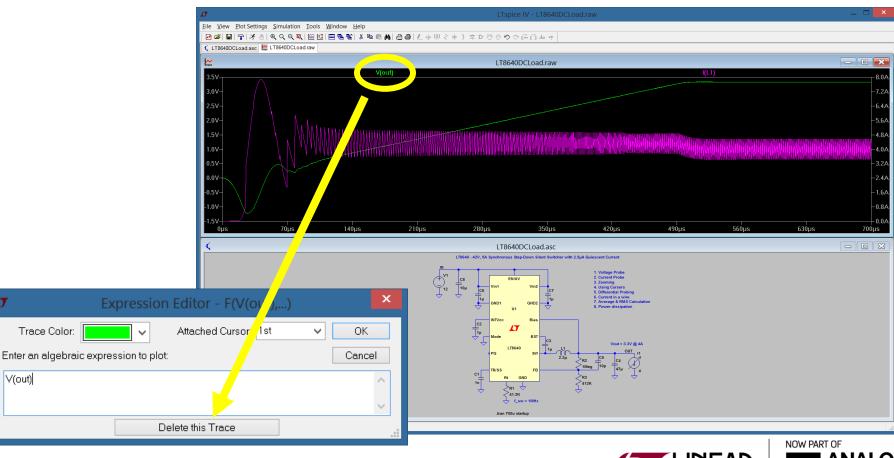


Instantaneous & Average Power Dissipation

- Instantaneous Power Dissipation
 - Alt-Left-Click on the symbol of the LT8640
 - Waveform is displayed in units of Watts
- Average Power Dissipation
 - Click, hold, and drag in the waveform window to display waveform at steady state
 - Ctrl-Left-Click on the Power Dissipation Trace Label in the waveform view
 - Waveform summary window will appear which shows power dissipation in the IC

Example:

Measure the power dissipation in the LT8640 IC

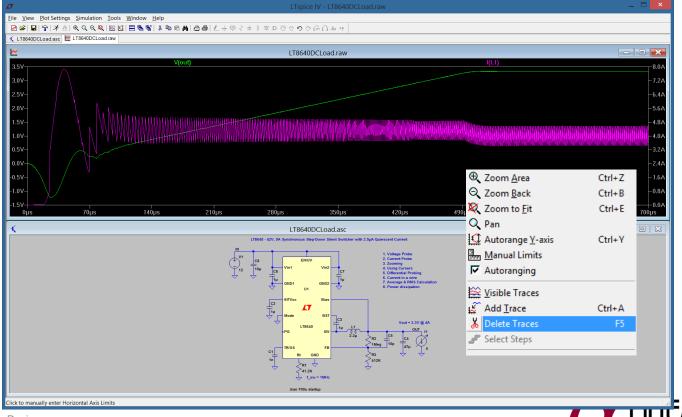


© 2017 Analog Devices

Deleting Waveforms

Method #1: Right-Click on a trace label to be deleted

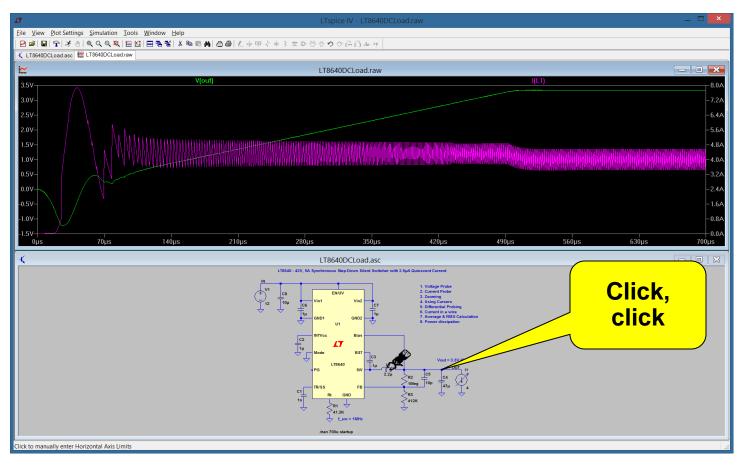
- Select "Delete this Trace"
- Deletes only the selected trace *



V(out)

