# Noise Figure Measurements

0

0

#### Feb 24, 2009

Account Manager : Peter Caputo Presented by : Ernie Jackson



#### Agenda

- Overview of Noise Figure
- Noise Figure Measurement Techniques
- Accuracy Limitations
- PNA-X's Unique Approach



#### Noise Contributors

Thermal Noise: (otherwise known as Johnson noise) is the kinetic energy of a body of particles as a result of its finite temperature

P<sub>therm</sub>=kTB

Shot Noise: caused by the quantized and random nature of current flow

**Flicker Noise:** (or 1/f noise) is a low frequency phenomenon where the noise power follows a  $1/f^{\alpha}$  characteristic



#### Why do we measure Noise Figure? Example...

#### **Transmitter:**



3. Lower the receiver noise figure by 3dB

### The Definition of Noise Factor or Noise Figure in Linear Terms

- Noise Factor is a figure of merit that relates the Signal to Noise ratio of the output to the Signal to Noise ratio of the input.
- Most basic definition was defined by Friis in the 1940's.



Reference: Harald Trap Friis: 1944: Proceedings of the IRE



#### What is Noise Figure ?



a) C/N at amplifier input





### **Definition of Noise Figure**





### **Noise Voltage**

Standard Equation for Noise Voltage produced by a Resistor

$$e^2 = 4kTBR$$

 $k = \text{Boltzman's Constant} = 1.38 \times 10^{-23} \text{ Joules/}^{\circ}\text{K}$ T is absolute temperature (°K) B is bandwidth (Hz) e is rms voltage

Reference: JB Johnson/Nyquist: 1928: Bell Labs



#### **Noise Power at Standard Temperature**



Available Noise Power Delivered to a Conjugate Load,

 $P_{av} = kTB$ 

At 290K P<sub>av</sub> = 4 x 10 <sup>-21</sup> W/Hz = -<u>174dBm / Hz</u>

In deep space kT = <u>-198dBm/Hz</u>



#### **Noise Power is Linear with Temperature**



#### An Alternative Way to Describe Noise Figure: Effective Input Noise Temperature ( $T_e$ )



#### Te or NF: which should I use?

•Use either - they are completely interchangeable

•Typically NF for terrestrial and Te for space

•NF referenced to 290K - not appropriate in space

•If Te used in terrestrial systems, the temperatures

can be large (10dB=2610K)

•Te is easier to characterize graphically



#### **Friis or Cascade Equation**

 Here we see what contribution a second amplifier has on the overall noise factor.





### **Effects of Multiple Stages on Noise Factor**

The cascade equation can be generalized for multiple stages







$$\begin{split} F_{ABC} = 1.7 + \frac{2.0 - 1}{4.0} + \frac{4.0 - 1}{4.0 \times 16.0} = 1.70 + 0.25 + 0.047 = 1.997 \\ NF_{ABC} = 10 \log(1.997) = 3.00 \text{ dB} \\ F_{ACB} = 1.7 + \frac{4.0 - 1}{4.0} + \frac{2.0 - 1}{4.0 \times 100.0} = 1.70 + 0.75 + 0.025 = 2.475 \\ NF_{ACB} = 10 \log(2.475) = 3.93 \text{ dB} \end{split}$$



**Agilent Technologies** 

Noise Figure Basics

### Agenda

- Overview of Noise Figure
- Noise Figure Measurement Techniques
  - Accuracy Limitations
  - PNA-X's Unique Approach



#### **Measuring Noise Figure**



#### **Hot/Cold Technique**





Noise Figure Basics

Agilent Technologies

#### **Noise Source - the Avalanche Diode**





| Excess Noise Ratio, ENR (dB) = 10 Log $_{10}$ (T $_{h}$ - 290) | Frequency | ENR dB |
|----------------------------------------------------------------|-----------|--------|
| 290                                                            | XXX       | AAA    |
|                                                                | YYY       | BBB    |
|                                                                | ZZZ       | CCC    |
|                                                                | :         | :      |
|                                                                | /         |        |

**Agilent Technologies** 

#### **Noise Figure Analyzer**



#### **Calibrating out System NF**





Noise Figure Basics

Agilent Technologies

#### How does the NFA measure gain







- \* Shielded HP-IB Cables
- \* Enclose All Circuits
- \* Jiggle Connectors (Esp. BNC)
- \* Try snap-on ferrite cores on cables, dampen common-mode currents
- \* LO Contributes Spurious and Noise



#### **Avoidable Measurement Errors:** Choose the Appropriate Noise Source

•15dB ENR noise source to measure NF of up to 30dB (eg N4001A, N4002A, 346B/C)

•Use 6 dB ENR for very low noise figure devices to keep noise detector linearity issues to a minimum ( eg N4000A, 346A).

