Oscillator Oddities: The art of oscillator design, and its impact on system performance

> Howard Hausman Vice President of Engineering MITEQ, Inc. Hauppauge, NY hhausman@miteq.com

April 11, 2007

Oscillator Design Concepts and Specifications - Topics

"While oscillators have been around for a long time, oscillator design is complex and sometimes still mystifying."

- Time
- Oscillator Design Basics
- Oscillator Specifications
 - Frequency Stability
 - Spurious & Parasitic Oscillations
 - Pulling (VSWR effects)
 - Phase Noise
- Effects of Phase Noise
- Phase Noise & Error Probability
- Jitter -

April 11, 2007

Time: Oscillators are Timing Devices

(Cycles / Second)

- DC Input AC Output
- Uses
 - Timing
 - Synchronization
 - Frequency Translation of Information

DC

- Modulated Carrier
- Local Oscillator

 $V_{out}(t) = V_{peak} Cos(\omega_{osc}t + \phi_0)$

- Frequency is determined by a Resonant Circuit
- Oscillator Configurations
 - Negative Resistance Oscillator
 - Feedback Oscillator -

April 11, 2007

MITEQ, Inc.

Timing in Seconds. What is a Second?

- Standard Interval (SI) unit of time: Second
- Prior to 1967 unit of time was based on astronomical observations
 - Second was "1/31,556,925.9747 of the tropical year..."
- Redefined, in October, 1967, at the XIII General Conference of Weights and Measures.
 - Second is "9,192,631,770 transitions between the two hyperfine levels of the ground state of the cesium atom 133."
 - Hyperfine levels are when the Electrons & nucleus magnetic moments align in parallel or anti-parallel -

April 11, 2007

Accuracy of Time Measurements

		Accuracy
Time Period	Clock/Milestone	Per Day
4th millennium B.C.	Day & night divided into 12 equal hours	
Up to 1280 A.D.	Sundials, water clocks	~1 h
	Mechanical clock invented- assembly time for prayer	
~1280 A.D.	was first regular use	~30 min
	Clock making becomes a major industry Hour divided	
14th century	into minutes and seconds	~15 min
~1345	Clock time used to regulate people's lives (work hours)	
15th century	Time's impact on science becomes significant	~2 min
-	(Galileo times physical events, e.g., free-fall) First	
16th century	pendulum clock (Huygens)	~1 min
1656	Temperature compensated pendulum clocks	~10 s
18th century	Electrically driven free-pendulum clocks	1 s
19th century	Wrist watches become widely available	10-1 s
~1910 to 1920	Electrically driven tuning forks	10-3 s
1920 to 1934	Quartz crystal clocks (and watches)	10-5 s
1949 to 1955	Atomic clocks	10-9 s
		a second
	Cesium Atomic Clock at the National Physical	in 300
1955 to 1967	Laboratory	years
		one
		second in
	Cesium clocks measure frequency with an accuracy of	1,400,000
1967 to present	from 2 to 3 parts in 10^14th 2 nanoseconds per day	vears

MITEQ, Inc. Howard Hausman

April 11, 2007

Navigation Drove Accurate Timing

Principal motivator in man's search for better clocks
Latitude

□Even in ancient times, measured by observing the stars' positions □Longitude, the problem became one of timing

Earth makes one revolution in 24 hours

□Can be determined from the time difference between local time (which was determined from the sun's position) and the time at the

Greenwich meridian (which was determined by a clock):

□Longitude in degrees = (360 degrees/24 hours) x t in hours.

- □In 1714, the British government offered a reward of 20,000 pounds to the first person to produce a clock that allowed the determination of a ship's longitude to 30 nautical miles at the end of a six week voyage (i.e., a clock accuracy of three seconds per day).
- □Englishman John Harrison won the competition in 1735 for his chronometer invention, a spring-driven clock

The moving parts are controlled and counterbalanced by springs so that,

unlike a pendulum clock, H1 is independent of the direction of gravity. -

The First Oscillator

- First radio transmitter used a spark between two nodes to generate RF.
- Generated a large range of frequencies
- Only suitable to send coded messages i.e.
 Morse code
- Now illegal because of the large bandwidth used.
- Still causes interference in cars. -

MITEQ, Inc. Howard Hausman

MITEQ, Inc.