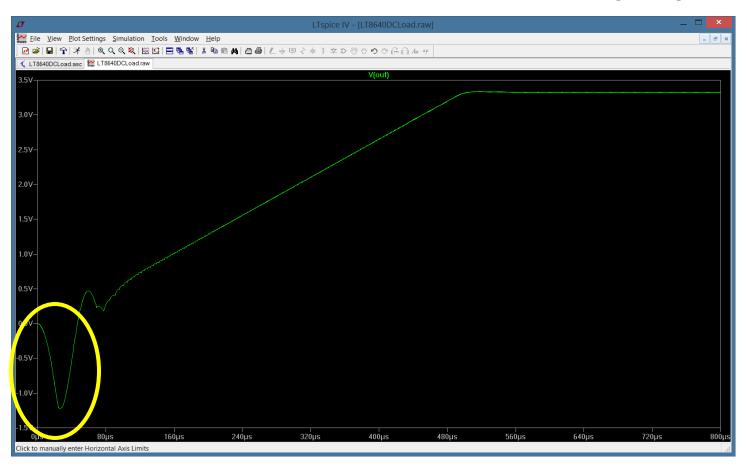
 $\boldsymbol{\sigma}$

Deleting Waveforms

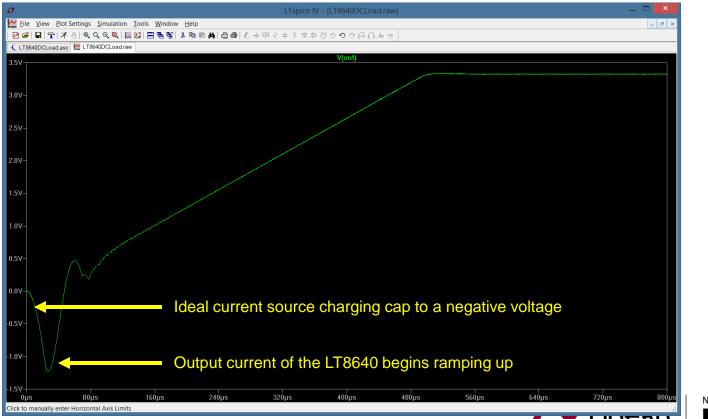

- Method #2a: Right-Click on the plot background and select "Delete Traces"
- Method #2b: If the plot window is active hotkey F5 is equivalent
 - Cursor turns into scissors
 - ✤ Left-Click on one or more trace labels to delete. ESC(ape) to quit

NOW PART OF

Deleting Waveforms

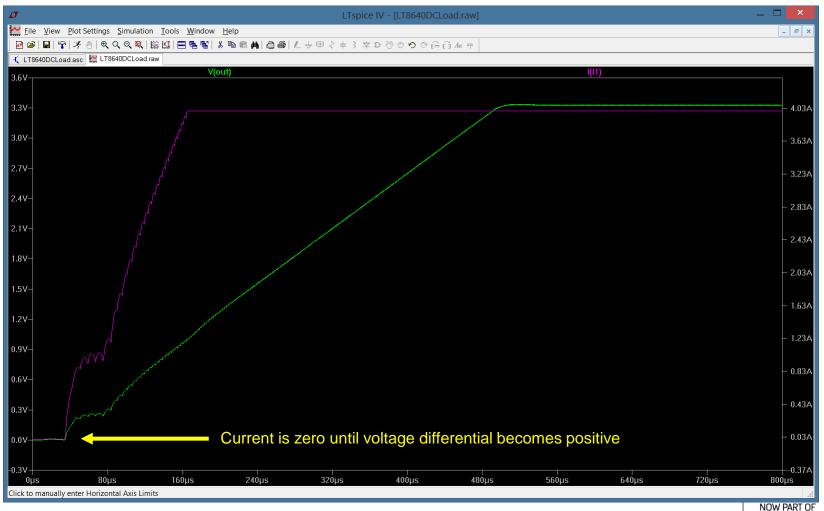

- Method #3: Plot the same waveform twice in succession
 - Deletes all but that waveform

Current Sources


The simulation shows the output momentarily going to -1.2V but this can't happen in the real world – what's going on?

Current Sources (cont.)

- Ideal current sources source current even with zero or negative differential across them
 - This results in the output capacitor initially charging to a negative value

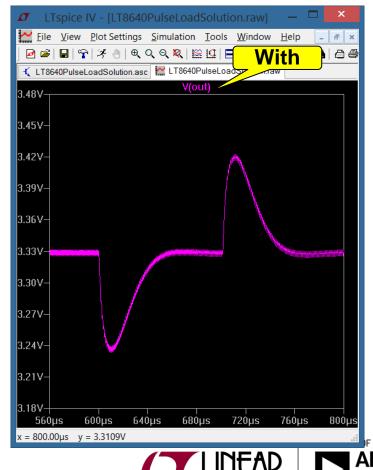

Current Sources (cont.)

- Active load
 - Modifies the ideal current source's behavior such that current is zero for zero or negative voltage differentials
 - Roughly emulates the behavior of an integrated circuit load

Functions (none) PULSE(II 12 Tdelay Trise Tfall Ton Period Ncycles) SINE(loffset lamp Freq Td Theta Phi Ncycles) EXP(I1 12 Td1 Tau1 Td2 Tau2) SFFM(loff lamp Fcar MDI Fsig) PWL filtE: TABLE(v1 i1 v2 i2) PWL FILE: TABLE(v1 i1 v2 i2) Additional PWL Points Make this information visible on schematic: Cancel OK	ت Independen 🗸	nt Current	Source - I1
	 (none) PULSE(I1 I2 Tdelay Trise Tfall Ton Period Ncycles) SINE(loffset lamp Freq Td Theta Phi Ncycles) EXP(I1 I2 Td1 Tau1 Td2 Tau2) SFFM(loff lamp Fcar MDI Fsig) PWL(t1 i1 t2 i2) PWL FILE: TABLE(v1 i1 v2 i2) 	Browse	DC value: 4 Make this information visible on schematic: ✔ Small signal AC analysis(.AC) AC Amplitude: AC Phase: Make this information visible on schematic: ✔ Parasitic Properties This is an active load: ✔
		atic: 🗸	Cancel OK

