NAVIGATION: LAND, SEA, AIR, SPACE

Myron Kayton

P.O. Box 802

Santa Monica, CA 90406 USA

1-310-393-1819

presented to Long Island Chapter

IEEE Aerospace and Electronic Systems Society

20 November 2003

OUTLINE

- 1. OVERVIEW
- 2. SIGNAL PROCESSING
- **3. PLANET GEOMETRY**
- 4. GUIDANCE VERSUS NAVIGATION
- 5. ABSOLUTE NAVIGATION VS. DEAD-RECKONING
- 6. TIME MEASUREMENT
- 7. GPS AND DGPS
- 8. COST AND ACCURACY
- 9. TEST DATA
- **10. ANIMAL NAVIGATION**
- **11. FUTURE**
- **12. BIBLIOGRAPHY**

NAVIGATION OVERVIEW

- LAND:
 - SLOW, SHORT RANGE
 - ALTITUDE KNOWN FROM MAPS
 - OFTEN CONFINED TO ROADS: CITY AND HIGHWAY
 - OFF-ROAD: RAILROAD
 - SEVERE TEMPERATURE and VIBRATION
- SEA:
 - SLOW, WORLD-WIDE
 - NEAR-GREAT-CIRCLE ROUTES IN SEA LANES
 - ALTITUDE = 0 AT SEA, FROM MAPS IN RIVERS
 - SEVERE SALT, WATER, TEMPERATURE, PITCH-ROLL
- AIR:
 - SPEED < TRIPLE EARTH RATE, WORLD-WIDE
 - GREAT-CIRCLE ROUTES, CIVIL AIRWAYS
 - SPECIAL MILITARY MISSIONS: TERRAIN-FOLLOWING
 - ALTITUDE MEASUREMENTS REQUIRED
 - USUALLY OPERATE FROM SURVEYED AIRPORTS
 - **SPACE:**

•

- BOOST, ORBITAL, INTERPLANETARY, ENTRY
- NAVAIDS HAVE BEEN PRIMARILY GROUND-BASED
- GPS AND TDRS SPACE-BASED
- SOME CALCULATE ON-BOARD, SOME MEASURE ON-BOARD
- VACUUM, CORONA-DISCHARGE, RADIATION BELTS
- LAUNCH ACCELERATION
- 20-Nov-2003 Navigation: Land, Sea, Air, Space

ATTRIBUTES OF NAVIGATION SYSTEMS

1. COST

2. ACCURACY

3. AUTONOMY

4. TIME DELAY

5. GEOGRAPHIC COVERAGE

6. AUTOMATION

7. ENVIRONMENT

NAVIGATION ATTRIBUTES -2

ENVIRONMENT

- AUTOMOBILES:
 - -40C TO +125C IN ENGINE COMPARTMENT
 - TEMPERATURE CYCLING
 - ELECTRIC POWER SURGES AND OUTAGES
- AIRCRAFT:
 - LOW PRESSURE
 - TEMPERATURE AND TEMPERATURE CYCLING
 - OFTEN CLIMATE-CONTROLLED
 - GUN RECOIL SHOCK AND VIBRATION
 - AIR TURBULENCE AND HARD LANDINGS
 - ELECTRIC POWER TRANSFERS FROM BUS TO BUS
- SPACECRAFT:
 - VACUUM
 - TEMPERATURE CYCLING
 - COSMIC RAY "SINGLE-EVENT UPSETS"
 - VAN ALLEN BELTS
 - LAUNCH VIBRATION
- SHIPS:
 - SALT WATER
 - LOW-FREQUENCY VIBRATION
 - LARGE-AMPLITUDE ANGULAR MOTIONS

GUIDANCE vs. NAVIGATION

- NAVIGATION DETERMINES STATE VECTOR:
 - **3 COMPONENTS OF POSITION**
 - 3 COMPONENTS OF VELOCITY
- NAVIGATION AND GUIDANCE:
 - CALCULATES DISTANCE AND DIRECTION TO DESIRED POSITION
 - GREAT CIRCLE CALCULATIONS, AIRWAY STEERING
 - FLEXIBLE ROUTES
- HOMING GUIDANCE:
 - STEER AND THRUST TOWARD TARGET WITHOUT STATE VECTOR
 - AIM AT TARGET OR LEAD AHEAD OF IT
 - WILL EVENTUALLY COLLIDE USING PROPORTIONAL NAVIGATION
 - TYPICAL OF HOMING MISSILES
 - RADAR, LASER, INFRA-RED GUIDANCE
 - MANEUVER LIMITS, CONTROL LIMITS
- BASIS OF NAVAIDS:
 - VOR, ILS
 - CHEAP, WORKS BEST NEAR NULL