•Use a Noise Source with greater internal attenuation if the DUT is match sensitive (eg N4000A, 346A).



#### **Avoidable Measurement Errors:** Accurate Loss Compensation



#### **Avoidable Measurement Errors:** Loss Compensation and Calibration



#### **Noise Source - the Avalanche Diode**





| Excess Noise Ratio, ENR (dB | $S = 10 \text{ Log}_{10} (T_h - 290)$ | Frequency  | ENR dB  |
|-----------------------------|---------------------------------------|------------|---------|
|                             | 290                                   | XXX        | AAA     |
|                             |                                       | ΥΥΥ        | BBB     |
|                             |                                       | ZZZ        | CCC     |
|                             |                                       | :          | :       |
| Noise Figure Basics         | Agilent Te                            | chnologies | Page 28 |

#### **Avoidable Measurement Errors:** Temperature Considerations (Diode)



Report Ambient Temperature to Analyzer for Accurate ENR Interpretations

Agilent Technologies



### **Avoidable Measurement Errors:** Loss and Temperature Corrections

| ★ Agilent 20:44:30 Jan 12, 1970           UnCorr                                                                                         | Index                    | * Agilent 11:35:27 Nov 1, 2000                                                                           | Before Table |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------|--------------|
| Loss Compensation Before DUT Table                                                                                                       | 1                        | Loss Frequency 10.0000000 MHz                                                                            | Row Up       |
| Index 1                                                                                                                                  | Frequency<br>1.00000 MHz | Loss Lompensation Before DUI Table<br>Loss Frequency Loss Value                                          | Row Down     |
| 1         1.00000 MHz         5.000 dB           2         2.00000 MHz         4.800 dB           3         3.00000 MHz         4.870 dB | Loss Value<br>5.000 dB   | 10.0000000 MHz 3.400 dB<br>20.0000000 MHz 3.450 dB<br>30.0000000 MHz 3.490 dB<br>40.0000000 MHz 3.620 dB | Page Up      |
| 4 *** ***                                                                                                                                |                          | 50.0000000 MHz 3.860 dB<br>60.0000000 MHz 3.820 dB<br>70.0000000 MHz 3.890 dB                            | Page Down    |
|                                                                                                                                          | New Entry                | 80.0000000 MHz 3.880 dB                                                                                  | Add          |
|                                                                                                                                          | Delete Row               |                                                                                                          | Delete Row   |
| Use 'File' hardkey to Load or Save a table.                                                                                              | Delete All               | Use 'File' key to Load or Save a table.                                                                  | Clear Table  |
| Prototype Instrument - Not For Sale                                                                                                      |                          |                                                                                                          |              |

- A temperature must be entered in Loss Compensation Setup for valid results
   NFA & PSA Default = 0 degrees K
- The NFA and PSA accept S2P files from a Network Analyzer for the Loss Compensation table

Noise Figure Basics



**Agilent Technologies** 

#### **Avoidable Measurement Errors:**

**Account for Frequency Conversion (DSB Measurement)** 



**DSB** is recommended when :

- The application is DSB
- The DUT is broadband
- No SSB filter is available
- The frequency range make SSB filters impossible/impractical

Loss compensation of 3dB (under perfect conditions) needs to be entered to account for doubling of power during measurement

Noise Figure Basics

• Agilent Technologies

### **Avoidable Measurement Errors:**

**Account for Frequency Conversion (SSB Measurement)** 



SSB is recommended when :

- The application is SSB
- The DUT is narrowband

If down conversion is part of the measurement system, filters should be included in calibration path and measurement path because the calibration and measurement are performed at the same frequencies.