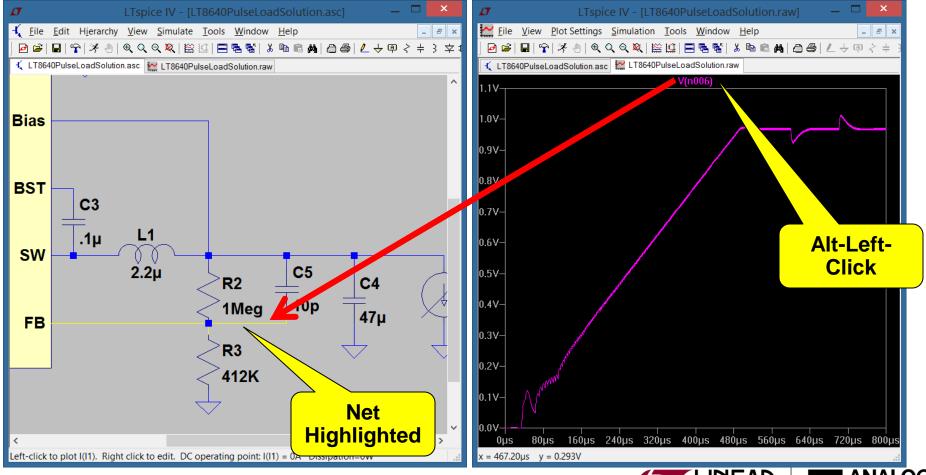
Current Sources (cont.)

Active load (cont.)


Net Labeling

Advantages of Labeling

- Replaces arcane SPICE machine node names with easy to understand and remember human names
- Allows LTspice circuit nodes to match those on your production schematic, i.e. "TP15"


🛛 LTspice IV - [LT8640PulseLoadSolution.raw] 🛛 🗖 📫
Eile View Plot Settings Simulation Tools Window Help
<u>I ፼ ☞ I 및 약 ೫ @ ♥ Q Q & K ≌ ᡌ ⊟ ¶</u> Without
1 LT8640PulseLoadSolution.asc 🔛 LT8640PulseLoadSolution
3.48VV(n002)
3.45V-
3.42V-
3.39V-
3.36V-
3.30V-
3.27V-
3.24V-
3.21V-
3.18V-
3.15V-
3.12V-
3.09V
x = 800.00µs y = 3.4220V

Labeling - Trick

Highlight net from waveform viewer

 Alt-Left-Click on the label in the waveform viewer (i.e. V(n006)) and it will now highlight that particular net on the schematic

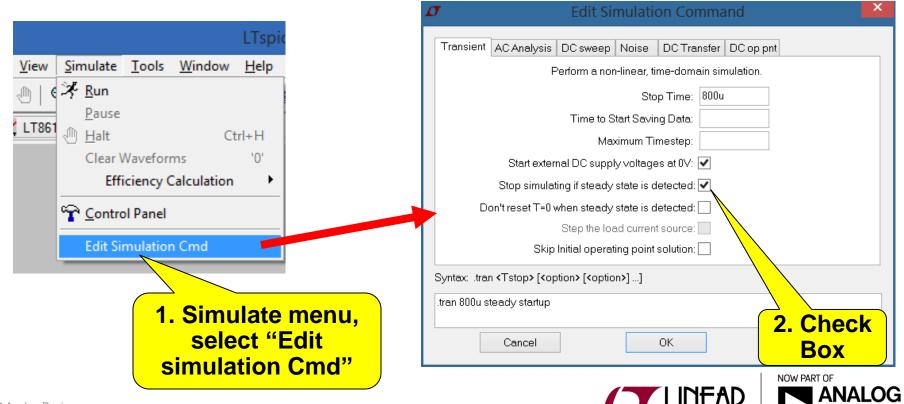
Generating a BOM and Efficiency Report

BOM

Under View select Bill of Material

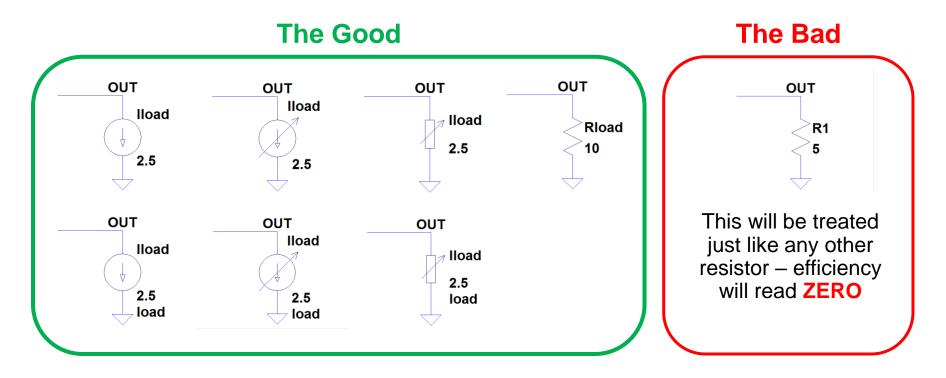
- Displayed on Diagram
- Paste to Clipboard