Resonator is a One port network

at Resonance (Fo)

 $\rho := \frac{(ZL - Zo)}{ZL + Zo}$ ZL is real only at the resonant frequency (ZL(Fo)) ZL(Fo) = -Zo

April 11, 2007

- Result: Reflected voltage without an incident voltage (oscillates)
- An Emitter Follower is a classic negative resistance device
- Technique used at microwave frequencies
 - Spacing between components often precludes the establishment of a well defined feedback path. -

• A*H1(s)*H2(s) = open loop gain = AL(s) -

MITEQ, Inc. Ho

Barkhausen Criteria

Barkhausen criteria for a feedback oscillator

- open loop gain = 1
- open loop phase = 0
- |A*H1(s)*H2(s)| = |AL(s)| = 1
- Angle (A*H1(s)*H2(s)) = 0
- $s = \omega_o$ (for sinusoidal signals)
- Re AL(ω_o) = 1 $\underline{Vo} = (A \cdot H1(s))$
- Im AL(ω_o) = 0 V1 \cdot^- 1 A·H1(s)·H2(s)
- Transfer function blows up (Output with no Input)
 - Vo is finite when V1 = 0

Sum

H2 (s)

Vo(s)

H1(s)

Designing conditions for Start-Up

To start an oscillator it must be triggered

- Trigger mechanism: Noise or a Turn-On transient
- Open loop gain must be greater than unity
- Phase is zero degrees (exponentially rising function)

Amplitude Stabilization

- As amplitude increases Gain decreases the effective gm (transconductance gain) is reduced
- Poles move toward the Imaginary axis
- Oscillation amplitude stabilizes when the poles are on the imaginary axis
- Self correcting feedback (variable gm) maintains the poles on the axis and stabilizes the amplitude

Oscillator Amplitude is Not Random

$$Ie := Ies \cdot \begin{pmatrix} Vbe \\ Vt \\ -1 \end{pmatrix} \quad Vt := \frac{(k \cdot T)}{q}$$

$$Vbe = Vbe_{DC} + Vbe_{AC}$$

$$Vbe = Vbe_{DC} + Vbe_{AC}$$

$$V_{BE} \cdot \begin{pmatrix} q \\ k \cdot T \end{pmatrix} \cdot e^{V1} \cdot \begin{pmatrix} q \\ k \cdot T \end{pmatrix} \cdot cos(\omega \cdot t)$$

$$V1 = Vp = Peak value of AC component$$

$$x := \frac{V1}{Vt} \quad VBE \cdot \begin{pmatrix} q \\ k \cdot T \end{pmatrix} \cdot e^{(x) \cdot cos(\omega \cdot t)}$$

$$I_{C} := I_{ES} \cdot e^{VBE \cdot \begin{pmatrix} q \\ k \cdot T \end{pmatrix}} \cdot e^{(x) \cdot cos(\omega \cdot t)}$$

$$I_{C} := \alpha \cdot Ieq \cdot \begin{pmatrix} e^{x} \cdot cos(\omega \cdot t) \end{pmatrix}$$

e $\mathbf{x}\cos(\omega t)$ has a Fourier expansion = $I_o(x) + 2\Sigma I_n(x)\cos(n\omega t)$ Σ is from 1 to ∞

 $\boldsymbol{I}_n(\boldsymbol{x})$ is a modified Bessel function of the first kind of order n and argument \boldsymbol{x}

$$I_{n} := \frac{1}{2 \cdot \pi} \cdot \int_{-\pi}^{\pi} e^{x \cdot \cos(\theta)} \cdot \cos(n \cdot \theta) d\theta$$