Noise Figure Basics

**Agilent Technologies** 

#### Reduce Measurement System Noise Figure Using a pre-amplifier to improve accuracy



Page 34

Noise Figure Basics

#### Minimise Errors which cannot be eliminated: Reduce Measurement System Noise Figure



#### Reduce Measurement System Noise Figure (cont) Error in 2nd Stage Correction



#### **Additional Recommendations**

- Minimize the noise figure of the test system (especially when measuring low gain DUTs).
- Reduce the magnitude of all mismatches by using isolators or pads
- Minimize the number of adapters, and take care of them
- Calibrate Noise Source ENR values regularly and use good pedigree calibration
- Use Averaging to Avoid Display Jitter
- Choose the Appropriate Bandwidth
- Avoid DUT non-linearities



### Agenda

- Overview of Noise Figure
- Noise Figure Measurement Techniques
- Accuracy Limitations
- PNA-X's Unique Approach



### **Calculating Unavoidable Uncertainty**

#### Available at : www.agilent.com/find/nfu

|          | licros                                                                          | oft E            | xcel -                | NF Und              | ertainty   | Laic                | ulator.               | xis:1                    |                                                             |               |                         |                     |
|----------|---------------------------------------------------------------------------------|------------------|-----------------------|---------------------|------------|---------------------|-----------------------|--------------------------|-------------------------------------------------------------|---------------|-------------------------|---------------------|
|          | File                                                                            | Edit             | ⊻iew                  | Insert              | Format     | Tools               | 5 <u>D</u> ata        | Window                   | Help                                                        |               |                         |                     |
|          | 100                                                                             |                  | Α                     |                     | В          |                     | С                     | D                        | E                                                           | F             | G                       | Н                   |
| 2        | © 19                                                                            | 99 - 2           | 2002 A                | .gilent I           | Technolo   | gies                |                       |                          |                                                             |               |                         |                     |
| 8        |                                                                                 |                  |                       |                     |            |                     |                       |                          |                                                             |               |                         |                     |
| 3        | Th                                                                              |                  |                       | ant ant             |            |                     | a ortoint             | rr of nois               | o firmus mooguromonta. The                                  |               |                         |                     |
| 4        | TIL                                                                             | is spi<br>istete | a and                 | the gran            | ulates ti  |                     | laulatio              | y 01 11015<br>n araa 'T1 | e ngure measurements. The                                   | n in hha t    | n yenow a<br>bia abouta | te user<br>ha addad |
| 5        | to r                                                                            | und a            | s anu<br>mhteor       | ted from            | en the ree | , a ca<br>11+ a1    |                       | n the nei                | ne final uncertainty is snow<br>so ficture measurement inst | mini olue, i  | nis snouiu<br>derte aim | oe auueu            |
|          | 200                                                                             | niu s<br>aad i   | uoua.<br>Anos         | aible we            | 111 me 163 | un si               | 10 11 0               |                          | se figure measurement filsu                                 | unitern mi o. |                         | e mie               |
| 1        | shi                                                                             | eaui             | n pos                 | siole va            | iues.      |                     |                       |                          |                                                             |               |                         |                     |
| \$       |                                                                                 |                  |                       |                     |            |                     |                       |                          |                                                             |               |                         |                     |
| 1        |                                                                                 |                  |                       |                     | dB         | Lir                 | near                  |                          |                                                             |               |                         |                     |
| 0        | DUT                                                                             | NF,              | F1=                   |                     |            | <mark>9</mark> 7.   | 943282                |                          | F12/F1=                                                     | 1.003083      |                         |                     |
| .1       | Instr                                                                           | umer             | nt NF,                | F2=                 | 1          | <mark>.6</mark> 39  | 9.81072               |                          | F2/F1G1=                                                    | 0.003162      |                         |                     |
| 2        | DUT                                                                             | GAI              | N, G1=                | -                   | 3          | 2 1:                | 584.893               |                          | (F2-1)/F1G1=                                                | 0.003083      |                         |                     |
| 3        | Com                                                                             | bineo            | \$NF, B               | 712=                | 9.01336    | 8                   | 7.96777               |                          | (F12/F1)-(F2/F1G1)=                                         | 0.999921      |                         |                     |
| .4       |                                                                                 |                  |                       |                     |            |                     |                       |                          |                                                             |               |                         |                     |
| 5        | <u>Mate</u>                                                                     | : <u>h</u>       |                       |                     | Units*     | Re                  | flCoef                |                          |                                                             | Negative      | Positive                | Max                 |
| б.       | Nois                                                                            | e Soi            | urce=                 |                     | 1.3        | 1 <mark>5</mark> 0. | 148936                |                          | Uncert NS-DUT IN=                                           | 0.26266       | 0.25495                 | 0.26266             |
| 7        | DUT                                                                             | Inpu             | ıt=                   |                     | 1          | .5                  | 0.2                   |                          | Uncert NS-NFA=                                              | 0.54971       | 0.516981                | 0.54971             |
| 8        | DUT                                                                             | Out              | put=                  |                     | 1          | .5                  | 0.2                   |                          | Uncert DUT OUT-NFA=                                         | 0.746486      | 0.687378                | 0.746486            |
| 9        | Instr                                                                           | umer             | nt=                   |                     | 2          | . <mark>4</mark> 0. | 411765                |                          |                                                             |               |                         |                     |
| 20       |                                                                                 |                  |                       |                     |            |                     |                       |                          |                                                             |               |                         |                     |
| 21       | <u>Unce</u>                                                                     | ertain           | <u>ities</u>          |                     | dB         |                     |                       |                          |                                                             |               |                         |                     |
| 22       | Instr                                                                           | umer             | nt NF=                |                     | 0.1        | 5                   |                       |                          | Uncert NF12=                                                | 0.300198      |                         |                     |
| 23       | Instr                                                                           | umer             | nt Gair               | 1=                  | 0.1        | 7                   |                       |                          | Uncert NF2=                                                 | 0.5669        |                         |                     |
| 24       | Nois                                                                            | e Soi            | arce El               | NR=                 | 0          | . <mark>2</mark> (A | mplifier              | s Only)                  | Uncert G1=                                                  | 0.94335       |                         |                     |
| 25       | Nois                                                                            | e Soi            | urce El               | NR=                 |            | <mark>0</mark> (R   | eceiver               | s Only)                  | Uncert ENR=                                                 | 0.2           |                         |                     |
| 26       |                                                                                 |                  |                       |                     |            |                     |                       |                          |                                                             |               |                         |                     |
| 27       |                                                                                 |                  |                       |                     |            |                     |                       | Noise Fi                 | gure Uncertainty =                                          | 0.357835      | dB                      |                     |
|          |                                                                                 |                  |                       |                     |            |                     |                       | Frequen                  | cy measurement Range = 2                                    | 0 to 26.5 GE  | Iz                      |                     |
| 68<br>20 | * This term can be entered in 4P (Sur). USWD or as a reflection coefficient D D |                  |                       |                     |            |                     |                       |                          |                                                             |               |                         |                     |
| .2<br>10 | 111                                                                             | 15.4E            | (= 1/1)               | . ue enue<br>2 VSVл | Q = 0.179  | reflex              | y, violvy<br>rtion ac | n or as a                | Tenecaon coemicient.                                        |               | D.Doyuts                |                     |
| 21       | с. <u></u>                                                                      | iju              | ) = 1. <del>4</del> . | 5 9 6 9 9 1         | 0.176      | Terrei              | CHOILCE               | , cificient              |                                                             |               |                         |                     |
|          |                                                                                 |                  | 89754                 | with 3              | 46C 🥢      | 89754               | with Ne               | 4002A /                  | F4448A with                                                 |               |                         |                     |



