Welcome

Power Survey International – Company profile

- Established since 1948
- Manufacturer of low and medium voltage products:
 - Power Factor correction system
 - Harmonic Filter system
 - Steel Cabinet customized to your needs
 - Other products to come....
- Sales throughout United States, Canada, South America, Middle East and the rest of the world.

Available products at Power Survey

Industrial & Commercial Market

- ✓ Static capacitor unit PowerCap
- ✓ Automatic capacitor bank PowerVar
- ✓ Fixed harmonic filter PowerCap Filter
- Automatic Harmonic filter PowerVar Filter
- On site harmonic study
- ✓ Simulation / Electrical network analysis

<u>Utility Market</u>

- ✓ Metal Enclosed Capacitor Bank Medium Voltage
- ✓ Harmonic Filter Medium Voltage
- ✓ Pad Mount type

Steel Enclosure

Manufactured according to customer specifications

Installing capacitors.... Why?

- Increase the PF/effiency of the electrical network
- Utilities penalize their customers if PF:

✓ < 100 %</p>

OR

✓ < 90 %</p>

Average payback of our equipment is between 1 to 2 years

>Average lifetime of our equipment is approximatively 20 years

Installing capacitor - technically?

- Savings of \$\$ through power factor penalties,
 - Usually less than 2 year payback
 - Most Utilities requires a 90% or higher PF
- ✓ Voltage improvement,
- Reduced system losses through cables and transformers,
- ✓ Increases power transmission capacity in cables,
- ✓ Increases transformer capacity

Introduction

What is power factor and related formulas:

Phase diagram of voltage and current

Power Factor – phase angle

ϕ	PF=Cos ϕ
0	1
30	0,866
60	0,5
90	0

 \mathbf{V}

Ι

Power Factor – Phase Angle

Q (kvar) varies depending on phase angle

• From this figure:

$$Q_c = Q_L - Q$$

• Mathematically:

 $\Rightarrow Q_c = P(Tan\phi_1 - Tan\phi_2)$

• Simple calculation:

$$Q_c = P * K$$

Reactive power formulas (kVAR)

Voltage and current sine wave

 Capacitor current leads the voltage sinewave

Resistive current is in phase with voltage sinewave

Electrical network without capacitor

Active Power (kW)

Reactive Power (kVAr)

Utility

Motor load

Electrical network with capacitor

Active Power (kW)

Reactive Power (kVAr)

Utility

C. POWER

Motor load

Power Cap

Power Factor & Buck of beer!!

Power factor versus motor load

≻ <u>Motor</u>

- Higher efficiency when used at full load
- Kvar is almost the same when running at low & full load

Compensation Method

Capacitor connected to motor

Compensation Method

Fixed capacitor connected to a PDC or MCC

Motor compensation

- > Power Survey Rule of thumb:
 - Kvar = 1/3 of size of HP
 - Kvar = 40% of motor kW

- Selection of a capacitor for a specific motor requires HP and RPM of motor:
 - Use following table

Capacitor selection as per motor size

USED FOR HIGH EFFICIENCY MOTORS AND OLDER DESIGN (PRE "T-FRAME") MOTORS*

		No. of Poles and Nominal Motor Speed in RPM														
Induction Motor Horsepower Rating	3600	2 DRPM	1800	4 RPM	1200	6 RPM	900	B RPM	1 720	0 RPM	12 600 RPM					
	Capacitor KVAR	Current Reduction %	Capacitor KVAR	Current Reduction %	Capacitor KVAR	Current Reduction %	Capacitor KVAR	Current Reduction %	Capacitor KVAR	Current Reduction %	Capacitor KVAR	Current Reduction %				
3 5 7.5 10 15 25 30 40 50 60 75 100 125 150 200 250 300 350	1.5 2.5 3 4 5 6 7 9 12.5 15 17.5 22.5 27.5 30 40 50 60	14 12 11 10 99 98 88 88 88 88 88 88 88 88 88 88 88	1.5 2.5 3 4 5 6 7 9 10 15 17.5 20 25 37.5 45 60	15 13 12 10 10 10 9 9 9 8 8 8 8 8 8 8 8 7 7 7	1.5 2 3 5 6 7.5 9 10 12.5 15 17.5 30 35 40 50 60 75	20 17 15 13 12 11 11 10 10 10 9 9 9 8 8 8 8 8	2 3 4 5 6 7.5 9 10 12.5 15 17.5 20 37.5 30 37.5 50 60 60 75	27 225 221 18 165 14 132 11 100 100 100 100 99 99	2.5 4 5 6 8 9 10 12.5 15 20 22.5 25 35 40 50 70 80 90	35 32 30 27 23 21 23 21 23 21 23 21 23 21 23 21 23 21 23 21 23 21 23 21 23 21 23 21 23 21 23 21 23 21 23 21 23 21 23 20 21 23 20 21 23 20 21 23 20 21 23 20 21 23 20 21 23 20 21 23 20 21 23 20 21 23 20 21 23 20 21 23 20 21 23 20 21 23 20 21 23 20 21 23 20 21 23 20 21 23 20 21 23 20 21 23 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 21 20 21 21 21 21 21 21 21 21 21 21 21 21 21	3 4 6 7.5 9 12.5 15 17.5 20 27.5 35 27.5 35 40 50 50 50 50 50 50 95	41 37 34 27 25 22 20 19 19 18 17 16 15 14 13 12 11				
400 450 500	75 75 75	8 8 8	60 75 75	6 6 6	75 80 85	8 8 8	85 90 100	9 9 9	95 100 100	10 9 9	100 110 120	11 11 10				

* For use with 3-phase, 60 hertz NEMA Classification B Motors to raise full load power factor to approximately 95%.