ABSOLUTE FIX vs. DEAD-RECKONING

- **ABSOLUTE FIX:**
 - VIA RADIO, VISUAL SIGHTING, MAP-MATCHING
 - INDEPENDENT OF PAST TRAJECTORY
 - MEASURE RANGE OR TIME-DIFFERENCE
 - VELOCITY FROM DOPPLER OR CALCULATED
- **DEAD RECKONING:**
 - MEASURE VELOCITY, ACCELERATION, DISTANCE
 - INCREMENTS
 - HEADING
 - ITEGRATE TO OBTAIN CURRENT POSITION, VELOCITY
 - NEED INITIAL ABSOLUTE FIX
 - POSITION IS LOST IN CASE OF FAILURE, POWER OUTAGE

DEAD-RECKONING

• MEASURE DISTANCE/SPEED:

- SHIP'S LOG
 - IMPACT PRESSURE OR ELECTRO-MAGNETIC
- ODOMETER
- AIRSPEED
 - PITOT-TUBE
 - MULTI-PORT
- DOPPLER RADAR
- DOPPLER SONAR
- MEASURE HEADING:
 - MAGNETIC COMPASS
 - GYROCOMPASS
 - DIFFERENTIAL ODOMETER
- COMPUTATION:
 - RESOLVE INTO NAV COORDINATES AND INTEGRATE
 - FLAT EARTH, SPHERICAL EARTH, ELLIPSOIDAL EARTH
 - STEERING TO WAYPOINTS

• INERTIAL NAVIGATOR IS THE MOST PRECISE DEAD-RECKONING

NAVIGATION RADIO FREQUENCIES

•	10-13 KHz	OMEGA
•	70-130 KHz	LORAN-C, DECCA
•	200-2000 KHz	A-N RANGES (1930-50)
		BROADCAST DF
		MARINE HF/DF
		CONSOLAN
•	2 MHz	LORAN-A
•	75 MHz	MARKER BEACONS FOR ILS, FORMERLY AIRWAYS
•	100-120 MHz	VOR, ILS LOCALIZER
•	150	TRANSIT
•	300	ILS GLIDE SLOPE, SHORAN
•	400	TRANSIT, PLRS
•	1000-1200 MHz	DME; TACAN BEARING
		GPS, IFF, JTIDS
•	2-3 GHz	S-BAND COMM-TRACKING (SPACE)
•	4 GHz	C-BAND RADAR (SPACE)
•	5 GHz	MICROWAVE LANDING SYSTEM
•	10 GHz	X-BAND RADAR
•	20 GHZ	K-BAND RADAR
•	10 Hz	INFRA-RED SENSORS
•	10 Hz	VISIBLE LIGHT
•	10 Hz	ULTRA-VIOLET LASERS

APPROXIMATE ACCURACY OF NAVIGATION (one standard deviation)

- 3 CM: DIFFERENTIAL GPS SURVEY
- 10 CM: THEODOLITE-GEODIMETER SURVEY
- 3 METERS: LOW-ORBIT DETERMINATION MAPPING RADAR ILS NEAR TOUCHDOWN DIFFERENTIAL GPS, MOVING
- 30 METERS: GPS (MILITARY BETTER, CIVIL WORSE) TDRS APOLLO SPACETRACK ASTRO-INERTIAL NAVIGATION DECCA
- 300 METERS: LORAN C
- 3,000 METERS: CORRECTED OMEGA BEST CELESTIAL NAVIGATION AT SEA
- 30,000 M: NON-UPDATED INERTIAL NAVIGATION, AFTER 10 HRS UNCORRECTED OMEGA DEAD-RECKONING AT SEA, LOG AND COMPASS
 - 20-Nov-2003 Navigation: Land, Sea, Air, Space

