Phase Noise

Howard Hausman MITEQ, Inc., Hauppauge, NY 11788 hhausman@miteq.com

➢ Part 1 The Fundamentals of Phase Noise ➢ Part 2 Phase Noise Models & Digital Modulation Techniques ➢ Part 3 Effects of Phase Noise on Signal Recovery

Howard Hausman August 2009

The Fundamentals of Phase Noise - Part 1 Topics

- Thermal Noise Characteristics
- Thermal Noise Effects on Threshold Performance
- Frequency / Phase Modulation
- Oscillator Basics
- Oscillator Stability
- Frequency Stability Related to Phase Noise
- Phase Noise Spectral Density -

Applications Affected by Phase Noise

- Digital Communications
 - Causes Bit Errors
 - Not related to signal level
 - Causes timing errors
- Doppler RADAR

Stationary Clutter Doppler Return

- Limits the ability to identify slow moving objects
- Phase Tracking Systems
 - Causes tracking errors
- Phase Lock Loops
 - Trade off phase lock frequency tracking and noise compensation
 - Can limit phase lock loop acquisition/reacquisition -

Thermal Noise Characteristics

- Thermal Noise is the random motion of electrons
 - At 0°K all motion stops Zero Thermal Noise
 - Thermal Noise can be related to temperature
 - Excess thermal noise can be related to an increase in temperature: °K
- Thermal Noise level
 - Unknown at any instant of time
 - Statistically well behaved
 - Precisely known over a long time

Averaging time >>1/BW -

Howard Hausman August 2009

Deriving Thermal Noise

- Thermal Noise is only present in Real Elements, e.g. resistors, etc.
- Reactive elements have zero average thermal noise (L's & C's)
- Thermal noise in a real element, e.g. Resistor, is:

$$v_{n} = \sqrt{\frac{4h f BR}{e^{hf/kT} - 1}}$$

- h x f is momentum of a electromagnet particle
 - h = Planck's Constant: h=6.626 x 10⁻³⁴ J*S
 - f = frequency (Hz)
- B is Band width (Hz)
- R is Resistance (Ohms)
- k is Boltzmann's constant
 - k= (-228.6 dB/°K/Hz)
 - [Boltzman's Constant (dB)]
- T is temperature in degrees Kelvin -

Howard Hausman August 2009

Deriving Thermal Noise

$$v_{n} = \sqrt{\frac{4h f BR}{e^{hf/kT} - 1}}$$

• h x f << kT

$$e^{hf/kT} - 1 \approx \frac{hf}{kT}$$

h x f term cancels out Noise Voltage V_n = $\sqrt{4kTBR}$

Thermal Noise into a Load
 Noise into a matched load is: V_n /2

$$P_n = \frac{v_n^2}{4R} = kTB$$

Deriving Thermal Noise

- P_n = Thermal Noise Power = kTB (Watts)
 - k = Boltzman's Constant
 - k= (-228.6 dB/°K/Hz)
 [Boltzman's Constant (dB)]
 - T = Temperature in Degrees Kelvin
 - B is bandwidth in Hz
- At Room temperature T = 25 C → 298 K
- kTB = 4.11 x 10⁻¹⁸ milliWatts in a 1 Hertz Bandwidth → – 173.859dBm/Hz (≈-174dBm/Hz)-

 $k = 1.3807 \times 10^{-23}$ joule/K

Signal to Noise Ratio

Measure of relative signal power to noise power

Noise Figure

- Noise figure is defined as a degradation in Signal to Noise Ratio $F = \frac{Si/Ni (input)}{So/No (output)} \ge 1$
- Si/Ni is always greater than or equal to So/No
- F is the Noise Factor (Linear units)
- NF (dB) = S_{in}/N_{in} (dB) S_o/N_o (dB)
- NF = 10 Log(F) in dB
- Amplification doesn't improve S/N
- Ratio is constant

F >= 1

NF >= 0

Noise Figure Degradation

- Every Real Component adds Noise
- Low Noise systems
 - Amplify the input Signals & Noise
 - Minimizes the effects of other system noise generators

- S/N is degrades in every real component
 - At constant temperature and band-width -

Noise Figure & Total Effective Input Noise

- At the input of a device
 - Signal Input (S_{in})