	-	No. of Poles and Nominal Motor Speed in RPM													
duction Motor rsepower Rating	3600	2 DRPM	1800	4 RPM	1200	6 RPM	900	B RPM	1 720	O RPM	12 600 RPM				
	Capacitor KVAR	Current Reduction %	Capacitor KVAR	Current Reduction %	Capacitor KVAR	Current Reduction %	Capacitor KVAR	Current Reduction %	Capacitor KVAR	Current Reduction %	Capacitor KVAR	Current Reduction %			
2 3 5 7.5 10 15 20 25 30 40 50 60 75 100 125 200 250 250 350 350 400 450	1 1.5 2.5 4 5 6 7.5 8 12.5 15 5 20 22.5 20 30 35 40 45 50 75 80	14 14 14 14 12 12 12 12 12 12 12 12 12 12 12 12 12	1 1.5 2.5 3 4 5 5 7.5 8 15 17.5 20 25 30 35 40 50 60 70 75 80	24 23 22 20 18 18 17 17 16 15 15 15 14 12 12 12 11 10 8 8 8	$ \begin{array}{r} 1.5\\2\\3\\4\\5\\6\\7.5\\8\\10\\15\\20\\22.5\\25\\30\\35\\40\\50\\60\\75\\90\\100\\120\end{array} $	30 28 26 21 20 19 19 19 19 19 19 19 17 12 12 12 12 12 12 12 12 12 12	2 3 4 5 6 7.5 9 10 15 17.5 22.5 25 30 35 40 50 70 80 120 130 130	42 38 31 27 24 23 22 21 20 17 16 14 14 14 13 13 13 13	2 3 4 5 7.5 8 10 12.5 15 20 22.5 30 22.5 30 35 40 45 50 70 90 120 140 160	40 40 40 36 32 25 24 24 24 24 22 15 13 13 13 13 13 13	3 4 5 6 8 10 12.5 17.5 20 25 30 35 40 45 50 90 100 120 135 150	50 49 49 38 34 30 30 30 30 30 30 30 30 30 30 30 17 17 17 17 17 17 17 15 5 15			
500	100	8	120	9	150	12	160	12	180	13	180	15			

use with 3-phase, 60 hertz NEMA Classification B Motors to raise full load power factor to approximately 95%.

Selection of a PowerCap

KVAR	240V Cat #	Current (amps)	Weight (lbs)	KVAR	480V Cat #	Current (amps)	Weight (lbs)	KVAR	600V Cat #	Current (amps)	Weigh (lbs)
1	PS2P1A	2.4	12	1	PS4P1A	1.2	12	1	PS6P1A	1.0	12
15	PS2P1 5A	3.6	13	1.5	PS4P1.5A	1.8	12	1.5	PS6P1.5A	1.4	12
2	PS2P2A	4.8	13	2	PS4P2A	24	12	2	PS6P2A	1.9	12
25	PS2P2 5A	6.0	13	25	PS4P2 5A	3.0	13	2.5	PS6P2.5A	2.4	13
3	PS2P3A	7.2	14	3	PS4P3A	3.6	13	3	PS6P3A	2.9	13
4	PS2P4A	9.6	14	4	PS4P4A	4.8	13	4	PS6P4A	3.8	13
5	PS2P5A	12.0	15	5	PS4P5A	6.0	14	5	PS6P5A	4.8	14
6	PS2P6A	14.4	15	6	PS4P6A	7.2	14	6	PS6P6A	5.8	14
75	PS2P7 5A	18.0	20	75	PS4P7 54	9.0	14	7.5	PS6P7 5A	7.2	14
8	PS2P8A	19.2	29	8	PS4P8A	9.6	28	8	PS6P8A	7.7	28
0	DS2D0A	21.7	20		PS4P0A	10.8	20	a	PS6P9A	87	29
10	PS2P10A	24.1	23	10	PS4P10A	12.0	15	10	PS6P10A	9.6	15
11	PS2P11P	24.1	22	11	DS4D11A	12.0	10	11	1 SULIDA	5.0	15
12 5	F32F11B	20.5	30	125	PS4P12EA	15.2	10	12.5	DS6D12 5A	12.0	10
12.5	F32F12.3B	30.1	30	12.5	PS4F12.5A	19.0	13	12.5	DSCD1EA	14.4	20
15	PS2P15B	30.1	31	175	PS4PISA	18.0	20	17 5	PSOFIJA	16.9	20
17.5	PSZP17.5B	42.1	32	17.5	PS4P17.5A	21.0	20	17.5	F30F17.5A	10.0	20
20	PS2P20B	48.1	34	20	PS4PZUA	24.1	21	20	PSOFZUA	19.2	21
22.5	PS2P22.5C	54.1	40	22.5	PS4PZZ.5A	27.1	22	22.5	PS6PZZ.5A	21.7	22
25	PS2P25C	60.1	41	25	PS4P25A	30.1	23	25	PS6P25A	24.1	23
27.5	PS2P27.5C	66.2	43	27.5	PS4P27.5B	33.1	25	27.5	PS6P27.5B	26.5	25
30	PS2P30C	12.2	45	30	PS4P30B	36.1	26	30	PS6P30B	28.9	26
32.5	PS2P32.5D	78.2	46	32.5	PS4P32.5B	39.1	26	32.5	PS6P32.5B	31.3	26
35	PS2P35D	84.2	47	35	PS4P35B	42.1	27	35	PS6P35B	33.7	27
37.5	PS2P37.5D	90.2	48	37.5	PS4P37.5B	45.1	27	37.5	PS6P37.5B	36.1	27
40	PS2P40D	96.2	50	40	PS4P40B	48.1	28	40	PS6P40B	38.5	28
42.5	PS2P42.5E	102.2	60	42.5	PS4P42.5B	51.1	28	42.5	PS6P42.5B	40.9	28
45	PS2P45E	108.3	62	45	PS4P45B	54.1	29	45	PS6P45B	43.3	29
50	PS2P50E	120.3	64	50	PS4P50B	60.1	29	50	PS6P50B	48.1	29
55				55	PS4P55C	66.2	33	55	PS6P55C	52.9	33
60	PS2P60E	144.3	68	60	PS4P60C	72.2	34	60	PS6P60C	57.7	34
65				65	PS4P65C	78.2	36	65	PS6P65C	62.5	36
70	PS2P70G	168.4	75	70	PS4P70C	84.2	37	70	PS6P70C	67.4	37
75	PS2P75G	180.4	78	75	PS4P75C	90.2	38	75	PS6P75C	72.2	38
80	PS2P80G	192.5	80	80	PS4P80D	96.2	40	80	PS6P80D	77.0	40
85				85	PS4P85D	102.2	42	85	PS6P85D	81.8	42
90	PS2P90G	216.5	84	90	PS4P90D	108.3	43	90	PS6P90D	86.6	43
100	PS2P100G	240.6	86	100	PS4P100D	120.3	44	100	PS6P100D	96.2	44
120	PS2P120M	288.7	165	120	PS4P120E	144.3	46	120	PS6P120E	115.5	46
125	PS2P125M	300.7	170	125	PS4P125E	150.4	48	125	PS6P125E	120.3	48
140	PS2P140M	336.8	180	140	PS4P140G	168.4	49	140	PS6P140G	134.7	49
150	PS2P150M	360.8	185	150	PS4P150G	180.4	50	150	PS6P150G	144.3	50
160	PS2P160M	384.9	190	160	PS4P160G	192.5	72	160	PS6P160G	154.0	72
175	PS2P175M	421.0	210	175	PS4P175M	210.5	74	175	PS6P175M	168.4	74
180	PS2P180M	433.0	215	180	PS4P180M	216.5	75	180	PS6P180M	173.2	75
200	PS2P200M	481.1	220	200	PS4P200M	240.6	76	200	PS6P200M	192.5	76
225			220	225	PS4P225G	270.6	79	225	PS6P225G	216.5	79
250				250	PS4P250G	300.7	83	250	PS6P250G	240.6	83
300				200	PS4P300M	360.8	170	300	PS6P300M	288.7	170
350				250	DC4D250M	421.0	190	350	PS6P350M	236.8	180
550	1			350		421.0	100	350	Deceasion A	330.0	100