TIME REQUIREMENTS FOR NAVIGATION

1. INTERVAL MEASUREMENT:

Start clock at one event • Stop clock at another event • **ACCURACY** • oscillator circuit, R-L-C 10E2 to 10E3 _ analog wristwatch **10E4** _ pendulum clock, stationary **10E6** _ quartz crystal oscillator _ **30 MHz 10E6 to 10E7** 300 MHz 10E5 to 10E6 • temperature-compensated (TXO) 10E6 to 10E9 oven-controlled (OXO) 10E7 to 10E10 • Rubidium oscillator **10E11 to 10E12** Cesium oscillator 10E13 to 10E14

2. ABSOLUTE TIME:

- Clock at specific location, after arbitrary event
 - clock exchange programs before 1990
 - signal exchange programs via GPS

GLOBAL POSITIONING SYSTEM (GPS)-1

SATELLITES:

•

•

- SINCE 1995, 21 + 3 SATELLITES; 4 OR MORE IN VIEW ANYWHERE ON SURFACE OF EARTH
- 12-HOUR ORBITS AT 26,560 KM, 6 PLANES AT 55-DEG INCLIN
- GROUND MONITOR AND CONTROL STATIONS
- DEVELOPED AND OPERATED BY U.S. DEPARTMENT OF DEFENSE
- OTHER NAVAIDS TRANSITIONED TO U.S. COAST GUARD
- EPOCH DATES 5 JAN 1980, 22 AUGUST 1999, APRIL 2019
- SOVIET GLONASS SIMILAR BUT NOT COMPATIBLE
 - EACH SATELLITE ON OWN FREQUENCY
 - 512-BIT C/A CODE
 - L2/L1 = 1.2857 VS 9/7 FOR GPS
 - 7 USABLE SATELLITES 11/02

SATELLITE TRANSMITTER:

- 3-4 CESIUM OR RUBIDIUM CLOCKS, 10E13 STABILITY
- ALL SATS BROADCAST ON SAME TWO FREQUENCIES
 - L1 = 1575.42 MHZ
 - L2 = 1227.60 MHZ
 - MODULATION OF CARRIER IS QPSK
- MODULATION ON L1
 - 1.023 MBPS C/A-CODE, 1024 BITS LONG
 - 10.23 MBPS CLEAR P-CODE OR ENCRYPTED Y-CODE
 - CODE LENGTH IS ONE WEEK
 - EACH SAT USES ONE OF 42 ORTHOGONAL CHIPPING CODES
 - 50 BPS DATA: EPHEMERIS, ALMANAC, STATUS, TIME

GLOBAL POSITIONING SYSTEM (GPS)-2

3-SATELLITE FIX:

•

•

•

٠

- SOLVE FOR HORIZONTAL POSITION IF HEIGHT KNOWN
- CORRECT THE OFFSET OF USER'S CLOCK
- 2-POINT AMBIGUITY
- LESS THAN: 25 METERS RMS RANGE ERROR, L1
 10 METERS WITH L1/L2 IONOSPHERIC CORRECTION

4 OR MORE SATELLITES:

- SOLVE FOR 3-AXIS POSITION
- CORRECT THE OFFSET OF USER'S CLOCK
- 5-15 METER ERROR WITH P- OR Y-CODE

RECEIVER QUALITY"

- CLOCK STABILITY
- NUMBER OF PARALLEL CORRELATORS
- CARRIER TRACK VS CODE TRACK: L1, L2, L5
- ANTENNA: ISOLATION FROM CIRCUIT BOARD
- PRE-AMPLIFIER: BANDWIDTH, FIELD OF VIEW, ADAPTIVE
- EXTENT OF USE OF DOWNLINKED DATA
- IONOSPHERIC CORRECTION

DIFFERENTIAL GPS:

 CENTIMETER TO 10-METER ERROR WITH C/A CODE, DEPENDING ON DISTANCE FROM MONITOR STATION AND DURATION OF OBSERVATIONS

DIFFERENTIAL GPS - 1

- **BASE STATION:**
 - KNOWN POSITION
 - MEASURES RANGES TO VISIBLE GPS SATELLITES
 - TRANSMITS RANGE OFFSETS FROM EACH SATELLITE
- **REMOTE STATION = VEHICLE:**
 - MEASURES RANGE USING SAME SATELLITES
 - CORRECTS FOR OFFSETS
 - CALCULATES PRECISE STATE VECTOR
- ERROR SOURCES:
 - ATMOSPHERIC SPATIAL DIVERSITY
 - MULTIPATH
 - IMPROPER TRANSMISSIONS FROM A SATELLITE
 - EPHEMERIS
 - SPACE-BORNE ATOMIC CLOCK
- ATTITUDE MEASUREMENT WITH DGPS:
 - 3 OR MORE ANTENNAS ON RIGID BODY
 - ALL TRACK SAME SATELLITES
 - MEASURE ATTITUDE TO 10+ arcsec
 - PHASE-CENTER UNCERTAINTY OF ANTENNAS