#### **Measurement Uncertainty Case Studies**

**Noise Figure Uncertainty** 

The uncertainty of the overall noise system is related to the noise source (match and ENR uncertainty), device under test (noise figure, gain , i/p and o/p match) and instrument parameters (noise figure uncertainty, gain uncertainty, level of noise figure and match).

See http://www.agilent.com/find/nfu



Noise Figure Basics

| Calculator                                                                  | Tabular Results                                | Graphical Results                |  |  |  |
|-----------------------------------------------------------------------------|------------------------------------------------|----------------------------------|--|--|--|
| Press                                                                       | this Button to reset the form to defa          | ult values                       |  |  |  |
| Devic                                                                       | e Under Test 💿 Amplifier 🔿 Frequenc            | y Convertor                      |  |  |  |
| Noise Source                                                                | Noise Source                                   |                                  |  |  |  |
| Noise Source Defaults                                                       |                                                | Instrument Defaults              |  |  |  |
| 346B                                                                        | <b>*</b>                                       | N8973A                           |  |  |  |
| ENR Uncertainty (+/-dB)                                                     | DUT Noise Figure, NF1 (dB)                     | Instr. Noise Fig. Uncert.(+/-dB) |  |  |  |
| 0.2                                                                         | 3                                              | 0.05                             |  |  |  |
| NS Match *                                                                  | DUT Gain, G1 (dB)                              | Gain Uncertainty (+/-dB)         |  |  |  |
| 1.15                                                                        | 20                                             | 0.2                              |  |  |  |
|                                                                             | DUT Input Match *                              | Instrument Noise Fig, NF2 (dB)   |  |  |  |
|                                                                             | 1.5                                            | 6                                |  |  |  |
|                                                                             | DUT Output Match *                             | Instrument Match *               |  |  |  |
|                                                                             | 1.5                                            | 1.6                              |  |  |  |
| Parameter                                                                   | Lower Value Up                                 | oper Value Number of Points      |  |  |  |
| Sweep NONE                                                                  | ▼                                              |                                  |  |  |  |
| * This term can be entered in dB(Sxx), VSWR or as a reflection coefficient. |                                                |                                  |  |  |  |
| e.g15 (dB) = 1.43 (VSWR)                                                    | e.g15 (dB) = 1.43 (VSWR) = 0.178 (Refl. Coef.) |                                  |  |  |  |