] 🖻 📽 🖬 😤 🎘	archy <u>V</u> iew <u>S</u> imulate	2 ig 🚍 🖷 📽 🐰 i	-	× 	 ♥ Zoom Area ♥ Zoom Area Ctrl+Z ♥ Zoom Back Ctrl+B ♥ Zoom to Fit Pan O - 42V, 5A Synchrono Show Grid Ctrl+G ♥ Mark Unconn. Pins U' Mark Text Anchors 'A'
C1 C2 T C3 C4 C5 C6 K C7 K C8 R1 R1 R2 R3	Ifg. DK 	ca C3216X7RIE105M ca ca C1210C105K5RAC C1210C105K5RAC ca ca res res	scription pacitor, 1nF capacitor, 1µF, 25V pacitor, 100nF pacitor, 47µF, 10V pacitor, 10pF capacitor, 1µF, 50V	× *	Bill of Materials Efficiency Report SPICE Netlist SPICE Error Log Ctrl+L SPICE Error Log Ctrl+L SPICE Error Log Ctrl+L SPICE Error Log Ctrl+L C6 1µ GND1 GND1 NTVcc C2 NTVcc


View Simulate Tools Window Help

Steps to Computing Efficiency

Note: Efficiency will only be calculated in the steady state condition


1. **Right-Click** the .tran statement on the schematic to bring up the Edit Simulation Command dialog box

2. Check the box "Stop simulating if steady state is detected" ...

Steps to Computing Efficiency

3. Load must be a current source labeled lload* or resistor labeled Rload**

*If there is more than one current source **If there is more than one resistor

4. Run the simulation ...

Steps to Computing Efficiency

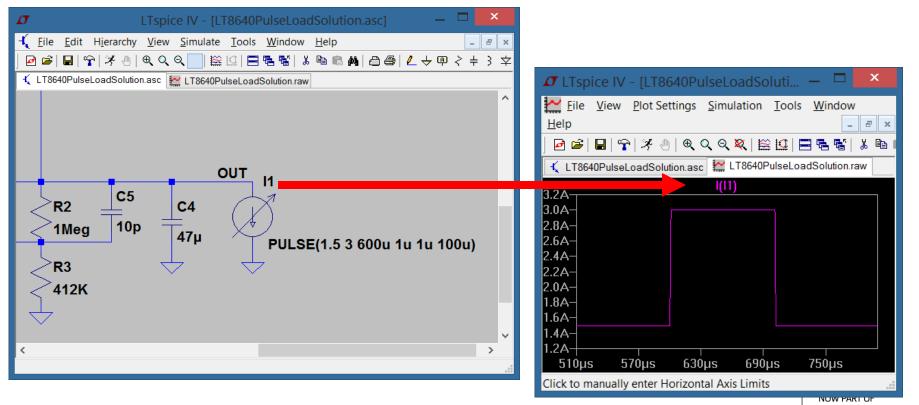
5. Upon completion select the View dropdown menu, Efficiency Report, then Show on Schematic

6. Efficiency report will be pasted under the schematic

<u>View</u> <u>S</u> imulate <u>T</u> ools	Window	<u>H</u> elp	ø		LTspice	IV - [LT8640DCLo	ad.asc] –	. 🗖 🗡
• Zoom <u>A</u> rea	Ctrl+Z		🕂 <u>F</u> ile	<u>E</u> dit	H <u>i</u> erarchy <u>V</u> iew <u>S</u>	<u>S</u> imulate <u>T</u> ools <u>W</u> in	ndow <u>H</u> elp	_ 8 ×
Q Zoom <u>B</u> ack	Ctrl+B	<u>× • • • • • • • • • • • • • • • • • • •</u>	🖻 🚔	🖬 😭	? ≯@ € QQ	. 🎗 🔛 💷 🖷 🖪	5 X 🖻 🖻 🖊 6) 😂 💪 🕂 Ģ
X Zoom to <u>F</u> it	Space		🔨 LT86	640DCLoa	ad.asc 🔛 LT8640DC	Load.asc		
Q Pan	opace							^
Show Grid	Ctrl+G	-		Efficie	ncy: 92.2%	Efficiency Report		
Mark Unconn. Pins	'U'			In	put: 14.4W @ 12V			
Mark Text Anchors	'A'				tput: 13.3W @ 3.33			
Bill of <u>M</u> aterials	•	-		Ref. C1	Irms 0mA	lpeak 0mA	Dissipation 0mW	
Efficiency Repor		Show on Schematic		C2	38mA	1228mA	0mW	
SPICE Netlist		Paste to clipboard		C3	38mA	1223mA	0mW	
SPICE Error Log	Ctrl+L			C4 C5	326mA 0mA	575mA 0mA	1mW 0mW	
		-		C6	0mA	0mA	0mW	
Visible Traces				C7	0mA	0mA	0mW	
🖳 Autorange <u>Y</u> -axis				C8	0mA	0mA	0mW	
Marching Waves	s 🕨			L1 R1	4009mA 0mA	4566mA 0mA	450mW 24μW	
Set Probe Reference				R2	0mA	0mA	6µW	
		-		R3	0mA	0mA	2μW	
Toolbar				U1	4009mA	9217mA	668mW	
Status Bar								~
Window Tabs			<					>
		_						.::