- All add together & get amplified
- Example of Effective Input Noise Level (N_{in}) = kTBF
 - kTB → -174dBm in a 1Hz BW
 - F → NF = 10 dB
 - $\blacksquare B = 5MHz \rightarrow 10Log(5MHz/1Hz) = 67dB$
 - N_{in} = KTB(dB) + NF = -174 dBm + 10 dB + 67dB= -97 dBm in a 5 MHz Bandwidth
- Noise can be reflected to the input or output
 - Output Noise (N_o) is Input Noise times device gain (A₁) -

 S_{in}/N

S_Q/N_o

 A_1

Noise Figure of a Passive Element

- Thermal noise does not add
 - Noise at the output of a resistor is the same as the input of a resistor
 - Signal decreases therefore S/N degrades

- Ideal reactive elements have no loss
 - Reactive Networks store power, don't dissipate power
 - Noise figure is 0dB if the device has no loss -

First Stage Output Noise

- Noise at the output of the 1st stage
 - N_{in} = kTB
 - Noise Factor = Input device noise above kTB
 - N₁ = F1*kTB –kTB = (F1-1)*kTB, F1 is the factor above kTB
 - Total input noise = kTB + (F1-1)*kTB = F1kTB
 - Total Output Noise = N₀₁ = kTB*F1*G1 -

- Noise at the input of the 2nd stage (including 2nd stage noise)
 - Ni2 = No1+ kTBF2- kTB (can't add thermal noise twice)
 - Ni2 = No1+ kTB* (F2-1)
 - Ni2= kTB*F1*G1+ kTB* (F2-1)
- Effective input noise = N_{eff}
 - N_{eff} = Ni2/G1 = kTB*F1+ kTB* (F2-1)/G1

Amp #2 is noiseless when you consider the input noise = N_{eff} -

Howard Hausman August 2009

Noise Figure of a Multistage (cascaded) System

- N_{eff} = kTB(F1+[F2-1]/G1) = kTB F_{eff}
- Effective Input Noise factor F_{eff} = F1+[F2-1]/G1
- NF_{eff}=10Log(F_{eff}) → Effective input Noise Figure
- Applying this formula to many stages

$$F = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots + \frac{F_n - 1}{G_1 G_2 \cdots G_{n-1}}$$

Cascaded Noise Figure Example

AM / FM Comparison De-Modulated Signal to Noise

- AM & FM S/N do not have the same performance through a demodulator
- FM: S/N Improvement
 - Input S/N must be above threshold
- Phase Lock demodulator has no Threshold effect

Carrier to Noise Ratio

- Assume the carrier is CW with $P_{ave} = C$, for simplicity
- C/N = C, Carrier level divided by the noise spectral density function integrated over the spectrum −BW/2
 → +BW/2 -

Detected Noise

Noise through a non-linear device (diode) produces a unique characteristics in frequency & amplitude

- Detected output has three components
- Noise mixing with Noise
- Noise mixing with signal
- Recovered Signal (S)

- Linear Slope due to convolution of a two rectangles
- Rectangle
 due to
 convolution
 of an
 impulse & a
 rectangles -

Detected Signal + Noise

- The S x N is negligible at High S/N
- At low S/N the S x N term identifies signal presence but does little in decoding the signal, usually cannot be processed
 - In Radar MDS is usually the S x N term

Detection at Low S/N

- Detected terms
 - S, Detected Signal
 - N x N, Noise times Noise Term
 - S x N, Signal times noise term
- The most basic Radar function is detecting signal presence
- Minimum Detectable Signal (MDS)
 - Signal presence is detected
 - Signal recovery is doubtful
 - (S + SxN)/N because SxN is only present with Signal -

Decoding Signal information

Signal (S) must be greater than, N x N term + S x N term

- For determination of Signal quality or Signal recovery
- Bit Error Rate (BER) the ratio S/(N+SxN) must be considered -

Tangential Sensitivity is an ambiguous term >6dB<S/N<9dB</p>

Signal vs. Noise Expressions

- C/N: Carrier to Noise Ratio
 - Pre-detection Signal over noise
- S/N: Signal to Noise Ratio
 - Post detection Signal over noise
- Eb/No : Bit Energy to Noise Power
 - Eb/No = So/No * (BW/Rb)
 - BW is IF bandwidth (Hz)
 - BW is related to symbol rate
 - Rb = Bit Rate (Bits/Second)
 - Assuming Signal to Noise ratio with an optimized bandwidth -