OPTIONS 3 PILOT LIGHTS 3 FUSES NEMA 3 ENCLOSURE DRY FILLED CELLS OTHER RATINGS OTHER SIZES

ADD SUFFIX L (STANDARD IS LIGHTS OFF, IF LIGHTS ON ALL THE TIME REQUIRED, ADD "ON" SUFFIX ADD SUFFIX F E ADD SUFFIX 3 CHANGE P (4TH DIGIT OF CAT #) TO D CONSULT FACTORY (208V, 380V, 440V, 700V OR OTHER) CONSULT FACTORY

Back to back switching and reactor selection for inrush current

➢ Requirements

- Transient current kept below 10 kA due to equipment rating(fuses, vacuum switches, etc)
- Transient capacitor current
 Inrush current from capacitor upon energization
- ➤Back to back switching
 - Charged capacitor discharging into newly energized capacitor

votre service depuis 1948 CAPACITOR SWITCHING - TRANSIENT CURRENT CALCULATION PROJECT POWER FACTOR STUDY DESCRIPTION SWITCHING TRANSIENT CALCULATIONS REACTOR NEED TO LIMIT INRUSH TO 10KA .V_{LL} Isc -{∕∖ STAND ALONE SWITCHING C1 600 (KVAR) VII 12,47 1,1454 KA (KV) INRUSH CURRENT (PEAK) lsc 25 (KA) L1 40 INRUSH FREQUENCY 1754.6 Hz (uH) STAND ALONE SWITCHING C2 600 (KVAR) VII 12,47 (KV) INRUSH CURRENT (PEAK) 1,1454 KA lsc 25 (KA) L2 40 INRUSH FREQUENCY 1754,6 Hz (uH) BACK TO BACK SWITCHING C1 600 (KVAR) L1 40 (uH) INRUSH CURRENT (PEAK) 2,7566 KA C2 600 (KVAR) L2 40 (uH) INRUSH FREQUENCY 7269,3 Hz

PowerCap

Range

2 kvar – 10 Mvar

Network voltage

- 208v 35,000v
- Other voltage available

Option

- Contactor LV (semi-automatic)
- External Fuse
- Blown Fuse Indicator
- NEMA 3R Enclosure

Calculation of kvar required using power bills

- On the bill we have:
 - PF (Power Factor) 85.33% =
 - Active Power (kW Demand) 2852 kW =
- From the chart:
 - The multiplier from 85% to 92% is 0.194
- The solution:
 - kVAr = multiplier Х kW Х • kVAr = 0.194 2852
 - kVAr =527

