Advances in Shielding Materials

Presented by: Gary Fenical EMC Technical Support Engineer Laird Technologies Delaware Water Gap, PA, USA gfenical@lairdtech.com (570) 424-8510 ext. 1177

Laird Technologies History

Global Facilities

Polycarbonate Plastic Honeycomb:

- Round Straws Glued Together
- Standard Cells Sizes 0.125" (3.2mm) and 0.250" (6.4mm)
- Standard Panel Thickness 0.25" (6.4mm) and 0.50" (12.7mm)
 - Other Panel Thickness Are Available
 Upon Request

Metallization:

- Base Layer 30µin Electroless Cu Conductivity
- Top Layer 10µin Electroless Ni Corrosion Protection
- Available Flame Protection
 - > V0 Coating
 - > Intumescent Coating

Polycarbonate Plastic Honeycomb:

Edge Construction:

Conductive Foam

Metallization:

MaxAir w/V0 Coating

MaxAir w/Intumescent Coating

MaxAir - Product Performance Airflow – Pressure Drop Same As Equivalent Al Honeycomb

MaxAir - Product Performance Airflow – Usable Cooling Area Greater Than Equivalent Framed Al Vent Panel

MaxAir - Product Performance

Shielding – Same As Equivalent Al Honeycomb

Frequency (MHz)

Some waveguides below cut-off

MaxAir - Installation

Horizontal Installation

MaxAir - Installation

Cover plate with EMI gaskets grounds front of honeycomb to the enclosure.

Soft, conductive foam perimeter gasket grounds the honeycomb directly to the enclosure.

Horizontal Installation

MaxAir - Installation

blocks even high frequency EMI while allowing unimpeded airflow

Vertical Installation

Sculpted Foam The foam is "sculpted" into the profile shape.

Only the foam core has changed. No plastic stiffener base is required for application or for the manufacturing process

What is the plastic stiffener base? The plastic stiffener base acts as a manufacturing aid in the Continuous Urethane Extrusion (CUE) process.

Visual Differences The SF core is a tan/yellow color while the CUE foam is a charcoal color.

The Plastic Stiffener Base Is Not Required In Sculpted Foam

- The new manufacturing process allows the flexibility to use or not use the plastic stiffener base during production.
- The new foam core also allows the gaskets to be applied without the plastic stiffener base.

Gaskets Without A Plastic Stiffener Base May Be Preferred

- The plastic stiffener base is a rigid body, which will not compress; a 100% foam gasket allows the gasket to be "softer", requiring less force to deflect.
- Gives improved performance with at a reduction in cost.

Better Application Performance

- Superior compression set values; in many cases the Sculpted Foam Product is 50% better.
- Improved compression force; when the gasket is compressed greater than the recommended 50%, compression force is reduced by ~half.

Compression Set

Modified ASTM 3574 Compression Set Test LT 4697-AB-H1K C-Fold vs. Competitive Equivalent

Conductive Foam

Polyester Mesh Bonded to Top and Bottom Surfaces of Urethane Foam.

Silver/Copper/Nickel Metallization.

Metallized Foam Laminated to Full Width Release Liner with Random Coat Adhesive.

Conductive Foam Structure

100% of Substrate is Metallized

Conductive Foam Structure

Standard Plated Polyester Mesh

Reticulated Urethane Foam (60ppi) Allows For Uniform Plating Throughout Product While Providing A More Direct Conductive Path And Strong Compression Set Resistance

Conductive Foam - 0.06" H x 0.5" W - Compressed to 40% 140.0 130.0 120.0 Shielding Effectiveness (dB) 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 -0.01 1.00 0.10 10.00 100.00 1000.00 .03 Frequency (MHz) - Conductive Foam

Transfer Impedance Test Per SAE ARP 1705

Conductive Foam

I/O Examples of Conductive Foam UL 94 HB Rated

Form-In-Place Elastomer Gaskets

- Applied to diecast metal or metalized plastic parts.
- Can be applied to non-planar surfaces.
- Can be applied with standard application machinery

Form-In-Place

Laird Technologies Form in Place Gasket Technology

A robotically controlled dispensed gasket that provides;

- Conductive shielding gaskets on enclosures, covers and components
- Accurately, Repeatedly and Dependably.
- Low cost shielding solution
- Prototypes and Production