 $E_h/N_0(dB)$

Noise as a Probability Density Function

- 3.5

V;

3.5

Gaussian Noise

- Total Area under the probability curve is 1
 Probability of being in any sector of the function is the area under the function
- Integrating the Gaussian Function from
 - -∞ → + V is a
 probability density
 function
- The probability of being from - ∞ to V is given on the Y-Axis (Blue Curve)
- The probability of being between a₁ and a₂ is the value of the pdf at a₂ minus the value at a₁
- { P(a₂) -P(a₁) } -

Probability, Standard Deviation & RMS Noise

- P(V<-1σ)=.159</p>
- P(V>1σ)=1-.841=.159
- Probability of being greater 1σ (1 standard deviation)
 - P(V<-1σ&V>+1σ) =.318 → 31.8%
- Probability of being less than 1σ from the mean
 - P(<|1σ|) = .682 → 68.2%</p>
- $P(<|2\sigma|) = .046 \rightarrow 95.4\%$
- $P(<|3\sigma|) = 2.7 \times 10^{-3} \rightarrow 99.7\%$
- $P(<|4\sigma|) = 6.3 \times 10^{-5} \rightarrow 99.994\%$
- $P(<|5\sigma|) = 5.7 \times 10^{-7} \rightarrow 99.99994\%$

Probabilities in a Gaussian Function

- One standard deviation from the mean (dark blue) accounts for about 68% of the set
- Two standard deviations from the mean (medium and dark blue) account for about 95%
- Three standard deviations (light, medium, and dark blue) account for about 99.7% -

Thermal Noise Effects on Threshold Performance

Signal-to-noise (S/N)

- Noise added to signal and causes a fluctuation
- S/N is the ratio of average Signal Power to average Noise Power
- Average Signal Power
- Average Noise power is RMS Noise

Noise Effecting Bit Error Rates (BER) in the Time Domain

of σ 's to the boundary -

Howard Hausman August 2009

Minimum Input Signal Level – Single Signal

System Information Example

- C/N_{MIN} for successful signal reproduction (C/N = 10dB)
- System Noise Figure (NF=3dB)
- Signal Band Width (BW=10MHz)
- Minimum Signal level is S_{MIN} = -174dBm/Hz + 10Log(BW) +NF+C/N
 - Noise Level = -101 dBm
 - S_{MIN} = -91 dBm

Digital Signals are based on a Bit Error Rate
Analog signals are based on a

visual or audio quality standard -

Threshold Detection Probabilities

RADAR - Average False Alarm Rate vs Threshold to Noise Ratio

Howard Hausman August 2009

Detection Probability & False Alarm Rate

Trade Off is probability of detection vs. probability of false alarms Howard Hausman August 2009

Modulation

Generalized Modulated Carrier

$$Xc(t) := Re \cdot Ac \cdot e^{j \cdot \theta c(t)}$$

$$Xc(t) := Ac \cdot cos | \theta c(t) |$$

$$\theta c(t) := 2 \cdot \pi \cdot Fc \cdot t + \phi(t)$$

Note: No Information in Amplitude ... Power Amplifier can be Non-Linear - Xc(t) = Modulated carrier

- Ac = carrier amplitude
- Oc(t) = Instantaneous
 phase
- Fc = average carrier frequency
- Φ(t) = instantaneous
 phase around the
 average frequency Fc
- Instantaneous Frequency = d $\Phi(t)$ / dt

AM Modulation

Howard Hausman August 2009

Frequency / Phase Modulation Phase/Frequency (Exponential) Modulation

$$Xc(t) := Ac \cdot cos | \theta c(t) |$$

$$\theta c(t) := 2 \cdot \pi \cdot Fc \cdot t + \phi(t)$$

Ac is constant
 Information is contained in φ(t)

FM Modulation Index (β)

 $\Phi(t) = \text{Instantaneous Phase variation around carrier Fc}$ $Xc(t) := Ac \cdot \cos \left[\theta c(t) \right]$ $\theta c(t) := 2 \cdot \pi \cdot Fc \cdot t + \phi(t)$ $Xc(t) = Ac \cos \left[2\pi Fc t + \phi(t) \right]$ $Fi = d \Phi(t) / dt = \text{Instantaneous Frequency}$ around carrier Fc $\phi(t) := 2 \cdot \pi \cdot k_{f} \cdot \int_{-\infty}^{t} m \tau d\tau$ Fi = Kf m(t) Kf = Gain Constant