Before & After PF chart

TABLE 3: MULTIPLIERS TO DETERMINE CAPACITOR KILOVARS REQUIRED FOR POWER FACTOR CORRECTION

Orig-									Co	rrecte	d Pow	er Fac	tor								
Power	0.80	0.81	0.82	0.83	0.84	0.85	0.86	0.87	0.88	0.89	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1.0
0.50	0.982	1.008	1.034	1.060	1.085	1.112	1.139	1.165	1.192	1.220	1,248	1,276	1.306	1.337	1.369	1.403	1.440	1.481	1.529	1.589	1,732
0.51 0.52 0.53 0.54 0.55	0.937 0.893 0.850 0.809 0.769	0.962 0.919 0.876 0.835 0.795	0.989 0.945 0.902 0.861 0.821	1.015 0.971 0.928 0.887 0.847	1.041 0.997 0.954 0.913 0.873	1.067 1.023 0.980 0.939 0.899	1.094 1.050 1.007 0.966 0.926	1.120 1.076 1.033 0.992 0.952	1.147 1.103 1.060 1.019 0.979	1.175 1.131 1.088 1.047 1.007	1.203 1.159 1.116 1.075 1.035	1.231 1.187 1.144 1.103 1.063	1.261 1.217 1.174 1.133 1.093	1.292 1.248 1.205 1.164 1.124	1.324 1.280 1.237 1.196 1.156	1.358 1.314 1.271 1.230 1.190	1.395 1.351 1.308 1.267 1.227	1.436 1.392 1.349 1.308 1.268	1.484 1.440 1.397 1.356 1.316	1.544 1.500 1.457 1.416 1.376	1.687 1.643 1.600 1.559 1.519
0.56 0.57 0.58 0.59 060	0.730 0.692 0.655 0.619 0.583	0.756 0.718 0.681 0.645 0.609	0.782 0.744 0.707 0.671 0.635	0.808 0.770 0.733 0.697 0.661	0.834 0.796 0.759 0.723 0.687	0.860 0.822 0.785 0.749 0.713	0.887 0.849 0.812 0.776 0.740	0.913 0.875 0.838 0.802 0.766	0.940 0.902 0.865 0.829 0.793	0.968 0.930 0.893 0.857 0.857	0.996 0.958 0.921 0.885 0.849	1.024 0.986 0.949 0.913 0.877	1.054 1.016 0.979 0.943 0.907	1.085 1.047 1.010 0.974 0.938	1,117 1,079 1,042 1,006 0,970	1.151 1.113 1.076 1.040 1.004	1.188 1.150 1.113 1.077 1.041	1.229 1.191 1.154 1.118 1.082	1.277 1.239 1.202 1.166 1.130	1.337 1.299 1.262 1.226 1.190	1.480 1.442 1.405 1.369 1.333
0.61 0.62 0.63 0.64 0.65	0.549 0.516 0.483 0.451 0.419	0.575 0.542 0.509 0.474 0.445	0.601 0.568 0.535 0.503 0.471	0.627 0.594 0.561 0.529 0.497	0.653 0.620 0.587 0.555 0.523	0.679 0.646 0.613 0.581 0.581	0.706 0.673 0.640 0.608 0.576	0.732 0.699 0.656 0.634 0.602	0.759 0.726 0.693 0.661 0.629	0.787 0.754 0.721 0.689 0.657	0.815 0.782 0.749 0.717 0.685	0.843 0.810 0.777 0.745 0.713	0.873 0.840 0.907 0.775 0.743	0.904 0.871 0.838 0.806 0.774	0.936 0.903 0.870 0.838 0.806	0.970 0.937 0.904 0.872 0.840	1.007 0.974 0.941 0.909 0.877	1.048 1.015 0.962 0.950 0.918	1.096 1.063 1.030 0.998 0.966	1.156 1.123 1.090 1.068 1.026	1.299 1.266 1.233 1.201 1.169
0.66 0.67 0.68 0.69 0.70	0.388 0.358 0.328 0.299 0.270	0.414 0.384 0.354 0.325 0.296	0.440 0.410 0.380 0.351 0.322	0.466 0.436 0.406 0.377 0.348	0.492 0.452 0.432 0.403 0.374	0.518 0.488 0.458 0.429 0.400	0.545 0.515 0.485 0.456 0.427	0.571 0.541 0.511 0.482 0.453	0.598 0.568 0.538 0.509 0.480	0.626 0.596 0.566 0.537 0.508	0.654 0.624 0.594 0.565 0.536	0.682 0.652 0.622 0.593 0.564	0.712 0.682 0.652 0.623 0.594	0.743 0.713 0.683 0.654 0.625	0.775 0.745 0.715 0.686 0.657	0.809 0.779 0.749 0.720 0.691	0.845 0.816 0.786 0.757 0.728	0.887 0.857 0.827 0.798 0.769	0.935 0.905 0.875 0.846 0.817	0.995 0.965 0.935 0.906 0.877	1.138 1.108 1.078 1.049 1.020
0.71 0.72 0.73 0.74 0.75	0.242 0.214 0.186 0.159 0.132	0.268 0.240 0.212 0.185 0.158	0.294 0.266 0.238 0.211 0.184	0.320 0.292 0.264 0.237 0.210	0.346 0.318 0.290 0.263 0.236	0.372 0.344 0.316 0.289 0.262	0.399 0.371 0.343 0.316 0.289	0.425 0.397 0.369 0.342 0.315	0.452 0.424 0.395 0.369 0.342	0.480 0.452 0.424 0.397 0.370	0.508 0.480 0.452 0.425 0.398	0.536 0.508 0.480 0.453 0.426	0.566 0.538 0.510 0.483 0.456	0.597 0.569 0.541 0.514 0.487	0.629 0.601 0.573 0.546 0.519	0.663 0.635 0.607 0.580 0.553	0.700 0.672 0.644 0.617 0.590	0.741 0.713 0.685 0.658 0.631	0.789 0.761 0.733 0.706 0.679	0.849 0.821 0.793 0.766 0.739	0.992 0.964 0.936 0.909 0.882
0.76 0.77 0.78 0.79 0.80	0.105 0.079 0.052 0.026 0.000	0.131 0.105 0.078 0.052 0.026	0.157 0.131 0.104 0.078 0.052	0.183 0.157 0.130 0.104 0.078	0.209 0.183 0.156 0.130 0.104	0.235 0.209 0.182 0.156 0.130	0.262 0.236 0.209 0.183 0.157	0.288 0.262 0.235 0.209 0.183	0.315 0.289 0.262 0.236 0.210	0.343 0.317 0.290 0.264 0.238	0.371 0.345 0.318 0.292 0.266	0.399 0.373 0.346 0.320 0.294	0.429 0.403 0.376 0.350 0.324	0.460 0.434 0.407 0.381 0.355	0.492 0.466 0.439 0.413 0.387	0.526 0.500 0.473 0.447 0.421	0.563 0.537 0.510 0.484 0.458	0.604 0.578 0.551 0.525 0.499	0.652 0.626 0.599 0.573 0.547	0.712 0.685 0.659 0.633 0.609	0.855 0.829 0.802 0.776 0.750
0.81 0.82 0.83 0.84 0.85		0.000	0.026	0.052 0.026 0.000	0.078 0.052 0.026 0.000	0.104 0.078 0.052 0.026 0.000	0.131 0.105 0.079 0.053 0.027	0.157 0.131 0.105 0.079 0.053	0.184 0.158 0.132 0.106 0.080	0.212 0.186 0.160 0.134 0.108	0.240 0.214 0.188 0.162 0.136	0.268 0.242 0.216 0.190 0.164	0.298 0.272 0.246 0.220 0.194	0.329 0.303 0.277 0.251 0.225	0.361 0.335 0.309 0.283 0.257	0.395 0.369 0.343 0.317 0.291	0.432 0.406 0.380 0.354 0.326	0.473 0.447 0.421 0.395 0.369	0.521 0.495 0.469 0.443 0.417	0.581 0.555 0.529 0.503 0.477	0.724 0.696 0.672 0.646 0.620
0.86 0.87 0.88 0.89 0.90							0.000	0.026	0.053 0.027 0.000	0.081 0.055 0.028 0.000	0.109 0.083 0.056 0.028 0.000	0.137 0.111 0.084 0.056 0.028	0.167 0.141 0.114 0.086 0.058	0.198 0.172 0.145 0.117 0.069	0.230 0.204 0.177 0.149 0.121	0.264 0.238 0.211 0.183 0.155	0.301 0.275 0.248 0.220 0.192	0.342 0.316 0.289 0.261 0.233	0.390 0.364 0.337 0.309 0.281	0.450 0.424 0.397 0.369 0.341	0.593 0.567 0.540 0.512 0.484
0.91 0.92 0.93 0.94 0.95												0.000	0.030	0.061 0.031 0.000	0.093 0.063 0.032 0.000	0.127 0.097 0.066 0.034 0.000	0.164 0.134 0.103 0.071 0.037	0.205 0.175 0.144 0.112 0.079	0.253 0.223 0.192 0.160 0.126	0.313 0.283 0.252 0.220 0.186	0.456 0.426 0.395 0.363 0.329
0.96 0.97 0.98 0.99																	0.000	0.041 0.000	0.069 0.048 0.000	0.149 0.108 0.060 0.000	0.292 0.251 0.203 0.143 0.000

3. Multiply that number by KW demand 2. Read across to optimum power factor column Instructions: 1. Find the present power factor in column 1 Example: If your plant consumed 410 KW, was currently operating at 73% power factor and you wanted to come: to weer factor to 95%, you would: 1. Find 0.73 in column 1 2. Read across to 0.95 column 3. Multiply 0.607 by 410 = 249 (round to 250) 4. You need 250 KVAR to bring your plant to 95% power factor across the update existing power factor to 10 know the existing power factor level of your plant, you will have to calculate it before using Table 3. To calculate existing power factor. KW divided by KVA = Power Factor

nada - U.S

Example using formulas

- On the bill we have:
 - PF (Power Factor) = 85.33%
 - Active Power (kW Demand) = 2852 kW
- Mathematical calculation:

$$kVAR = kW \left[\text{tg} \left(\cos^{-1} FP_1 \right) - \text{tg} \left(\cos^{-1} FP_2 \right) \right]$$