SMPS Efficiency Tips

- LTspice will not always be able to determine steady state, but this is rare!
 - Workaround: Alt-Left-Click & Calculator
- Probe the various nodes and verify the circuit is stabilized
 - If not edit the .tran statement and increase the Stop Time parameter. Re-run simulation
- For multiple output and/or multiple input supplies, efficiency must be determined partially by hand from the efficiency report
 - Alternatively use behavioral models
- Right-Clicking any component will report power dissipation if steady state has been detected or Mark Start/End has been used
- If circuit has stabilized for a long time and LTspice still hasn't detected the steady-state
 - Use Mark Start/End (Simulate -> Efficiency Calculation)
 - Only steady-state data is displayed before Mark End

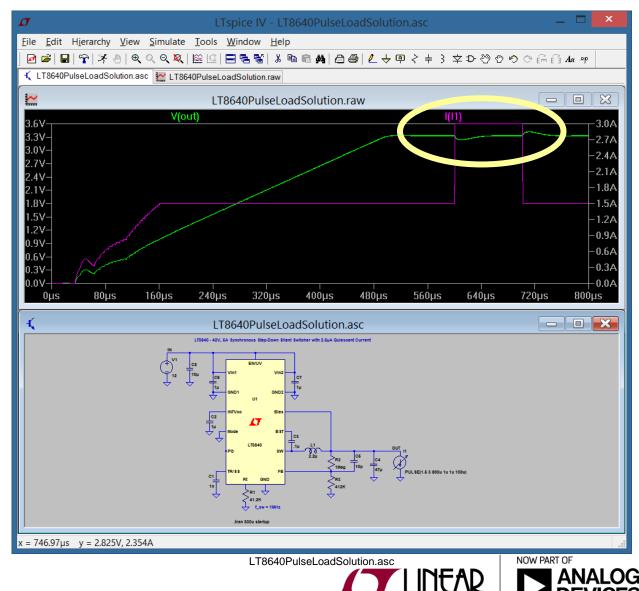

2

Simulating a Transient Response

Current Load and Pulse Function

- You can simulate a load with a Resistor or Current load
- In particular the Pulse function in a current load is helpful in transient response analysis
 - Steps a current load from one value to another value

Edit the Current Load to a Pulse Function


- Edit the .tran directive to disable steady state detection
- Right-Click on the current load
 - Select "Pulse"
 - Modify the attributes (see next slide). Click "OK"

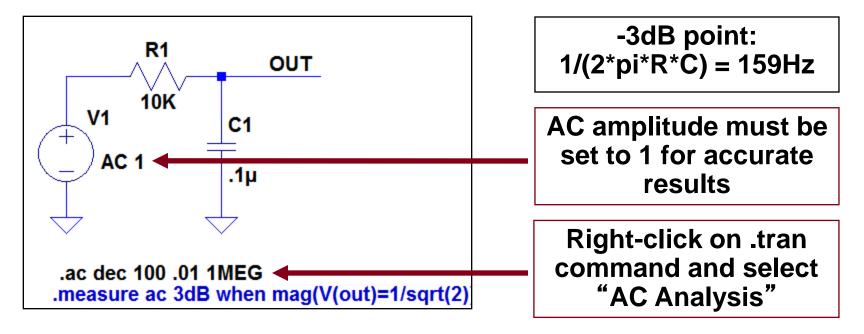
DC value:
D'O YOMO,
Make this information visible on schematic: 🗹
Small signal AC analysis(.AC)
AC Amplitude:
AC Phase:
Make this information visible on schematic: 🗹
Parasitic Properties
(*) This is an active load: ✔
Make this information visible on schematic:
Cancel OK