 $\Box \quad \Delta F = Peak \text{ One sided}$ Frequency Deviation

• Kf = ΔF

m(t) is normalized to ±1

FM Modulation Index (β)

$Xc(t) = Ac Cos [2\pi Fc t + \phi (t)]$

 $\Phi(t)$ = Instantaneous Phase variation around carrier Fc

$$\phi(t) \coloneqq 2 \cdot \pi \cdot k_{f} \cdot \int_{-\infty}^{t} \mathbf{m} |\tau| d\tau$$

• Kf = Δ F

- If $m(\tau) = cos(2^*\pi^*Fm^*\tau)$ [sinusoidal modulation]
- Integrating m(t)
- $\Phi(t) = [(2^*\pi^*\Delta F) / (2^*\pi^*Fm)]^* \sin(2^*\pi^*Fm^*\tau)$
- Φ(t) = (ΔF / Fm) * sin (2*π*Fm *τ)
- $\beta = \Delta F / Fm = modulation index (Radians)$
- Φ(t) = β * sin (2*π*Fm *τ)

FM Spectral Analysis

- $\Box \operatorname{Xc}(t) = \operatorname{A_{c}cos}\left(2 \pi \operatorname{f_{c}} t + 2\pi \operatorname{k_{f}} \int m(\tau) d\tau\right)$
- **Given Set Set use of Contract Provided Methods and Set used Set uset used Set used Set used Set used Set uset used Set used Set**
- □ Xc(f) is the Fourier Transform of Xc(t)
- □ Xc(f) sequence of δ functions at multiples of f_m from f_c □ δ functions at $f_c \pm nf_m$
- □ Amplitudes are Bessel Coefficients of the first kind,
- Order n and independent variable $\beta [J_n(\beta)]$.

Frequency / Phase Modulation Side Bands

- • $J_n(\beta)$ = Bessel Function of the First kind, order n, Argument β •n = side band number from carrier
- β = Modulation index in Radians
- •Sideband Levels $J_n(\beta)$ (Linear units)
- •Levels in dBc = $20Log_{10} [J_n(\beta)]$

Bessel Function (Side Band) Levels

Note for Low Beta, Higher order sidebands are not significant

Frequency Modulation - Low Beta

Sessel Function of the First kind, N order, Argument β Low Beta (β <1) has only 2 significant sidebands

- AM sidebands are in phase
- FM sidebands are out of phase

Phase Modulation

 $\frac{\mathbf{X}\mathbf{c}(t) := \mathbf{A}\mathbf{c}\cdot\mathbf{c}\mathbf{o}\mathbf{s} | \boldsymbol{\theta}\mathbf{c}(t) | \qquad \boldsymbol{\theta}\mathbf{c}(t) := 2\cdot\pi\cdot\mathbf{F}\mathbf{c}\cdot\mathbf{t} + \boldsymbol{\phi}(t)$

- •Phase Modulation: $\Phi(t)$
- • $\Phi(t) = \beta * m(t)$: $\beta = \text{peak phase}$

deviation

- β = Modulation Index in Radians, same as FM
- m(t) = information normalized to 6 1
- •Xc(t) = Ac*cos(2* π *Fc *t + β * m(t))
- β is the same for PM or FM
- •For small β
- •Sideband Level = dBc=20Log($\beta/2$)

Oscillator Basics

Negative Resistance Oscillators Feedback Oscillators Negative Resistance Oscillators - Basic Configuration

Theory of Negative Resistance Oscillators

Resonator is a One port network

at Resonance (Fo)

 $\rho := \frac{Vr}{Vi}$ $\rho := \frac{(ZL - Zo)}{ZL + Zo}$

Reflection

coefficient

- ZL is real only at the resonant frequency (ZL(Fo))
- ZL(Fo) = -Zo
- Result: Reflected voltage without an incident voltage (oscillates)
- An Emitter Follower is a classic negative resistance device
- Technique used at microwave frequencies
 - Spacing between components often precludes the establishment of a well defined feedback path. -