| Calculator                                    | Tabular                         | Results                  | Graphical Results |
|-----------------------------------------------|---------------------------------|--------------------------|-------------------|
|                                               |                                 |                          |                   |
|                                               | Contributors                    |                          | Contribution (dB) |
| Coefficient                                   | Factor                          | S                        |                   |
| (E10/E1)                                      | - Mismatch between the noise s  | ource and the DUT        | 0.134             |
| (F12/F1)                                      | - Instrument noise figure measu | rement uncertainty       |                   |
|                                               |                                 |                          |                   |
| (F2/F1C1)                                     | - Mismatch between the noise s  | ource and the instrument | 0.003             |
| (12/1101)                                     | - Instrument noise figure measu | irement uncertainty      |                   |
|                                               |                                 |                          |                   |
|                                               | - Mismatch between the noise s  | ource and the DUT        | 0.007             |
| ((F2 - 1)/(F1G1))                             | - Mismatch between the noise s  | ource and the Instrument |                   |
| - Mismatch between the DUT and the instrument |                                 |                          |                   |
|                                               | - Instrument gain measurement   | uncertainty              |                   |
|                                               |                                 |                          |                   |
| (F12/F1)-(F2/F1G1)                            | - Noise source ENR uncertainty  |                          | 0.199             |
|                                               |                                 |                          |                   |
| RSS Noise Figure M                            | easurement Uncertainty (+/-dB)  | 0.238                    |                   |
|                                               |                                 |                          |                   |
|                                               |                                 |                          |                   |
|                                               |                                 |                          |                   |

#### **Agilent's Noise Figure Legacy**



340A

1958



8970

1980

**Nearly 50 years of Leadership** 



8560/90 with NF 1995



85120 1999



#### NFA 2000



PNA-X with NF 2007





MXA, EXA with NF 2007



ESA with NF 2003

**Agilent Technologies** 



PSA with NF 2002

Noise Figure Basics

Page 43

### Agenda

- Overview of Noise Figure
- Noise Figure Measurement Techniques
- Accuracy Limitations
- PNA-X's Unique Approach



### Source-corrected Noise Figure Measurements for the PNA-X





### Single Connection, Multiple Measurements

- Easily switch between measurements:
- One signal source
- CW S-parameters
- Pulsed S-parameters
- Gain compression
- AM-to-PM conversion
- Harmonics
- Two signal sources
- Intermodulation distortion
- Hot-S<sub>22</sub>
- Phase versus drive
- True-mode stimulus
- Conversion loss/gain
- Noise figure





#### **Noise Figure Definition** Noise figure is defined in terms of SNR degradation:

$$F = \frac{(S_i/N_i)}{(S_o/N_o)} = \frac{(N_o)}{(G \times N_i)}$$
 (noise factor)  

$$NF = 10 \times \log (F)$$
 (noise figure)  
Gain  
Gain  
S\_i/N\_i  
S\_i/N\_i  
Test system is assumed to be 50  $\Omega$ 

#### **PNA-X's Unique Source-Corrected Technique**

- PNA-X varies source match around 50 ohms using an ECal module (source-pull technique)
- With resulting impedance/noise-figure pairs and vector error terms, very accurate 50-ohm noise figure (NF<sub>50</sub>) can be calculated
- Each impedance state is measured versus frequency