• $Ic \approx Ieq^*(Io(x) + 2\Sigma In(x)cos(n\omega t))$

April 11, 2007

• Note: Io modifies the DC Current -

Large Signal Transconductance Gain - Gm

- Large signal transconductance (Fundamental) gain=Gm=[gm*((2*I1)/Io)]/x
- Io & I1 are zero order & 1st Order Bessel Functions of the first kind with argument x= Vp/ Vt
- Vp is the Peak voltage of the sinusoidal signal at the Base-Emitter junction [Vp Sin (2 π Fo t)]
- Vt = kT/q
 - k = Boltzman's Constant
 - T = Temperature in Degrees Kelvin
 - q = Charge on an electron
- gm = Small signal transconductance gain
 - gm = leq/Vt (leq = Quiescent emitter current) -

Large Signal vs Small Signal Gain as a <u>Function of x</u>

- Large signal transconductance gain = Gm = [gm*((2*I1)/Io)]/x
- Gain compression ratio for increasing signal = Gm/gm
 - Gm/gm = [((2*I1)/Io)]/x = [((2*I1)/Io)] / (Vp/Vt)
 - Self Correcting Amplitude: Vp (Signal) goes up, gain Gm goes down,
- Note that the Output signal amplitude is a function of Ieq = gm*Vt
- Higher Ieq higher output amplitude -

MITEQ, Inc. Howard Hausman

ble A-3 Tabulation of $2I_n(x)/I_0(x)$ vs. x for n = 1, 2, 3, 4, 5

•_. .

Tabulation of				
the Bessel				
Function				
Solution				

x	$2I_1(x)/I_0(x)$	$2I_2(x)/I_0(x)$	$2I_3(x)/I_0(x)$	$2I_4(x)/I_0(x)$	$2I_{5}(x)/I_{0}(x)$
0.0 0.5 1.0	0.0 0.4850 0.8928	0.0 0.0600 0.2144	0.0 0.0050 0.0350	0.0 0.0003 0.0043 0.0179	0.0 0.0000 0.0004 0.0026
1.5	1.1923	0.4103	0.0901	0.0445	0.0086
2.0	1.3955	0.6045	0.1800	0.0839	0.0200
2.5	1.5300	0.7760	0.2004	0.1335	0.0374
3.0	1.6200	0.9200	0.3933	0.1900	0.0607
3.5	1.6822	1.0387	0.4751	0.2506	0.0893
4.0	1.7270	1.1303	0.5785	0.3129	0.1222
4.5	1.7607	1.2175	0.0785		
		1 2053	0.7585	0.3751	0.1584
5.0	1. 768	1.2035	0.8311	0.4360	0.1970
5.5	1.8076	1.3427	0.8969	0.4949	0.2370
6.0	1.8247	1.3910	0.9564	0.5513	0.2779
6.5	1.8390	1.4.542	1 0104	0.6050	0.3189
7.0	1.8511	1.5036	1 0595	0.6560	0.3598
7.5	1.8615	1.5050	1.1043	0.7042	0.4001
8.0	1.8705	1.5580	1 1452	0.7497	0.4396
8.5	1.8/84	1.5910	1 1827	0.7926	0.4782
9.0	1.8854	1.5010	1.2172	0.8330	0.5157
9.5	1.8916	1.0018			
10.0	1.8972	1.6206	1.2490	0.8712	0.5520
10.5	1.9022	1.6377	1.2784	0.9072	0.5872
11.0	1.9068	1.6533	1.3056	0.9412	0.6538
11.5	1.9110	1.6677	1.3309	0.9733	0.6956
12.0	1.9148	1.6809	1.3545	1.0030	0.0354
12.5	1.9183	1.6931	1.3765	1.0324	0.7450
13.0	1.9215	1.7044	1.3970	1.0390	0.7731
13.5	1.9244	1.7149	1.4163	1.0654	0.8002
14.0	1.9272	1.7247	1.4344	1.1099	0.8262
14.5	1.9298	1.7338	1.4515	1.1332	
15.0	1 9321	1.7424	1.4675	1.1554	0.8513
15.5	1 9 3 4 4	1.7504	1.4827	1.1765	0.8754
16.0	1,9365	1.7579	1.4970	1.1966	0.898/
16.5	1.9384	1.7650	1.5105	1.2158	0.9211
170	1.9403	1.7717	1.5234	1.2341	0.9426
17.5	1.9420	1.7781	1.5356	1.2516	0.9634
18.0	1.9436	1.7840	1.5472	1.2683	0.9835
18.5	1.9452	1.7897	1.5582	1.2843	1.0028
10.5	1.9466	1.7951	1.5687	1.2997	1.0215
10.5	1,9480	1.8002	1.5788	1.3144	1.0395