- The solution:
 - kVAr = 2852kW {tg (cos⁻¹ .8533) tg(cos⁻¹ .92)}
 - kVAr = 2852kW {tg (31.427) tg(23.07)}
 - kVAr = 527 kvar

Monthly Savings from utility bill

Serving you since 1948

Potential savings graphic from your utility bills with Power Survey capacitor

Customer:

Data entry:

Distribution charge: PF required: 8,45 \$ <u>92%</u>

Name

Data entry If capacity installed:

kVAr

600

		Savings app	licable if PF:	<u>92%</u>		Saving applicable if	rical network				
Month	kW Measured	KVA Measured	PF Calculated	New Billing Demand	Savings at (PF) 92%	kVAr required for 92%	kVAr required for (PF) 100%	kVAr by utility	New kVA with (kVAr) 600	PF with (kVAr) 600	Savings with (kVAr) 600
January	3430	3842	89,3%	3728	\$961	270	1731	1131	3612	95,0%	1 947 \$
February	3250	3747	86,7%	3533	\$1 812	480	1865	1265	3487	93,2%	2 193 \$
March	3175	3632	87,4%	3451	\$1 529	411	1764	1164	3382	93,9%	2 116 \$
April	3087	3543	87,1%	3355	\$1 585	424	1739	1139	3290	93,8%	2 135 \$
May	2785	3245	85,8%	3027	\$1 841	479	1665	1065	2982	93,4%	2 224 \$
June	2788	3269	85,3%	3030	\$2 016	519	1707	1107	3000	92,9%	2 276 \$
July	2640	3132	84,3%	2870	\$2 218	561	1685	1085	2854	92,5%	2 346 \$
August	2760	3276	84,2%	3000	\$2 332	589	1765	1165	2996	92,1%	2 368 \$
September	2792	3281	85,1%	3035	\$2 081	534	1723	1123	3009	92,8%	2 294 \$
October	2852	3342	85,3%	3100	\$2 045	527	1742	1142	3072	92,8%	2 280 \$
November	3080	3530	87,3%	3348	\$1 539	413	1725	1125	3279	93,9%	2 122 \$
December	3127	3590	87,1%	3399	\$1 615	431	1764	1164	3336	93,7%	2 143 \$
Projected monthly savings if plant PF:		92%		\$1 798		Monthly savings if:	600	kVAr is running in the	plant ====>	\$2 204	
Projected an	Projected annual savings if plant PF:		92%	======>	<u>\$21 572</u>		Annual savings if:	600	kVAr is running in the	plant ====>	\$26 443
Minimum kV	Ar required to	reach PF:	92%	=====>	589	kVAr					

Solution to increase PF to 92%

- Propose an automatic capacitor bank:
 - Type: PowerVar
 Required power: 589 kVAr
 Suggested power: 600 kVAr
 Number of steps: 6
 Power per step: 100

BOWER SURVEY

Installation of a PowerCap and/or PowerVar

- The last 12 months electrical billing history and Rate structure
- Motors lists (HP Ratings, speed and type of starters)
- Single line diagrams including:
 - Details on Non linear loads
 - Transformer data (KVA , Z%)
 - Harmonic distortion data from measurement, if available

PowerVar

Capacity

• 50 kvar – 20 Mvar

Network voltage

- 208v 35,000v
- Other voltages available

Option

- NEMA 12 & 3R enclosure
- Main breaker
- Main disconnect
- Main fuse disconnect
- Ground switch
- Blown fuse indicator
- Capacitor Life Indicator

Power Factor Controller

Power Survey

- PF indication and number of step
- Energization sequence FIFO
- Manual and automatic selection
- Up to 12 steps
- Alarm if harmonic are overloaded
- Power and Harmonic Measurement

- Harmonic producing equipment:
 - AC & DC Drive
 - Welder
 - Induction furnaces
 - Arc furnaces
 - Any equipment with thyristor
 - AC & DC rectifier
 - Etc

Harmonics

By definition

- It is a current or voltage of a frequency that is a multiple of the fundamental (60HZ)
 - 5th harmonic = 5 * 60 Hz = 300 Hz
- It is NOT a TRANSIENT phenomenon

Harmonics and a river!

Ideal condition

Harmonic and a river!

Capacitor and harmonic

- Power Survey rule of thumb!
 - Be careful! Is the total non linear load exceeding 20% of the total load?
 - If not, ex. (100 HP of drive versus 1000 HP total [10%]):
 ➤ We will propose a PowerCap or PowerVar
 - If yes, ex. (500 HP of drive versus 1000 HP total [50%]):
 ➤ We will propose a PowerCap filter or PowerVar filter because of the high harmonic content

Typical Harmonic Spectrum

Typical % values of a 6 pulse drive

HARMONIC ORDER	CURRENT (% OF FUNDAMENTAL)		
1	100%		
3	0%		
5	17.5%		
7	11.1%		
9	0%		
11	4.5%		
13	2.9%		
15	1.0%		

Effect of harmonic distortions

Current distortion

- Equipment overheating and additional losses
 - Transformers (eddy losses)
 - Cables (skin effect)
 - Capacitors (low impedance)
 - Resulting voltage distortion

Effects of harmonic distortion

Voltage distortion

- Distorted current on linear loads
- Peak voltage increase (Insulation stress)
- Bad operation on electronic devices
 - Drives
 - PLC
 - Breakers (Electronic trip unit)

Worst case harmonic voltage distortion limit (THDv)

60 B) 60		
Bus Voltage at PCC	Individual Voltage Distortion (%)	Total Voltage Distortion THD (%)
69 kV and below	3.0	5.0
69.001 kV through 161 kV	1.5	2.5
161.001 kV and above	1.0	1.5

Table 11-1—Voltage Distortion Limits

NOTE — High-voltage systems can have up to 2.0% THD where the cause is an HVDC terminal that will attenuate by the time it is tapped for a user.

IEEE guideline

Current distortion limit based on load size with respect to power system (Isc/IL)

Maximum Harmonic Current Distortion in Percent of I _L						
Individual Harmonic Order (Odd Harmonics)						
$I_{\rm sc}/I_{\rm L}$	<11	11≤ <i>h</i> <17	17≤ <i>h</i> <23	23≤ <i>h</i> <35	35≤ <i>h</i>	TDD
<20*	4.0	2.0	1.5	0.6	0.3	5.0
20<50	7.0	3.5	2.5	1.0	0.5	8.0
50<100	10.0	4.5	4.0	1.5	0.7	12.0
100<1000	12.0	5.5	5.0	2.0	1.0	15.0
>1000	15.0	7.0	6.0	2.5	1.4	20.0

Table 10-3—Current Distortion Limits for General Distribution Systems (120 V Through 69 000 V)

Even harmonics are limited to 25% of the odd harmonic limits above.

