Voltage \& Current Controlled Switches

Presented by Thomas Mosteller

Voltage Controlled Switch - Model

* A voltage controlled switch must have a model defined.
* Typically done as a SPICE directive placed directly on the schematic
* The V-switch .model syntax:
.model <ModelName>SW(Ron $=<\Omega>$ Roff $=<\Omega>V t=<V>V h=<V>$ Lser=<H> Vser=<V> llimit=<A>)
where
Vt: Threshold voltage
Vh: Hysteresis voltage
Ron: On resistance
Roff: Off resistance
Lser: Series inductance
Vser: Series voltage
Ilimit: Current limit.

NOW PART OF
\triangle ANALOG DEVICES

Voltage Controlled Switch - Model

* As for other intrinsic Spice models, the device name of the schematic component must be changed to correspond to the switch model name.
* Schematic example of a voltage controlled switch:

NOW PART OF

Voltage Controlled Switch - Modes of Operation

* The switch has three distinct modes of voltage control depending on the value of the hysteresis voltage, Vh :
* Vh $=0 \mathrm{~V}$: Switch is always completely on or off depending upon whether the input voltage is above the threshold.
* Vh > 0V: it shows hysteresis, as if it was controlled by a Schmitt trigger with trip points at $\mathrm{Vt}-\mathrm{Vh}$ and $\mathrm{Vt}+\mathrm{Vh}$.
$\%$ Note that Vh is half the voltage between trip points which is different than the common laboratory nomenclature.
* Vh < OV: it will smoothly transition between the on and off impedances. The transition occurs between the control voltages of $\mathrm{Vt}-\mathrm{Vh}$ and $\mathrm{Vt}+\mathrm{Vh}$. The smooth transition follows a low order polynomial fit to the logarithm of the switch's conduction.

NOW PART OF
NOW PART

Voltage Controlled Switch

Hands-on Exercise:
C S

* Define and use voltage controlled switches.
* Learn to differentiate the different modes of operation of the V -switch.

Current Controlled Switch - Model

* Like the V-switch, the current controlled switch must have a model defined.
* Typically done as a SPICE directive placed directly on the schematic
* The C-switch .model syntax:
* .model <ModelName> CSW(Ron=< $=$ R Roff $=<\Omega>$ It=<A> $1 h=<A>$)
* The parameters are:

It: Threshold current
Ih: Hysteresis current
Ron: On resistance
Roff: Off resistance

NOW PART OF
\triangle ANALOG DEVICES

Current Controlled Switch - Model

* The name of the schematic component must be changed to correspond to the switch model name.
* Contrary to the V-switch, the stimulus is not wired to the switch symbol:
* The C-switch symbol has only two terminals: the switch's input and output terminals. No control terminal.
$\%$ The control source is defined by setting the content of the Value attribute to read <Vcontrol> <ModelName> where
<Vcontrol> : name of the voltage source whose current controls the switch. Important: Must be a voltage source.
<ModelName> : name given to the controlled switch (model name)
* As an example:

Current Controlled Switch - Model

* Schematic example of a current controlled switch:

Current Controlled Switch - Modes of Operation

* Like the voltage switch, the CC-switch has three distinct modes of current control depending on the value of the hysteresis current, Ih:
* Ih = OA: Switch is always completely on or off depending upon whether the control current is above the threshold.
$\%$ Ih > 0A: it shows hysteresis with trip points at It -lh and $\mathrm{It}+\mathrm{lh}$.
* Ih < OA: it will smoothly transition between the on and off impedances. The transition occurs between the control currents of It - Ih and It + Ih. The smooth transition follows a low order polynomial fit to the logarithm of the switch's conduction.

NOW PART OF

Current Controlled Switch

Hands-on Exercise:

C S

* Define and use current controlled switches including their control source.
* Learn to differentiate the different modes of operation of the C -switch.

Switches - Application Circuit Examples

* LT3081 - Linear Regulator current limit
* Test the circuit current limiter
* LTC2954 - Push-Button controller
* Replicate the push-button function
* Implement a kill switch function
* LT3954 - LED driver
* Open LED circuit response
* Emulate a LED cathode short to GND (no dimming)
* LTC4227 - Dual ideal diode and hot-swap
* Check the Ideal diode response to input disconnect
* Verify the hot-swap current limiting function

NOW PART OF

ADVANCED TOPICS

To consult at your leisure.

Voltage Controlled Switch - Level 2 Model

* The level 2 V -switch model is an advanced version of the level 1 switch with negative hysteresis.
* The level 2 switch is never completely on or off.
* The conduction as a function of control voltage Vc is

$$
g(V c)=\exp \left(A^{*} \operatorname{atan}((V c-V t) / a b s(V h))+B\right)
$$

$$
\begin{aligned}
& \text { where } \\
& * \quad A=\log (\text { Roff } / \text { Ron }) / \pi \\
& : \quad B=\log (1 / \text { (Roff *Ron })) / 2
\end{aligned}
$$

* The transition of the level 2 switch to current limit is gradual instead of abrupt. At a fixed control voltage, the I-V curve is given by the equation

$$
I(V)=\| \text { limit * } \tanh \left(g\left(V_{C}\right) * V\right)
$$

where llimit defaults to 10 amperes for the level 2 switch.

NOW PART OF

Voltage Controlled Switch - Level 2 Model

* The level 2 switch supports the option to conduct in only one direction by specifying either the flag "oneway" or a voltage drop with parameter Vser.
* The transition between forward conduction and reverse open circuit can be specified to be a smooth transition by specifying the parameter epsilon to be non-zero.
* Syntax
.model <ModelName> SW(level=2 Ron=< R Roff $=<\Omega>$ Vt=<V>
Vh=<V> Lser=<H> Vser=<V>llimit=<A> oneway)
* Vh is always negative
* The C-Switch does not have a level 2 model.

NOW PART OF

Voltage Controlled Switch - Level 2 Model

Lab to consult at your leisure:

* Shows how to define and use level 2 voltage controlled switches.
* Demonstrates the differences between a level 2 and a level 1 with negative hysteresis V-switch.

ANALOG DEVICES