MITEQ, Inc. Howard Hausman

April 11, 2007

MITEQ, Inc.

Howard Hausman

Oscillator Amplitude

- Open Loop Gain (Small Signal (gm)) > 1
- Oscillation level increases until the open gain = 1 (@ Gm)
- Look at the graph Gm/gm & find x
- X = Vp/Vt
- Calculate Vp

April 11, 2007

- Vp * Gm = Peak value of Collector current (Icp)
- Oscillator Output Voltage = Icp*RL*cos(wt)
- Oscillator harmonics are the higher order Bessel functions attenuated by the rejection of the collector resonant circuit

Oscillator Specifications Frequency Stability

Conditions for Oscillation

- Sufficient gain in the 3 dB bandwidth (Open Loop Gain>1)
- Components around the loop are real (Resistive, Zero Phase)
- Circuit oscillates at resonance $\omega_0 = 1/(LC)^{\frac{1}{2}} = 2^*\pi^* F_0$

Factors Affecting Oscillator Stability

- Stability of the Resonator
- Q of the resonator
- Causes of Oscillator Frequency Drift
 - Change in resonant frequency
 - Change of Open Loop Phase -

MITEQ, Inc.

Parasitic Phase Shifts vs Frequency Stability

MITEQ, Inc.

Frequency Stability – Resonator Dependent

- Center Frequency Resonator (Fo)
- Q of the Resonator
 - Phase Stability (A function of Q=Fo/BW_{3dB})
- $\Delta F_0 / \Im \phi$ (Hz/Deg) $\approx F_0 / [90 ° Q]$

	Q	Q	Stability
	Min	Max	PPM/C
LC Resonators:	50	150	100
Cavity resonators	500	1000	10
Dielectric resonators:	2,000	10000	1
SAW devices:	300	10000	0.1
Crystals	50000	1000000	0.01

- Parasitic ^Iresonance
- Gain > 1 when the phase=0 Degree
- Poles are in the Right half plane
- Stabilization at 2 points on the imaginary axis
- Cure: Add a Filter

April 11, 2007

Lower the gain at the parasitic frequency -

MITEQ, Inc. Howard Hausman

Multiple Oscillations

- When multiple oscillation conditions coexist multi-oscillation can be present.
- Usually distorts the desired periodic signal.
- Signal can be useless for most applications

Discontinuities in the transfer function must be eliminated -

MITEQ, Inc.

Howard Hausman

Pulling (VSWR effects)

Change in frequency due to variations in VSWR: Amplitude and/or phase

Changing phase moves the frequency within the resonator bandwidth -

MITEQ, Inc.