Current distortions that result in a dc offset, e.g., half-wave converters, are not allowed.

* All power generation equipment is limited to these values of current distortion, regardless of actual I_{sc}/I_{L} .

where

 I_{sc} = maximum short-circuit current at PCC.

 $I_{\rm L}$ = maximum demand load current (fundamental frequency component) at PCC.

Effects of harmonics distortion

Parallel resonance

- Occurs when system inductance reactance and capacitor reactance are equal at some frequency (5th, 7th, etc)
 - Thus creating amplification of harmonic currents between shunt capacitor and the power system reactance

Consequences

- Increase current harmonic distortion on capacitor and transformer
- Increase voltage distortion throughout the network

Results

- Burns fuses
- Capacitor failure or premature degradation
- Transformer overheating

Figure 5-2-Parallel Resonance Condition

Effects of harmonic distortion

Series resonance

- Is a result of the series combination of capacitor and line inductances
 - Thus creates amplification of harmonic voltage at the capacitor and transformer

Consequences

- Increased voltage and insulation stress
- Increased current

Results

- Burns fuses
- Capacitor failure or premature degradation
- Transformer overheating

Figure 5-3—Capacitor Bank Resulting in Series Resonance

Harmonic filter type

Bandpass filter tuned to the 4.8th harmonic:

Creates a low impedance only at a specific frequencyMost frequently used harmonic filter

Harmonic filter type

Highpass filter tuned to the 12th harmonic
Creates a continuous low impedance after the tuned frequency
Also dampens high frequency notch-type oscillations
Not recommended to tune at low frequency (5th) because R consumes substantial fundamental losses (see C-type filter)
Usually installed after a bandpass filter

Harmonic filter type

➤ C-Type filter tuned to the 2nd harmonic:

- •Similar performances characteristics to the highpass filter
- Used for low tuning frequency
- •R consumes no fundamental losses at nominal parameters
- •Usually for arc furnace and cycloconverter application avoiding amplification of low order harmonic

PFCC in presence of harmonics

Parallel resonance between system reactance (transformer + utility impedance) and the capacitor

Important: the natural frequency of the oscillating circuit must not correspond to the harmonic currents generated by the non linear loads

Calculation of parallel harmonic resonance

Electrical network equipment characteristics:

- Transformer: 2000 KVA, 5.8%
- Capacitor: 700 kvar to be installed
- Drives: non linear loads consists of 50% of total load

Calculation using simple method

- Fr = $\sqrt{KVAsc / kvar}$
- Fr = √{(2000 KVA / .058)/700 kvar}
- Fr = 7.02th harmonic

> Harmonic resonance is precisely on the 7^{th} harmonic:

Strong potential of harmonic problems

Calculation of parallel harmonic resonance

Computer model of frequency response

Eliminating harmonic current resonance

➢ Band pass filter:

Capacitor in series with a reactor

•Absorbs harmonic currents

- Controls parallel resonance
- •Increase voltage at the capacitor bushing due to reactor:
 - (Nominal frequency/tuned frequency)²

Eliminating harmonic current resonance

> Computer model using a band pass filter tuned to 4.8th harmonic

Potential harmonic problems: Yes/No?

✓ Power Survey rule of thumb:

Resonance frequency calculation:

- Fr = Should not be close to the 5th, 7th, 11th & 13th harmonic
- Fr > 15th should be OK
- Fr = Between 8th & 15th low potential problems
- Fr < 8th high potential problems
- Comparing non linear load vs total connected load
 - Non linear load vs total load > 20 % Be careful
 - Non linear load vs total load < 20 % Should be OK

Flow of harmonic current

– – – = 5th Harmonic Current Flow

Lake Louise ski center project

Lake Louise ski center project

ETAP simulation

Lake Louise Ski Center

Lake Louise Ski Center

Lake Louise Ski Center

QUANTITY	DESCRIPTION	MANUFA	CTURER	CAT. #	
1 1 6 6 3 3 3 3 1 3 3 3 1 2 2 8 2 15 1 1 1	ENCLOSURE 91H x 72W x 36D NEMA3R ENCLOSURE 90H x 72W x 36D NEMA3R CAPACITOR 50 KVAR $\textcircled{0}$ 600V, FOR HIGH HARMONIC CONTENT (1 CAPACITOR 35 KVAR $\textcircled{0}$ 600V, FOR HIGH HARMONIC CONTENT (5 REACTOR 191 μ H OR 217 μ H, OR 258 μ H, 378A RMS, 1 PHA REACTOR 195 μ H OR 220 μ H OR 250 μ H, 195A RMS, 1 PHASE TIN PLATED COPPER BUS BAR 2 x 1/4 x 3" (1500A) 1200A FUSE 800A FUSE 800A FUSE 400A FUSE 13A CONTROL BREAKER THERMOSTAT N.O. THERMOSTAT N.C. FAN 120V, 32W HEATER 120V, 250W LUGS 4x $\oiint{2}$ -600mcm MAIN SWITCH 1200A HANDLE SHAFT	POWER SURVEY POWER SURVEY POWER SURVEY POWER SURVEY POWER SURVEY E REX MANUFACTUR REX MANUFACTUR REX MANUFACTUR POWER SURVEY LIMITRON LIMITRON LIMITRON LIMITRON FERRAZ FERRAZ E.T.A. HOFFMAN HOFFMAN HOFFMAN NMB CALORITECH T&B SCHNEIDER SCHNEIDER SCHNEIDER	RING RING	PS917236 PS907236 MMPB0050I33SF MMPB0035I33SF 500C191E6/X 254C195E6/X 380C31E6/X 750A KTU-1200 KTU-800 A4J400 A4J400 A4J600 91H1213 A-TEMNO A-TEMNC 5915PC-12T-B30 SS2061 ASL60-42 LK3WU3 LK3AH170 GS1AE6	
		r		- <u> </u>	
HARMONIC FILTER 510 KVAR © 600 V	BOYER SURVEY LID 8025, Transcanada Hwy	POWER SURVEY LTD 8025, Transcanada Hwy Tel : (514) 333–8392		APPROVED BY:	
5th FILTER: 1x200 KVA	NR VILLE ST-LAURENT, Quebec, H4S 1S4	Fax : (514) 333-8395	REV DATE BY	APP.	
11th FILTER: 1x210 KV	AR FRIENDLY GIANT + TOP OF W	PROJECT : FRIENDLY GIANT + TOP OF WORLD			
BILL OF MATERIAL	PROJECT ID : DRAWING ID : th 1x200+1x100+1x210fixe MS 600V lists Friendly Grant	Top of world PAGE 4/4		+	