Form In-Place Capabilities

Shielding Effectiveness: 80-100dB to 18GHz

Soft /Low durometer compounds

One component RTV:

- Elastic: remains pliable/does not age harden
- Superb adhesion: plated plastic, aluminum, zinc, or cast metals
- RTV=Room Temperature Vulcanization

Dispensing Robot Performance parameters

- Head travel speed: 0 to 160mm (6")/sec.
- Average dispensing speed: 15-25 mm/s cell phone
- Capacity: 1 to 8 dispensing heads for prototypes or high volume production.
- Cell phone production: 4000+ per shift with 8 heads.
- Average gasket material cost per cell phone: \$0.07

Form-In-Place

•Automatically dispensed bead widths .075" to .014" & .065" to .014" high.

•High bead adhesion strength assures positive electrical and mechanical bond of dispensed compound onto surface to be shielded.

- Excellent EMI shielding providing > 90 dB at 100 MHz.
- Provides dust and moisture seal.
- Highly compressible compound provides low closure force necessary when used with thin wall miniature housings.
- Dispensable on any clean surface.

Rotating dispensed gasket

Could replace MIP applications in some cases.(no need of tooling + short delivery for prototypes).

Technical limits: h/w <2

• Radius > 1 mm.

FIP Examples

Mold-In-Place PCB Shield

-Metal component can be custom designed in various shapes, mounting tabs, and heights

- Elastomer mold-in-place ribs can be provided with a tapered design to lower compression force

Laird TECHNOLOGIES

-Replaces multiple soldered printed circuit board shield cans with a single piece approach

-Ideal for hand held devices where space is at a premium -The metal substrate acts as a shielded enclosure allowing the use of a non-conductive housing

Mold In Place

Various profiles to minimize forces, fit mating areas, etc.

Mold In-Place

- Used to create high aspect ratio gasket solutions:
 - Height > Width
- Rapid Cycle times
- Automated process
- Fully Cured during cycle
- Efficient material use
- On a substrate it is a...
 - Defined profile or shape
 - Conductive or
 - Non-Conductive
- Substrates:
 - Metal or Plastics

Mold In Place

Molded EcE

EcE-Electrically Conductive Elastomer

Injection Molding

Drawn BLS with MIP Gasket

BLS – Board Level Shiel MIP – Mold In Place

ETHYLENE PROPYLENE DIENE MONOMER(EPDM)

	FILLER								
POLYMER	Ag	Ag/Cu	Ag/Al	Ag/Ni	Ag/G	Ni/C	IA	С	TOTAL
SILICONE	3	3	2	1	2	3	1	1	16
FLUOROSILICONE	1	1	2	1	1	1	1		8
FLUOROCARBON				1					1
EPDM			1	1		1		1	4
TOTAL	4	4	5	4	3	5	2	2	29

Material Choices

Conductive Fillers

- CARBON(C)
- > INERT ALUMINUM (IA)
- > NICKEL COATED GRAPHITE(Ni/C)
- > SILVER COATED GLASS(Ag/G)
- > SILVER COATED NICKEL(Ag/Ni)
- > SILVER COATED ALUMINUM(Ag/AI)
- > SILVER COATED COPPER(Ag/Cu)
- > SILVER(Ag)

Conclusion

- New technology in RF vent panels allows for:
 - Lower cost
 - Greater airflow
- Sculpted Foam RF Gaskets
 - Lower Durometers (force)
 - Lower cost

Conclusion

- Conductive Foam technology allows for:
 - More direct conductive path
 - Lower compression force
 - Lower cost
- Integrated Technology
 - Metal/Elastomer combinations
 - Plastic/Elastomer combination
 - Others

Conclusion

- Today, conductive elastomer technology allows for many new:
 - Compounds
 - Shapes
 - Manufacturing methods
 - Durometers (force)
 - Smaller sizes
 - Higher attenuation at higher frequencies

Contacts

Robert S. Foertsch **Win-Cor Electronic Sales Corporation** 50 Galesi Drive Wayne, New Jersey 07470 973-890-5151 973-890-3999 Fax 516-428-1904 Cell foertsch@win-cor.com

Gary Fenical Laird Technologies 570-424-8510 ext. 1177 gfenical@lairdtech.com