DIFFERENTIAL GPS - 2

- SURVEY WITH DGPS:
 - CENTIMETER ACCURACY FOR A MINUTE'S DWELL TIME
 - ~20 km MAXIMUM SEPARATION
- WAAS:
 - NATIONWIDE U.S. NETWORK OF AERO BASE STATIONS
 - EACH TRANSMITS RANGING ERRORS TO COM-SATELLITES
 - COMSATS REBROADCAST ON VHF RADIO PER RTCA SC-159
 - EN-ROUTE AIRCRAFT NAVIGATE DIFFERENTIALLY
 - AIRCRAFT LAND DIFFERENTIALLY
 - NON-PRECISION
 - CATEGORY I
 - BAROMETRIC ALTITUDE
 - SHIPS ENTERING PORT NAVIGATE DIFFERENTIALLY
 - RTCM STANDARD SC-104 AT 290-310 kHz
 - IN OPERATION BY U.S. AND CANADIAN COAST GUARDS
 - ERROR 1-5 METERS WITHIN 300 KM OF BASE STATION
 - LIKELY TO REPLACE VOR NETWORK
 - BASE STATION: DETECT AND BROADCAST SATELLITE FAILURES
 - ON VEHICLE: FLAG ERRORS, RESELECT SATS, ABORT LANDING
 - PRIVATE SUBSCRIPTION WAAS EXIST 2001
 - 20-Nov-2003 Navigation: Land, Sea, Air, Space

DIFFERENTIAL GPS - 3

- LAAS:
 - LOCAL U.S. NETWORK OF BASE STATIONS AT AIRPORTS
 - MAY INCLUDE PSEUDOLITES AT EACH AIRPORT
 - DETECT AND BROADCAST SATELLITE FAILURES
 - AIRCRAFT LAND TO CATEGORY II AND III
 - ERROR 1-3 METERS WITH INERTIAL SMOOTHING AND FAST COMPUTER
 - LIKELY TO REPLACE ILS AND MLS
 - ILS RETAINED AS LAAS MONITOR?
 - ON-BOARD:
 - LANDING AND ROLL-OUT WITHOUT FAILED SATELLITES
 - FAULT DETECTION AND RECONFIGURATION
 - CONTINUE NAVIGATION DESPITE FAULTS

CELL PHONE POSITIONING (E-911)

PROBLEM: 1- EMERGENCY SERVICES CAN'T FIND CELL PHONES 2- CELL COMPANIES WANT TO SELL LOCATION SERVICE

U.S. GOVERNMENT MANDATE IN 1996:

- LOCATE CELL PHONES WITHIN 50-100 METERS
- MANY DEADLINES, LATEST 2005

SOLUTIONS:

- 1. REPORT NEAREST BASE STATION.
 - WIDELY IMPLEMENTED
 - ACCURATE IN CITIES
 - INDOOR MICROCELLS, WiFi
- 2. GPS IN EACH CELL PHONE
 - REPORT POSITION WHEN CALLED
 - USER CAN DISABLE REPORTS
- 3. TRIANGULATE FROM BASE STATIONS
 - USE UPLINK MESSAGES SOFTWARE IN CENTRAL OFFICE
 - USE DOWNLINK MESSAGES SOFTWARE IN CELL PHONE
- 4. TRIANGULATE FROM RADIO OR TV STATIONS
 - GOOD CLOCKS IN TV AND CELL PHONE
 - USE FLYBACK PATTERN
 - REPORT WHEN CALLED
 - USER CAN DISABLE REPORTS
- 5. TIME DIFFERENCES FROM BASE STATIONS OR CELL PHONE
 - SEND LORAN-LIKE PULSES
 - MEASURE DIFFERENCES IN TIMES OF ARRIVAL
 - OTHER PARTY CALCULATES POSITION ON MAP
- 6. INDOOR PROBLEM
 - PSEUDOLITE ON EACH FLOOR ALLOWS PRECISE LOCATION
 - GPS REPEATER LOCATES TO A BUILDING