Run the Simulation for Transient Response

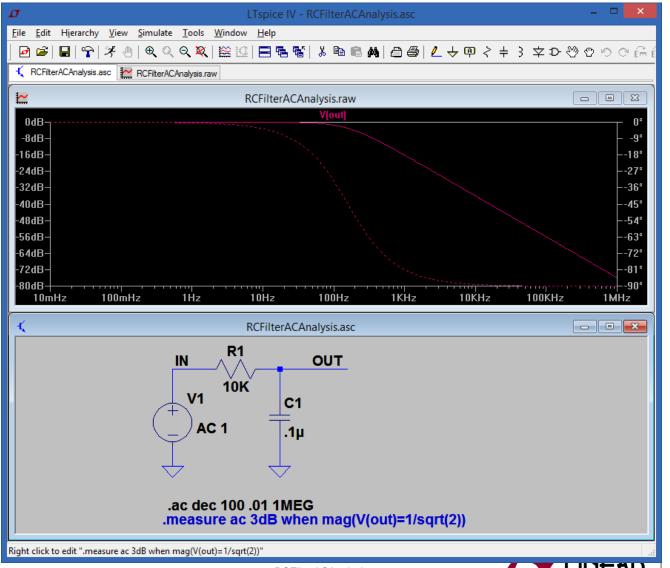
- Run the simulation
- Click on the OUT node to display Vout
- Click on the output current load to display lout
- Notice the presence of the pulse load

S

AC Analysis

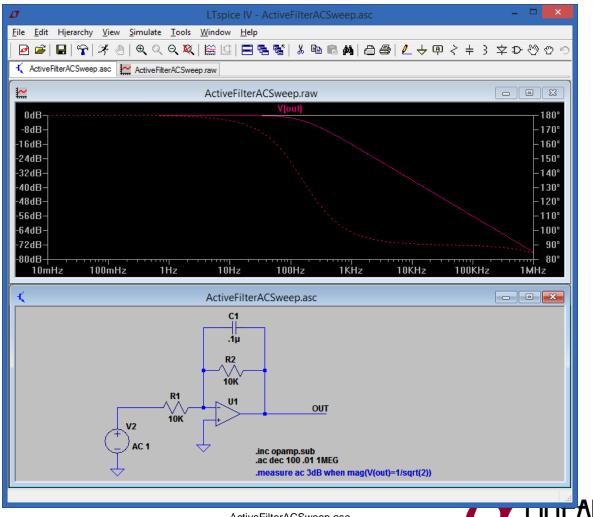

AC Analysis Overview

- Performs small signal AC analysis linearized about the DC operating point
- Useful for analysis of filters, networks, stability analysis, and noise considerations


Simulating AC Analysis – RC Filter

- Single pole filter using RC network
- Syntax: .ac <oct, dec, lin> <Nsteps> <StartFreq> <EndFreq>
- Example: RC network and .ac dec 100 .01 1MEG