- A*H1(s)*H2(s) = open loop gain = AL(s)
- $\frac{Vo}{V1} \coloneqq \frac{(A \cdot H1(s))}{1 A \cdot H1(s) \cdot H2(s)}$
- V1*A*H1 = V0(1-A*H1*H2)
- (V1+Vo*H2)*A*H1=Vo

Feedback Oscillators (Two port networks)

Barkhausen Criteria

- Barkhausen criteria for a feedback oscillator
 - open loop gain = 1
 - open loop phase = 0
- |A*H1(s)*H2(s)| = |AL(s)| = 1
- Angle (A*H1(s)*H2(s)) = 0
- $s = \omega_0$ (for sinusoidal signals)
- Re AL(ω_o) = 1
- Im AL(ω_o) = 0
- Transfer function blows up (Output with no Input) - Oscillation
 - Vo is finite when V1 = 0

Starting an Oscillator

- To start an oscillator it must be triggered
 - Trigger mechanism: Noise or a Turn-On transient
- Open loop gain must be greater than unity
- Phase is zero degrees (exponentially rising function)

April 11, 2007

MITEQ, Inc. Howard Hausman

Amplitude Stabilization

- As amplitude increases Gain decreases the effective gm (transconductance gain) is reduced
- Poles move toward the Imaginary axis
- Oscillation amplitude stabilizes when the poles are on the imaginary axis
- Self correcting feedback (variable gm) maintains the poles on the axis and stabilizes the amplitude

())MITEQ

Frequency Stability Analysis

Conditions for Oscillation

- Sufficient gain in the 3 dB bandwidth (Open Loop Gain>1)
- At Fo; Sum of all components around the loop are real (Resistive, Zero Phase)

Coarse & Fine Frequency Stability

- Coarse frequency of oscillation is determined by the resonant frequency -Amplitude
- Fine Frequency of oscillation is determined by PHASE
 - Loop phase shift is automatically compensated
 - Phase changes forces frequency off of F₀
- 3 dB bandwidth provides +/-45° compensating phase

Oscillator Stability

- Factors Affecting Oscillator Stability
 - Stability of the Resonator
 - Q of the resonator
- Causes of Oscillator Frequency Drift
 - Change in resonant frequency
 - Change of Open Loop Phase
 - Amplitude Changes
 - Oscillators operate in a non-linear mode
 - Changes in Amplitude changes phase -

Parasitic Phase Shifts vs Frequency Stability

$$Q = F_0 / BW_{3dB} \rightarrow BW_{3dB} = F_0 / Q \leftarrow P_0$$

- 1 Pole Resonant Circuit
 - 3 dB bandwidth shifts +/- 45°

Phase change

- If maximum $\Delta F_0 = BW_{3dB}$
- (ΔF₀ / Δφ) sensitivity of the frequency to phase changes

•
$$(\Delta F_0 / \Delta \phi) \approx BW_{3dB} / 90^{\circ}$$

•
$$\Delta F_0 = BW_{3dB} = F_0 / Q$$

- $\Delta F_0 / \Delta \phi \approx = [F_0 / Q] / 90^\circ (Hz / Deg)$
- $\Delta F_0 / \Delta \phi \approx F_0 / (Q^*90^\circ) (Hz/Deg)$
- Higher Q Smaller ΔF₀ / Δφ (phase)

Parasitic Phase Shifts vs Frequency Stability

- Frequency stability vs Phase is proportional to Q
 - Phase changes around the loop
 - Loop Self Corrects Phase Variations
- Parasitic Phase shifts have less effect on frequency in Higher Q circuits -

Frequency Stability – Resonator Dependent

- Center Frequency Resonator (Fo)
- Q of the Resonator
 - Phase Stability (A function of Q=Fo/BW_{3dB})
- $\Delta F_0 / \Delta \phi$ (Hz/Deg) $\approx F_0 / [90 ° Q]$

	Q	Q	Stability
	Min	Max	PPM/C
LC Resonators:	50	150	100
Cavity resonators	500	1000	10
Dielectric resonators:	2,000	10000	1
SAW devices:	300	10000	0.1
Crystals	50000	1000000	0.01

Oscillator Stability

- Long Term Frequency Stability
 - Usually a function of the Resonator Center Frequency Stability
 - Change in Frequency (ΔF) with respect to center frequency (Fo)
 - Stated as ΔF/Fo in Parts Per Million (PPM)
 - Time frame: Typically hours to years
 - Stability over Temperature
- Short Term Frequency Stability
 - Usually a function of noise perturbations
 - Residual FM
 - Allen Variance
 - Phase Noise -