UTILIZATION OF TEST DATA

• SYSTEM SPECIFICATION:

- BASIS FOR TESTS
- DATA COLLECTION:
 - DEFINE ROUTE TRAVELLED
 - SELECT POSITION AND VELOCITY REFERENCE
- WHICH DATA ARE DISCARDED?:
 - TEST EQUIPMENT ERRORS
 - "WILD POINTS"
 - HUMAN ERROR
- ERROR BUDGET:
- COST OF TESTS:
- **TEST UNIT VERSUS PRODUCTION UNITS:**
 - HOW TO IDENTIFY DIFFERENCES?
 - ARE RE-TESTS NEEDED?

ANIMAL NAVIGATION

- GOALS:
 - FIND WEATHER, FOOD, MATES
 - ADAPT TO PRECESSION OF EQUINOXES, MIGRATION OF POLES, REVERSALS OF MAGNETIC FIELD, ICE AGES
- SENSORS:
 - TERRAIN, LANDMARKS, DRIFT ANGLE?, GROUND SPEED?
 - ODORS
 - HEADING BY SUN
 - ELEVATION OF SUN = LATITUDE
 - POLES OF NIGHT SKY
 - MAGNETIC FIELD ?
 - VISCERAL VERTICAL
 - LOW-FREQUENCY SOUND?
 - POLARIZED LIGHT? ANT EXPERIMENTS
 - **PROCESSING:**

•

- NEURAL-NET PROCESSOR, WIRED EXPERT RULES
 - SOME DATA INHERITED, SOME LEARNED
- LEARN BY FOLLOWING OLDER BIRDS
- NO DETAILS KNOWN; BIRDS SEARCH, THEN ROOST ANEW
- TESTS 30-YEARS' WORTH:
 - CAGES, PLANETARIA, HELMHOLZ COILS, HOMING
 - NATURAL OBSERVATIONS, RADAR AND BANDING
 - MANY ARE LOST ON LONG MIGRATIONS

FUTURE OF NAVIGATION -1

1. NAVIGATION AND SURVEYING MERGE:

- SAME SENSORS
- DIFFERENT OBSERVATION DURATIONS
- DIFFERENT PROCESSING

2. GPS:

- FOR ALL VEHICLES
- ABSOLUTE AND DIFFERENTIAL NAVIGATION
- CHEAP AND EXPENSIVE RECEIVERS
- DELIBERATELY-SPOILED ACCURACY ON C/A CODE
 - WAS SUSPENDED IN 2000
- GPS-GLONASS RECEIVERS

3. CIVIL RADIO AIDS:

- MANY WILL BE DECOMMISSIONED
 - OMEGA DECOMMISSIONED 11/97
 - LORAN, VOR, ILS DECOMMISSIONED IN 2010s??
- **BIG GROWTH IN TCAS AND MODE-S**
- MULTISENSOR RECEIVERS, FALLING PRICES
- 4-d TUBES IN SPACE WITH ESCAPE HATCHES

FUTURE OF NAVIGATION -2

4. NAV-COMM SERVICES:

- FEE FOR SERVICE
- AIRCRAFT AND SHIPS
- TRUCK FLEETS, DISPATCH
- UNDEVELOPED COUNTRIES AVOID WIRED FACILITIES
- MEO AND GEO MIX
- WILL REQUIRE PRECISE INERTIAL NAVIGATION

5. INERTIAL:

- LESS CIVIL ACCURACY DUE TO 100% GPS COVERAGE
- MILITARY USE OF PRECISE INERTIAL
- GPS-INERTIAL FOR CATEGORY ii AND iii LANDING
- RANGE OF COST AND ACCURACY

6. WORLD-WIDE DIGITAL DATA BASES:

- GOVERNMENT AND PRIVATE DATA BASES
- TERRAIN HEIGHT AND SEA FLOOR
- STREET MAPS OF LARGE CITIES
- INTERCITY MAIN ROUTES
- HARBORS AND COASTLINES
- AERONAUTICAL VISUAL:
 - AIRPORTS, RADIO AIDS, TERRAIN HEIGHTS
- AERONAUTICAL INSTRUMENT:
 - AIRWAYS, MEA, APPROACH PLATES