Simulating AC Analysis – RC Result



2

RCFilterACAnalysis.asc

Simulating AC Analysis – Active Filter

Single pole active filter using an opamp

2

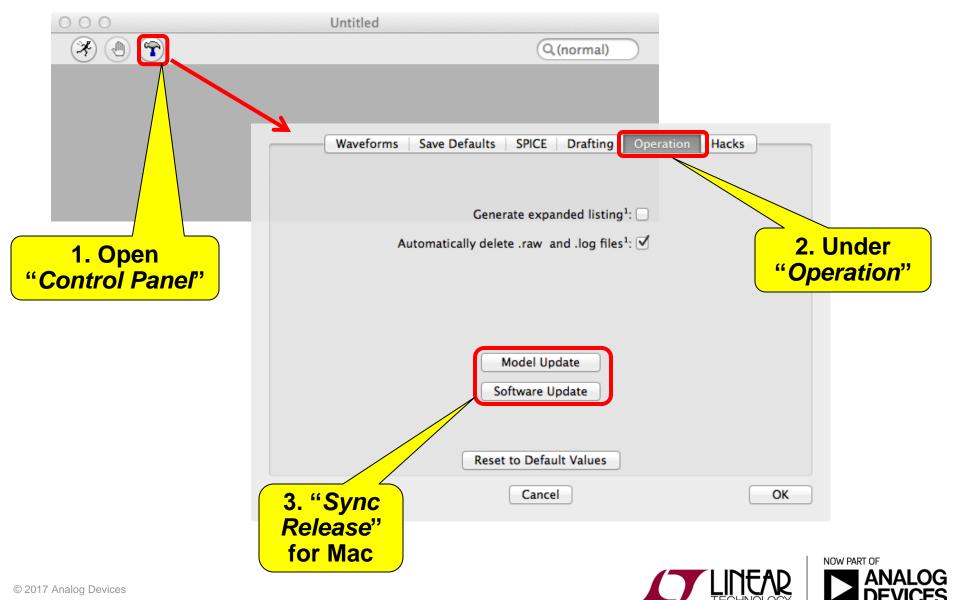
NOW PART OF

ActiveFilterACSweep.asc

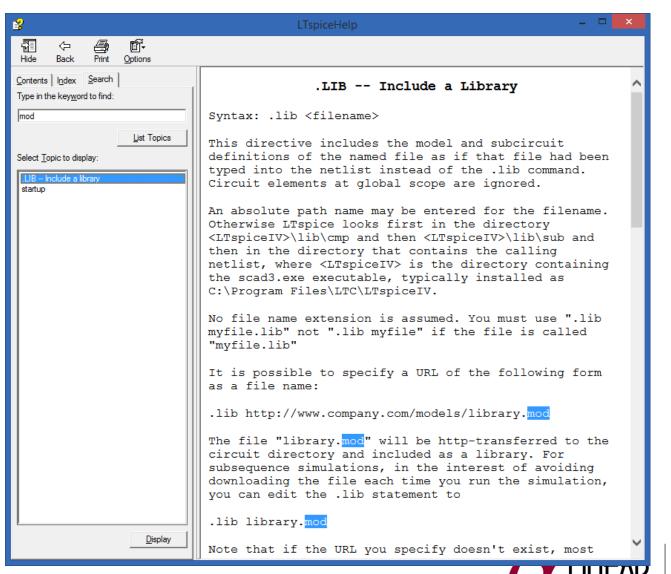
More Information and Support

Reminder to Periodically Sync Release

- It is important to sync your release of LTspice once a month to get the latest updates
 - Software updates and bug fixes
 - Models
 - Sample circuits and examples


Reminder to Periodically Sync Release (Windows)

- Vista, Win7, and Win8 users (any UAC-enabled OS)
 - You must "Run as administrator" scad.exe or its shortcut even if you are logged in as an administrator

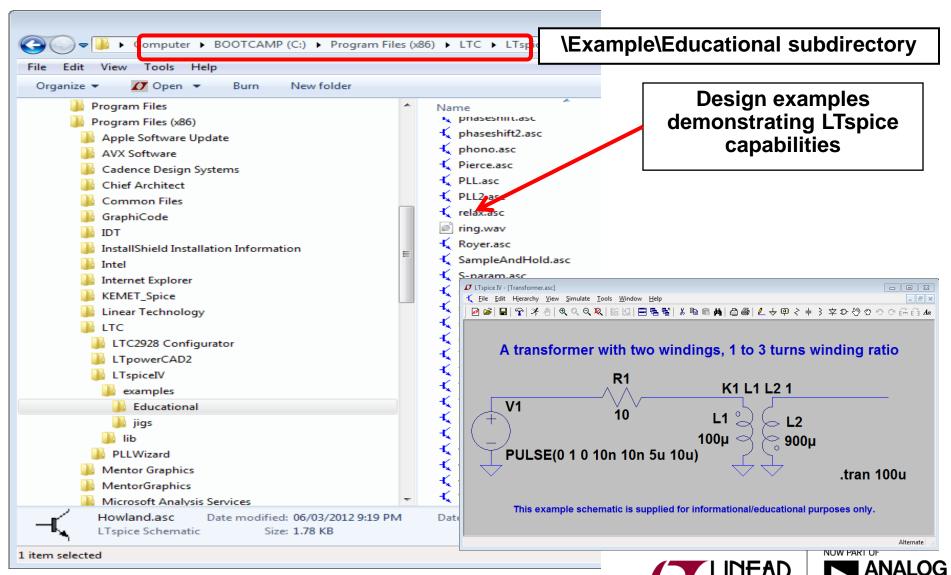

σ				LTspice IV -		
K <u>F</u> ile <u>E</u> dit H <u>i</u> erarchy <u>V</u> iew <u>S</u> imulate	<u>T</u> ools <u>W</u> indow <u>H</u> elp	_				
🖻 🚔 🖬 😭 🛪 🕘 🌒 🔍 🍳	🔞 Copy bitmap to Clipboard	b 🖪 🖊	🗇 🎒	ℓ ᢣ @ < ≑ 3 文 Ð ♡ ♡ ♡ ♡ ቩ fi Aa ∘°		
K 8029.asc K Draft1.asc	Write to a .wmf file	<u> </u>				
	Control Panel Color Preferences			LTspice IV		
	Sync Release					
	Export Netlist			This utility will check the Linear Technology web site for new models and a new version of LTspice IV.		
				You may want to establish your internet connection in your usual manner before selecting "OK" to continue		
				OK Cancel		

Reminder to Periodically Sync Release (Mac)