Harmonic filter components ratings - Capacitor

✓ Capacitor Assemblies

- Rated in uF for harmonic filter application (not in kVAR)
- Standard capacitor rating:
 - Voltage
 - o Minimum 110% of Vn
 - Current*
 - o Minimum 130% of In for LV
 - o Minimum 170% of In for $\ensuremath{\mathsf{MV}}$
- ▶ * Filter application capacitor must withstand ($I_{rms} = \sqrt{\{I_1^2 + I_2^2 + I_3^2 + I_4^2 + I_5^2,...\}}$
 - Current of an individual harmonic could be greater than I1
- > Tolerances should be kept to minimum (0 3%) because it will be added to L tolerance
- Internally fused MV capacitor
 - Internal fuse operation causes less detuning
- Externally fused MV Capacitor
 - Internal fault takes out the complete capacitor unit which can result in severe detuning and/or unbalance conditions when few units in //
 - External fuse can be made of 50 kA current limiting and be equipped with an indicator transient and short time over voltage rating per IEEE 1036
- Operating temperature; especially for Metal enclosed construction
 - Capacitor lifetime are affected by over temperature

Harmonic filter components ratings - Capacitor

✓ Capacitor Assemblies

Floating Y

- Mostly for MV application
- Limits the fault current across a shorted capacitor
- Easy unbalance protection

Grounded Y (solidly grounded system)

- Most common on utility distribution system (small banks)
- Possible high fault current

➤ Delta

Require that both capacitor bushings be fused if using single phase units ➤ Difficult unbalance protection

Internally fused and externally fused capacitor

Harmonic filter components ratings - Reactor

✓ <u>Reactor Assemblies</u>

- ➢ Rated in uHy (not in kVAR or %) and tolerance (0 3%)
- Calculation:
 - F_{tuned} = $1/{(2\pi\sqrt{LC})}$
 - L = $\{1/2\pi f\}^2 * \{1/C\}$
- > Rating:
 - Irms according to current to be absorbed by filter (Irms = $\sqrt{\{I_1^2 + I_2^2 + I_3^2 + I_4^2 + I_5^2 \dots\}}$
 - Current of an individual harmonic could be greater than I1
- Iron core (single phase or three phase)
 - More compact design and does not require magnetic clearance
 - More practical and cost effective with small banks where uHy value is high and space limited.
 - Three phase reactor construction might show a slightly different B phase inductance, if fine tuning is required single phase reactors should be considered.

➢ Air core

- Magnetic clearance makes it non practical for metal enclosed design
- Usually more practical for large banks where current is high and uHy value is less
- BIL rating for coil to ground and across the coil
- Q Factor should be specified at tuning frequency and at the fundamental (most reactor are only tested at 60 Hz). Tolerance on Q Factor is typically of ±20%
- > Taps are often practical for either fine tuning or provision for expansion

Iron core reactor with selective taps

Harmonic filter components ratings - Resistor

✓ <u>Resistor Assemblies</u>

- \succ Rated in Ohms with tolerance (±5%)
- Continuous current spectrum for loss determination
- Overload RMS current and duration
- Cold resistance value
- ≻ BIL

Resistor mounted on top of capacitor enclosure

Harmonic filter/Capacitor bank components ratings – Vacuum switch

✓ Vacuum switches – MV application

- Voltage rating:
 - 5kV, 15kV, 25 kV and 34.5kV
- > Current ratings:
 - 200A, 400A, 600A
- Configuration in single pole available for 15 and 25 kV design
- Position indicator standard, no visible contact
- Optional manual operator
- Oil filled switch (old design) generation not recommended unless used as a cut-out

✓ Contactors – LV application

- Voltage rating:
 - 600V and below
- > Current ratings:
 - Multiple current rating up to 800A
- Configuration in 3 phase
- Closing time:
 - ➤ 12 16 msec
- > Opening time:
 - > 8 − 12 msec

Vacuum switch & LV contactor

✓ Main switch (LV & MV application)

- > Rating:
 - Minimum of 135% of Irms (could be up to 165% of In)
- MV switches usually has very low capacitive breaking current capability
 - · Vacuum switch is then used to open the capacitor circuit
- Used as an isolation switch and/or visible opening
- It can be fused for short circuit protection
- > Kirk key interlock for safety reasons is normally provided between:
 - vacuum switch
 - main switch
 - ground switch
 - cubicle doors

✓ Ground Switch (MV application)

> Ground switch is provided as a safety features and insure full discharge of capacitors

✓ Breaker (LV application)

- > Rating:
 - Minimum of 135% of Irms (LV application)
- Requires to know the short circuit capacity of network
- If it operate (trips) only needs to switch it back to ON

LV main breaker & MV switch

✓ Main fuse protection

- ➤ Rating:
 - Usually 165% of In for capacitor application
 - Up to 250% of Ims for harmonic filter application
- Provides short circuit protection only
- Does not protect against overload

✓ <u>Stage fuse protection</u>

- > Rating:
 - Usually 165% of In for capacitor application
 - Up to 250% of $I_{\mbox{\scriptsize rms}}$ for harmonic filter application
- Stages or branches should be protected individually against short circuit
- MV fuses always have a visual trip indication and can be equipped with a remote trip contact.

LV & MV fuse and MV blown fuse indication

Safety – Capacitor / Filter protection

✓ Overcurrent protection

- Relays used for overcurrent protection have to be true RMS style
 - Electromechanical relays cannot be used.
- Tripping signal must be sent to either:
 - main breaker
 - vacuum switches
 - never to a load break with shunt trip.
- Thermal sensors imbedded in the reactors can also be used to detect filter overloading.

✓ Over voltage current relaying

Over voltage protection is rarely provided as it is usually part of the bus protection

✓ Unbalance and detuning protection

- On loss of capacitance unbalance occurs through:
 - neutral voltage sensing on floating Y capacitor where loss of capacitance will happens in large portion (i.e. externally fused capacitors)
 - Neutral current sensing used in a double floating Y configuration

Neutral CT in a floating Y-Y

Safety – Capacitor / Filter protection

Power Survey Capacitor Life Indicator

- Continuously monitor the current drawn from the capacitor
- When current is above 70% of its rated value a LED will stay ON.
- When current falls below 70% of its rated value the LED will switch OFF.
- It also monitors the capacitor fuse
- The percentage value can be adjusted to a different level.
- An output relay can also be added for remote application to a PLC, contactor, etc.
- This equipment is often used on harmonic filtering system.