FUTURE OF NAVIGATION -3

7. AUTOMOTIVE NAV AND ROUTE OPTIMIZATION:

- CELLULAR AND MICROCELL RANGING
- ON-BOARD GPS
- AREA MAPS, RADIOED CONGESTION IN CITY
- EMERGENCY FLEET
- DELIVERY FLEETS
- RENTAL CARS
- COMMUTER VANS
- LUXURY CARS
- 8. SPACECRAFT:
 - WORLD-WIDE TDRS COVERAGE BELOW 4000 NM: UPLINKED FIXES
 - GPS COVERAGE IN LOW ORBIT: ON-BOARD FIXES
 - LASER GYROS ON BOARD
 - SPACE STATION AUTONOMY, LANDMARKS
 - LUNAR BASE: LAUNCH SLED, ROVERS, BACK-SIDE OBSERVATORY
 - MARS: AUTONOMOUS SURFACE NAVIGATION
- 9. MILITARY NAVIGATION:
 - GPS GLOBAL FOR SHIPS, AIRCRAFT, ARMY, BOOSTERS
 - JTIDS, PLRS LOCAL
 - GPS SINS, BOTTOM-MAP FOR SUBMARINE
 - TERRAIN-FOLLOWING AND ROUTE-PLANNING
 - VHSIC CIRCUITS, EMBEDDED COMPUTERS WIDESPREAD
 - RADIATION HARDNESS

NAVIGATION BIBLIOGRAPHY

- 1. Bowditch, N., THE AMERICAN PRACTICAL NAVIGATOR, U.S. Hydrographic Office, Pub. 9, 1995, 873 pages. Focus on ships.
- 2. Farrell, J.F., INTEGRATED AIRCRAFT NAVIGATION, Academic Press, 1976, 350 pages. Focus on Kalman filters.
- 3. Kayton, M., 1990, NAVIGATION: LAND, SEA, AIR, AND SPACE, IEEE Press, New York, 461 pages.
- 4. Kayton, M. and W.R. Fried, 1997, AVIONICS NAVIGATION SYSTEMS, SECOND EDITION, John Wiley, New York, 773 pages.
- 5. Kayton, M., "One Hundred Years of Aircraft Electronics", AIAA JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS, March 2003.
- 6. Loh, R., V. Wullschleger, et al, "U.S. Wide-Area Augmentation System", NAVIGATION, Fall 1995.
- 7. Matsakis, D., "USNO and GPS; It's About Time", GPS WORLD, February 2000, pages 32-40.
- 8. Misra, P. and P. Enge, GLOBAL POSITIONING SYSTEM: SIGNALS, MEASUREMENT AND PERFORMANCE, Ganga-Jamuna Press, 2002, 390 pages.
- 9. Parkinson, B.W. and J.J. Spilker (ed), 1996, GLOBAL POSITIONING SYSTEM, THEORY AND APPLICATIONS, 2 volumes, American Institute of Aeronautics and Astronautics, 1300 pages.
- 10. Sandretto, P.C., 1958, ELECTRONIC AVIGATION ENGINEERING, ITT Corporation, 772 pages. Out of print.
- 11. U.S. Government, 2001 FEDERAL RADIONAVIGATION PLAN and FEDERAL RADIONAVIGATION SYSTEMS, Departments of Defense and Transportation, issued biennially, 200 pages each.
- 12. U.S. Government Advisory Circulars, Federal Aviation Administration, van Graas, F., J.W. Diggle, et al, "Ohio University/FAA Flight Test Demonstration of Local Area Augmentation System", NAVIGATION 45:2, Summer 1998, pages 129-135.
- 13. Commercial Aeronautical Standards Produced by ICAO (Montreal), ARINC (Annapolis, Md.), RTCA, Inc., (Washington) and EUROCAE (Paris).
- 14. IEEE Position Location and Navigation Conference, biennially.
- 15. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, quarterly.
- 16. IEEE Standards for Inertial Instrument Testing, IEEE, NY.
- 17. AIAA JOURNAL OF GUIDANCE, CONTROL AND DYNAMICS, bimonthly.
- 18. Institute of Navigation, NAVIGATION, quarterly.