#### **Speed Comparison: PNA-X Versus Y-Factor**





#### **Noise Figure Uncertainty Example (ATE Setup)**



Noise Figure Basics







#### **Noise Figure Uncertainty Example (Wafer Setup)**



Noise Figure Basics

• Agilent Technologies

### **Uncertainty Breakdown (Wafer Setup)**





#### **Example NF Measurements**



### **Airline Demonstration**



Noise Figure Basics



#### **NF Comparison in Pseudo ATE environment**





### 2-Port PNA-X Options 219, 224, 029



### **Typical Noise Figure of Port Two**



#### Noise Channel Parameters







**Agilent Technologies** 

### **Noise Figure Setup**

| Noise Figure Setup : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency       Power       Noise Figure         Sweep       Type <ul> <li>Linear Sweep</li> <li>Log Sweep</li> <li>Fixed Frequency</li> <li>Segment Sweep</li> </ul> Sweep Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 MHz<br>8.0 MHz<br>4.0 MHz<br>2.0 MHz<br>800 kHz                                                                                                                                                                                                        |
| Number Of Points:       201       Image: Plandwidth:       1.000 kHz       Image: View of the second se | Noise Figure Setup : 1     Prequency   Power   Noise   Bandwidth/Average   Noise   Bandwidth:   4.0 MH2   Average   Number:   5   Impedance States     Noise   Tuner:   N4691-60004 ECal 02238     Max Acquired   Impedance States:     0K   Cancel Apply |
| OK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 through 7                                                                                                                                                                                                                                               |

### **Calibration Procedure**

- Calibration uses sinusoidal and noise sources, plus cold terminations
- Some differences between high and low band calibrations
- Calibration sequence for simplest case (insertable)
  - 1. Connect noise source to port 2
    - Measure hot and cold noise power
    - Measure hot and cold match of noise source
  - 2. Connect through (ports 1 and 2)
    - Measure gain differences between 0, 15, 30 dB stages
    - Measure load match of noise receivers
    - Measure  $\Gamma_s$  values of ECal used as impedance tuner
    - Measure receiver noise power with different tuner  $\Gamma_s$  values (mechanical cal only)
  - 3. Connect calibration standards (ports 1 and 2)
    - Measure normal S-parameter terms
    - Measure receiver noise power with different  $\Gamma_s$  values (use ECal or mechanical standards)
- Non-insertable cases require extra steps
  - additional 1-port calibration to account for adapter if noise source is non-insertable
  - additional S-parameter cal steps for non-insertable DUTs





### **Calibrating On Wafer**



### **Comparison Between Gain Settings**

NF AMF7D Miteq w/various pads



#### **Measuring Attenuators**



20 dB attenuator

40 dB attenuator





### Interference

## Beware of unshielded devices, especially near 0.9, 1.8, 2.4, 5.5 GHz!



![](_page_64_Picture_4.jpeg)

### **Compression and Damage**

- **Compression in noise receivers:** 
  - Wideband noise compresses front-end amplifiers first •
  - Narrowband noise likely to compress ADC before front-end amplifiers •
  - **PNA-X** will report overload for both cases
- Damage level for noise receivers is lower than standard receivers
  - Front-panel specification is +25 dBm in noise mode ٠
  - Firmware checks power before switching in 30 dB stage •

![](_page_65_Figure_8.jpeg)

![](_page_65_Picture_9.jpeg)

TC724

### **Summary**

- Y-factor method offers reasonable accuracy when noise source is connected directly to DUT
- Source-corrected cold-source technique:
  - Offers best accuracy in all cases
  - Works in fixtured, on-wafer, and ATE environments
  - Is 1.4 to 10 times faster than NFA
- PNA-X offers highest accuracy as well as speed and convenience of single connection to DUT for a variety of amplifier measurements

![](_page_66_Figure_7.jpeg)

![](_page_66_Picture_8.jpeg)

### References

- Applications Notes
  - Fundamentals of RF and Microwave Noise Figure Measurements, AN 57-1, Publication Number 5952-8255E
  - Noise Figure Measurement Accuracy The Y-Factor Method, AN 57-2, Publication Number
  - 10 Hints for Making Successful Noise Figure Measurements, AN 57-3, Publication Number 5980-0288EN
- Web Links

http://www.agilent.com/find/nf

NFA : http://www.agilent.com/find/nfa

PSA : http://www.agilent.com/find/psa

NF Uncertainty Calculators: http://www.agilent.com/find/nfu

![](_page_67_Picture_10.jpeg)