✓ Application

Wind Tunnel - NASA Langley Virginia

✓ Harmonic generator

> 18,000 HP @ 6.9kV - 12 Pulse drive

✓ Harmonic filter supplied

- 11.4 Mvar @ 6.9 kV
 - 2 Mvar - 2nd Band Pass harmonic filter

 - 7.4 Mvar
 - 2 Mvar 3rd Band Pass harmonic filter
 - 11th High Pass harmonic filter

NASA Langley Virginia Wind Tunnel

✓ Customer

Tennessee Valley Authority - TVA

✓ Harmonic filter supplied

- 13.5 Mvar @ 13.8 kV
 - 5.2 Mvar 5th Band Pass harmonic filter
 - 4 Mvar 7th Band Pass harmonic filter

• 2 Mvar

- 2.3 Mvar 11th Band Pass harmonic filter
 - 13th Band Pass harmonic filter

• Tennessee Valley Authority - TVA

✓ Application

Hypersonic Wind Tunnel – US Air Force (Arnold Base)

✓ Harmonic generator

2 X 80,000 HP @ 13.8kV - 12 Pulse drive

✓ Harmonic filter supplied

- 2 X 30 Mvar @ 13.8 kV
 - 2 Mvar 3rd C-Type harmonic filter
 - 14 Mvar 5.5th High Pass harmonic filter
 - 14 Mvar 11.
- 11.5th High Pass harmonic filter

• US Air Force – Arnold Base

✓ Customer

Falconbridge zinc Mine – Thunder Bay, Ontario

✓ Harmonic filter supplied – Rack mount type

- 3.8 Mvar @ 13.8 kV
 - 1.9 Mvar 4.9th Band Pass harmonic filter (fixed)
 - 1.9 Mvar 4.9th Band Pass harmonic filter (switched)

• FALCONBRIDGE – Thunder Bay Ontario

Power Survey Harmonic filter

- Capacity
 - 50 kvar to 20 Mvar
- Network voltage
 - 208v 35,000v
 - Other voltages available
- Option
 - NEMA 12 & 3R enclosure
 - Main breaker
 - Main disconnect
 - Main fuse disconnect
 - Ground switch (MV application)
 - Capacitor Life indicator
 - Blown fuse indicator

Capacitor and harmonic filter references/standard

➢ IEEE 1531

- Guide for Application and Specification of Harmonic Filters
- ➢ IEEE 18
 - Standard for Shunt Power Capacitors
- ➢ IEEE C37.99
 - Guide for Protection of Shunt Capacitor Banks
- ➢ IEEE 519
 - Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems
- ➢ IEEE 1036
 - Guide for Application of Shunt Power Capacitors
- ➢ IEEE C37.012
 - Application Guide for Capacitance Current Switching

Potential Market - Industrial

Industrial customers

<u>Type</u> <u>Typical PF</u>

- Printer 70%
- Plastic 70%
- Automobile 65%
- Saw mill 75%
- Pulp & Paper 70%
- Cement plant 70%
- Food & Process 80%
- Fisheries 80%
- Etc

Potential Market - Commercial

<u>Commercial customers</u>

Typical PF Type Office tower 85% ٠ Shopping center 80% ٠ Grocery store 80% Arena 75% ٠ Pump station 75% • Hospital 80% •

• Etc

References

- Falconbridge
- Québécor printing
- Nortel
- Kruger
- Canadian Forest Products
- Johnson & Johnson
- NASA
- Olympic stadium
- US Air Force, Arnold Base
- JFK Airport

- Chrysler
- Hyundai
- Vancouver WWTP
- Lafarge
- US Navy
- Shell
- Good Year
- Bowater
- Etc

Handy formulas

Useful Equations for Power Factor Correction and Harmonic Distortion (Balanced Phase Loads)

 $KVAR \times \%Z$

$$PF = \cos(\varphi) = \frac{kW}{kVA}$$
% Voltage Rise = $\frac{KVAR \times 36Z}{Transformer KVA}$

 $kVA = \frac{kW}{PF} = \sqrt{kW^2 + kVAr^2}$

 $kVA = \frac{V_L \times I_L}{1000}$ Single-Phase

 $kVA = \frac{\sqrt{L} \times I_L}{1000}$ Three-Phase

 $kVA = \frac{\sqrt{3} \times V_L \times I_L}{1000}$ Three-Phase

 $c_{pn} = \frac{KVAR \times 10^3}{(2\pi f)(KV)^2}$

 $kVAr = \frac{2\pi \times f \times C_{ph} \times V_{p}^2}{1 \times 10^3}$

 $kVAr_E = kVAr_R \times \left(\frac{V_A}{V_R}\right)^2 \times \left(\frac{f_A}{f_R}\right)$

 $kVAR De-rating for Voltage & Frequency$

 $kVAr = \frac{HP \times 0.746}{\eta} \left(\sqrt{\frac{1-PF_0^2}{PF_0^2}} - \sqrt{\frac{1-PF_1^2}{PF_1^2}}\right)$

 $I_{a} = \frac{KVAR \times 10^3}{\sqrt{3} \times V_L}$

Three Phase

 $THD = \sqrt{\frac{5}{2} \frac{f_A^2}{f_1}} \times 100\%$

 $I_{a} = \frac{KVAR \times 10^3}{V_L}$

Single Phase

 $I_{MMS} = \sqrt{I_1^2 + \sum_{n=2}^{2} I_n^2}$

 $KW (Motor Input) = \frac{Hp \times .746}{\% Eff}$

kW

DE

Handy formulas

For Δ -Connected Capacitors: $C_{\tau \gamma \sigma \tau} = 3 \times C_{ph}$

$$V_{L} = V_{\phi}$$
$$I_{L} = \sqrt{3} \times I_{\phi}$$

For Y-Connected Capacitors:

$$\begin{split} C_{TOT} &= 3 \times C_{Ph} \\ \mathsf{V}_{\mathsf{L}} &= \sqrt{3} \times \mathsf{V}_{\varphi} \\ \mathsf{I}_{\mathsf{L}} &= \mathsf{I}_{\varphi} \end{split}$$

Legend	
∇_{ϕ}	- Phase voltage
VA	 Applied line voltage
VR	- Rated line voltage
IL.	- Line current
l _é	- Phase current
l _h	 Harmonic current of order h
I ₁	 Current at fundamental frequency
RMS	 Root-mean-square value of current
f	- Frequency
f _A	 Applied frequency
f _R	- Rated frequency
C _{TOT}	- Total capacitance in $_{\mu}F$
Cph	- Phase capacitance in $_{\mu}$ F
HP	- Horsepower
PFo	- Initial power factor
PF_{T}	- Target power factor
η	- Motor efficiency
THD	 Total harmonic distortion
Xc	 Capacative Reactance

- Transformer Impedance

Z

Panel fabrication

- <u>Dimension:</u>
 - Non standard
- <u>Approval:</u>
 - CSA & UL

<u>Enclosure type:</u>

• NEMA 1, 12, 3R, & 4

Type of material

- Steel,
- Stainless steel (304 & 316)
- Aluminium

www.custom-metalinc.com