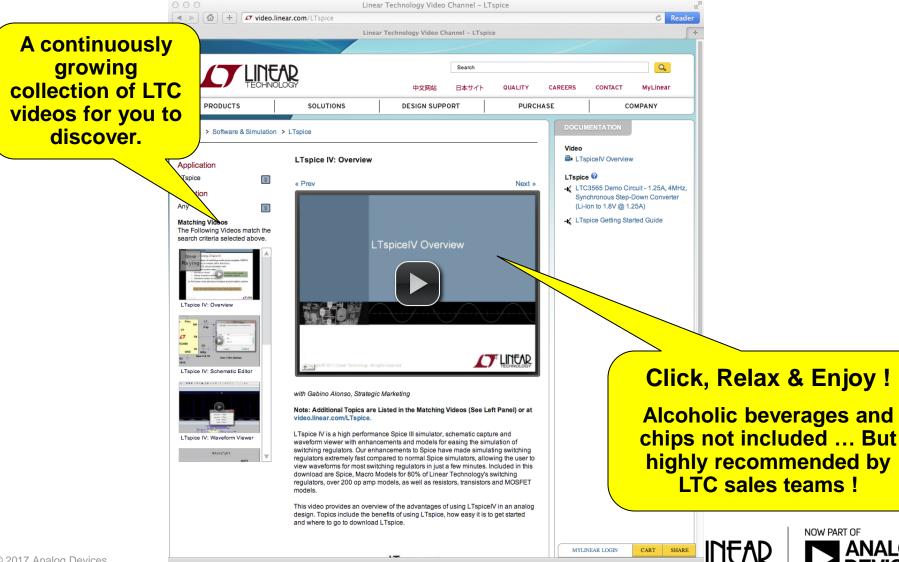
Built-in Help System

Appendices

Other Resources


- <u>LTspice forum</u>: Use simulation circuits posted on LTspice Yahoo! User's Group
 - Go to <u>http://groups.yahoo.com/neo/groups/Ltspice/info</u>
 Also contains many very helpful discussion threads
- <u>Educational Files</u>: Check out LTspice capabilities using the education examples
 - Available on C:\ ... \LTspiceIV\examples\Educational
- <u>LTspice videos</u>: Video tutorials by Linear's technical staff
 <u>http://video.linear.com/all--ltspice</u>
- ✤ LTwiki: Undocumented features ...
 - http://ltwiki.org/
- Wurth LTspice Book

Other Resources – Yahoo LTspice Forum



Other Resources – Educational Files

© 2017 Analog Devices

Other Resources – LTspice Videos

Other Resources - LTwiki

LTwiki

000	LTwiki – Wiki for LTspice
	twiki.org
1	LTwiki – Wiki for LTspice +
17	page discussion view source history
LI	Main Page
wiki	Welcome to LT Wiki!
	LTwiki is for LTspice &, SPICE, and Electronics help. You'll find unique material from beginner's tips to undocumented LTspice features! This site has no affiliation with the Linear Technology Corporation &.
navigation	Contributors Welcome! Just create an account & first. This prevents anonymous spammers from ruining the wiki.
Main page Community portal Current events	Most frequently asked questions for beginners Adding a permanent component to LTspice
Recent changes	Adventures with Analog
 Random page Help 	B sources (complete reference) B sources (common examples)
Search	Components Library Control Panel
Go Search	Convergence problems?
toolbox	LTspice Annotated and Expanded Help*
 What links here Related changes 	LTspice Hot Keys LTspice Tools and Applications
 Helated changes Special pages 	Simulation Command
Printable version	SPICE and LTspice Courseware and Tutorials
Permanent link	SPICE Model Links
	SPICE Application Notes and White Papers Tutorials relevant to Design and Modelling
	Transformers
	Undocumented LTspice
	LTspice Library API
	*based on original LTspice help (chm) file ©Linear Technology Corporation used by permission

This page was last modified on 9 December 2012, at 03:03. This page has been accessed 103,951 times. Privacy policy About LTwiki - Wiki for LTspice Disclaimers

[Powered By MediaWiki

Other Resources – LTspice Book

Appendix - Steps to Calculate Power Supply Efficiency

- Efficiency will only be calculated in the steady state condition
- Right-Click the .tran statement on the schematic to bring up the Edit Simulation Command dialog box
- Check the box "Stop simulating if steady state is detected"
- Load must be a current source or resistor labeled Rload
- Run the simulation
- Upon completion select the View dropdown menu, then Efficiency Report, then Show on Schematic
- Efficiency report will be pasted under the schematic

Appendix – Summary of Special Mouse and Keyboard Commands

- Schematic-Based Special Commands
 - Alt-Left-Click on a wire
 - This will display the waveform for the current flowing in the wire
 - Alt-Left-Click on a component
 - This will display the instantaneous power dissipation in the component
 - Ctrl-Right-Click on a component
 - Allows you to edit embedded component attributes
- Waveform-Based Special Commands
 - Ctrl-Left-Click on a waveform title
 - Displays the average and RMS values for the waveform
 - Left-Click on node and drag to another node
 - Displays differential voltage
 - Alt-Left-Click on the label in the waveform viewer (i.e. V(n006))
 - Particular net on the schematic is highlighted

81

Appendix – Summary of Additional Features

Pause a simulation

- "Simulate" pull down menu ---> Pause
- There is no toolbar button for this function
- Zoom in/out using the schematic editor:
 - Just use the wheel on your mouse
- Pan around a schematic
 - Left-Click the mouse and hold, then drag
 - Tilt wheel to move right and left

Thank you for attending, and happy simulating!

Homework: Once you return to the office, go back over the training materials within a week!