Residual FM Slow Moving Frequency Variations

- Change in frequency ΔF is much greater than the rate of frequency change, fm (ΔF /fm = $\beta >> 1$)
- Spectrum has a flat top
 - Peak to Peak change in frequency is the Residual FM
- Typically measured 6dB down from the peak -

Allen Variance

Phase / Frequency Noise Variations >1 Second

- Defines accuracy of <u>clocks</u>
- One half of the <u>time</u> average over the sum of the squares of the differences between successive readings of the <u>frequency</u> <u>deviation</u> sampled over the sampling period.
- Allen variance is function of the time period used between samples1
- Measure frequency at time interval T2-T1
- (F2-F1) / F1 is the fractional change in frequency over time interval T2-T1 -

Two-point Allen variance - \sigma_{y}(\tau)

- Time domain measure of oscillator instability.
- It can be directly measured using a frequency counter
 - Repetitively measure the oscillator frequency over a time period Tau.
- Allen variance is the expected value of the RMS change in frequency with each sample normalized by the oscillator frequency.
- Data is in Parts per Million or Parts per Billion

Allen Variance Computation

- Typical specification might be frequency variation in 100 seconds
- Take two sample of frequency a 100 seconds apart
- Repeat the measurement
- Allen variance is the ½ the square root of the sum of the squares of all the samples taken -

Inverse of time
between
samples time
is carrier
offset
0.001 Hz
to 1kHz

Frequency Stability and its Effect on Phase Noise

- Resonators 1.0 Stability – **Does Not** 0.75 **Effect** Phase Noise 0.5 Phase 0.25 Sensitivity
 - **Effects** Phase Noise -

Howard Hausman August 2009

Phase Noise - Short Term Stability

- Measures oscillator Stability over short periods of time
 - Typically 0.1 Seconds to 0.1 microseconds`
- Noise varies the oscillator phase/frequency

Not amplitude related

Noise level increases close to the carrier

- Typical offset frequencies of interest: 10Hz to 10MHz
- Stability closer to the carrier is measured using Allen Variance
- Noise further from the carrier is usually masked by AM thermal noise
- Phase Noise cannot be eliminated or affected by filtering
- Phase & Frequency are related:
 - Frequency is the change in phase with respect to time
 - $\Delta \phi / \Delta t \rightarrow d\phi / dt$ as t $\rightarrow 0$

Short Time Phase / Frequency Noise (<1 Second)

- Specified and measured as a spectral density function typically in a 1 Hz bandwidth
- Normalized to dBc/Hz at a given offset from the carrier
- Level relates phase noise in degrees

- Modulation index (β) of noise in a 1 Hz bandwidth
- Level in dB = 20 Log ($\beta/2$) where β is in radians -

Phase Noise Measurement

- Measurement at a frequency offset from the carrier (fm) is the time interval of phase variation
 - 1 kHz offset is phase variation in 1 millisecond
 - Resolution Bandwidth is the dwell time of the measurement
- 1Hz resolution
 bandwidth is a 1 second
 measurement time
 a 1Hz resolution
 bandwidth at 1kHz from
 the carrier
 - Measuring phase variation in 1 millisecond averaged 1000 times (1Hz) -

Measurement Data

- Data is normalized to a 1Hz resolution bandwidth
- Data is actually taken at much faster rates
- In automated test equipment
 - Rates are shortened as the analyzer gets further from the carrier
 - Accurate measurement don't require averaging 1000 times Power (db) Pc

Conclusion

- Thermal Noise can be thought of as a vector with a Gaussian amplitude at any phase
- This vector add to the desired signal and creates an uncertainty in the signal characteristic
- If thermal noise changes the phase characteristic of the device it has to be evaluated as phase modulation
- This phase modulation has a Gaussian phase distribution which adds to the phase characteristic of the desired signal
- Phase Noise is dominant close to the carrier (greater than thermal noise)
- Demodulation close to the carrier must consider Phase Noise levels as well as amplitude related thermal noise levels
- Part 2 will focus:
 - Phase Noise Generation
 - Phase Noise Models
 - Effects on Digital Modulation