Switching Oscillator Loads

- During switching the VSRW dynamically changes
- Frequency of oscillation could change
- Phase Locked Oscillators
 - Oscillator Frequency changes faster than the loop corrects
 - An oscillator can lose phase lock
- Sufficient isolation during dynamic conditions is required -

Switched Oscillators

Load Changes effect oscillator frequency

- Oscillator frequency will not settle until the switching transient is over
- Suggested solutions
 - The used of terminated switches are encouraged
 - Very good isolation between the oscillator and the switch -

- Phase Noise $(\Delta \Phi_{\text{RMS}})$ is phase (frequency) modulation of the carrier
- Measure of the Sources Spectral Purity
- Close to the carrier Phase Noise is dominant
- Far from the carrier Thermal Noise is dominant -

April 11, 2007

Phase Noise Spectral Density Function Single Side Band RMS Close to the Carrier

- Carrier is translated to zero frequency to create a carrier null
- Eliminates Spectrum Analyzer Phase Noise -

- Each Noise Resolution bandwidth (1Hz in this case) is represented as a modulating signal (Narrow Band FM)
 - Offset from the carrier determines the modulating frequency, Fm
 - sidebands (dBc) =20*Log₁₀(β /2) for β = small (<1)
 - β (modulation index) is phase noise in Radians
- Total Phase noise is the integrated sum over the band of interest -

Power Spectrum of Phase Noise

Oscillator Phase Noise Characteristics

Phase noise can be estimated by a simplified version of Leeson's equation:

- Qu of the circuit
- Psig is RF Power
- Center Frequency (ω_o)
- Offset from the carrier ($\Delta \omega$)
- K is boltzman's constant
- T is temperature in degree Kelvin
- F is the noise factor of the oscillator amplifier
- This is noise power (single sideband) to carrier power ratio normalized to a 1 Hz bandwidth. Units are dBc/Hz.
- Phase noise multiplication effects
 - 20 Log(N) where N is Multiplication Factor -

$$10\log\left|\frac{2kTF}{P_{sig}}\left(\frac{\omega_{0}}{2Q_{u}\Delta\omega}\right)^{2}\right|$$

Phase Noise in Degrees RMS

Total Phase Noise in Degrees RMS is the Integrated phase noise over the band of interest -

Band of interest 500Hz to 10kHz

MITEQ, Inc. Howard Hausman

Total RMS Phase Noise

•Each 1 Hz bandwidth (dBc/Hz) is the result of narrow band modulation (β < 0.5)

•Convert SSB (dBc/Hz) to Degrees RMS ($\Delta \Phi_{RMS}$)

Total Phase Noise

$$\beta_{\text{Total}} := \sqrt{(\beta_1)^2 + (\beta_2)^2 + (\beta_3)^2}$$

April 11, 2007

MITEQ, Inc.

RMS Phase Noise Integration Limits

Sum ONLY over Applicable
 Frequencies

Typically 1/50 Symbol Rate to 1 Symbol Rate (f₁ to f₂)
Integrate in segments <= 1 decade

$$\left(\Delta \phi_{\mathbf{R}\mathbf{M}} \right)_{\text{Total}} = \sqrt{\left[\left(\Delta \phi_{\mathbf{R}\mathbf{M}} \right)_{1}^{2} + \left[\left(\Delta \phi_{\mathbf{R}\mathbf{M}} \right)_{2}^{2} + \left[\left(\Delta \phi_{\mathbf{R}\mathbf{M}} \right)_{3}^{2}\right]^{2} + \left[\left(\Delta \phi_{\mathbf{R}\mathbf{M}} \right)_{3}^{2} + \left[\left(\Delta \phi_{\mathbf{R}\mathbf{M}} \right)_{3}^{2}\right]^{2} + \left[\left(\Delta \phi_{\mathbf{R}\mathbf{M}} \right)_{3}^{2}\right]^{2} + \left[\left(\Delta \phi_{\mathbf{R}\mathbf{M}} \right)_{3}^{2} + \left[\left(\Delta \phi_{\mathbf{R}\mathbf{M}} \right)_{3}^{2}\right]^{2} + \left[\left(\Delta \phi_{\mathbf{R}\mathbf{M}} \right)_{3}^{2} + \left[\left(\Delta \phi_{\mathbf{R}\mathbf{M}} \right)_{3}^{2}\right]^{2} + \left[\left(\Delta \phi_{\mathbf{R}\mathbf{M}} \right)_{3}^{2} + \left[\left(\Delta \phi_{\mathbf{R}\mathbf{M}} \right)_{3}^{2} + \left[\left(\Delta \phi_{\mathbf{R}\mathbf{M}} \right)_{3}^{2}\right]^{2} +$$

• Beware of the number of poles in the loop (-20dB/decade/pole) • $\Delta \Phi_{\text{RMS}}$ is the Root Mean Square (1 Standard Deviation, 1 σ) -

Effects of Phase Noise

- Thermal Noise is signal dependent
 - Higher signal: Higher S/N
- Phase Noise is not signal level dependent
 - Effects system operation at all signal levels
- Low Phase Noise must be designed into the Oscillator
 - Higher levels of noise near the carrier
 Cannot be eliminated by filtering
 - Limiting has no effect (LO in a mixer) -

System Problems Due to Phase Noise

- Limits receivers' dynamic range
 - Effects channel spacing
 - Limits Doppler radar performance
- Causes bit errors in digital communication systems
 - Phase Errors
 - Limits synchronization accuracy Jitter –

Phase Noise Effects in RF Applications

- RADAR return is Doppler-shifted from the moving target + large stationary (clutter) signal
- Phase noise on the clutter could mask the target signal -

Typical Doppler Shifts

April 11, 2007

MITEQ, Inc.

QAM Modulation

Quadrature signals (QPSK) have discrete Amplitudes

- I & Q Vector Phase (0° / 180 ° & 90° / 270 °)
- p_I(t) & p_Q(t) = Discrete (Binary) Amplitude Steps
- Resultant vectors points to a constellation of points

64-QAM Modulation (six bit code 2⁶)

 Each Vector position points to a 6 bit code -

MITEQ, Inc. Howard Hausman

QAM Decision Region

Lines between the constellation points are the threshold levels

 Signals residing in the square are assume to reside at the discrete vector location.
 Codes are usually selected so a wrong threshold decision is only a 1 bit error -

Threshold Boundary

Bit Error: Received Vector
 Falls Outside Boundary
 Amplitude Vector without
 deterministic errors (Blue)
 Add noise vector (Red)
 Random Phase (Rotates 360°)
 Gaussian Amplitude
 Distribution -

MITEQ, Inc.

Standard Deviation & RMS Noise

MITEQ, Inc.

QAM Geometric Effects

- Maximum angle error is dependent on Symbol Location
- Outer Symbols Tolerate the least angle error
 - □Outer symbol error = 7°
 - □Inner symbol error = 45°
- Allowable Error Window
 is smaller for More Complex
 Modulation -

Modulation	Error
●2QAM	90.0°
●4QAM	45.0°
●16QAM	16.9°
•32AM	10.9°
●64QAM	7.7°
•1280AM	5.1°

April 11, 2007

MITEQ, Inc.

Howard Hausman

Phase Noise & Error Probability

April 11, 2007

MITEQ, Inc.

Howard Hausman

• 1σ phase noise is 0.6°

April 11, 2007

- Add thermal noise under small signal conditions
- Add deterministic phase errors, e.g. Group delay distortion, Power amplifier compression, etc.
 - Deterministic errors effects the initial pointing of the vectors -

Jitter is an undesired fluctuation in the timing of events
 Modeled as a "noise in time"

$$v_{j}(t) = v(t+j(t))$$

Jitter is the Time-domain equivalent of phase noise

$$j(t) = \phi(t)T / 2\pi$$

Jitter is caused by

April 11, 2007

- phase noise on a clock
- Thermal noise on a threshold -

MITEQ, Inc.

Howard Hausman

Eye Diagrams

MITEQ, Inc.

Howard Hausman

Conclusion

- Oscillator parameters are predictable but complex
 - Completed 1st step in de-mystifying oscillators
 - Suggestions for related lectures and comments are welcome
 - <u>hhausman@miteq.com</u>

MITEQ, Inc. Howard Hausman