Protection From Lightning

- Presented by Alan Lipsky
 - Consultant
 - Grounding
 - High frequency power conversion
 - Feedback control

Organization

- Lightning:
 - Cause, Current Range, Prevalence, Damage
- Mitigation:
 - Grounding
 - Protection of AC Power and PC-board inputs with surge protection
 - Maintain Ground reference to protect communication ports
- Surge tests

Lightning

Large negative charge forms in cloud; inducing large positive charge below:

- Negative low current downward leader followed by upward high current stroke,
- Current ranges from a few hundred amps to more than 500 KA,
- 20 KA to 40 KA usually used to estimate magnitude of strike.
- Sometimes 3 to 5 distinct strokes roughly 60 milliseconds apart
 - 20 k Amps for first, ½ that for following strokes
 - Last stroke could be followed by 150 Amp current lasting 100 milliseconds

Duration and Frequency

- Typical strike duration 50 to 100 microsecond.
- Most spectral energy below 1 MHz with < 1 microsecond rise time;
- Energy down to dc and above **1MHz**,
 - Maximum flash densities in North America in Gulf coast and Florida Peninsula

Lightning Damage

- Damage caused by large current or the heat caused by current flow
 - Electronic circuits damaged by high current or voltage caused by that current.
- If lightning occurs near an overhead electric or telephone line, large current induced or injected into the line.
- Charge can also be injected into soil. Arcing to nearby buried conductors at distances up to 100 m.

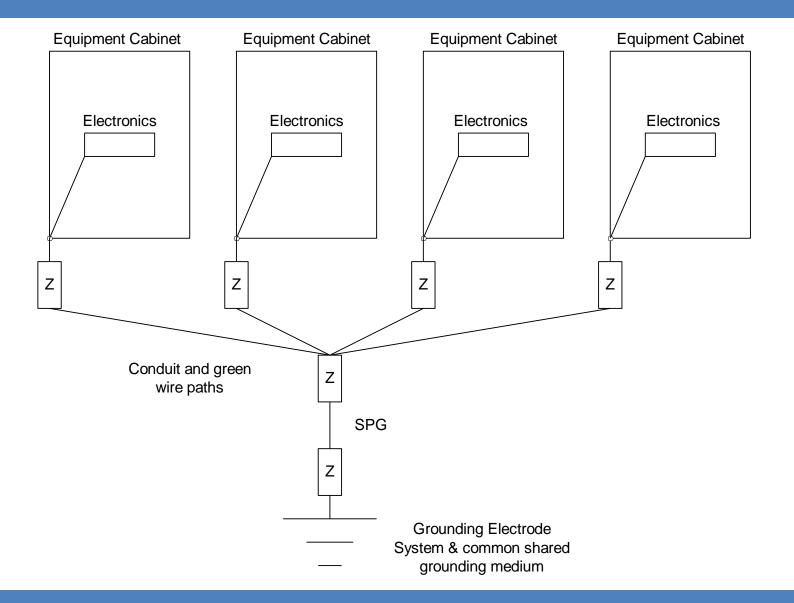
Lightning Related Failures

- Insulation breakdown
- Flashover
- Fracture
- Thermal and peak power overloads

Damage Mitigation

- Grounding
- Protection from Surges
- Testing

Grounding in Accordance with National Electrical Code


- Bond all Cabinets and other conductors such cable raceways together
- All components of grounding system must be connected together with a conductor
- Motivation is Safety and not necessarily protection from lightning
 - Purpose is to maintain conductive surfaces at or near the same potential

Grounding for Safety in Accordance with National Electric Code

Common thread:

- Grounding electrode,
- Neutral wire and bus,
- Grounding bus bonded to service entrance cabinet,
- Insulated green wire ground conductors.

Safe System in Accordance with NEC

Grounding to Mitigate Damage from Lightning

- Use Grounding suitable for high frequency
 - -A Multi-Point Ground.
- Build a system reference structure, SRS.
 - High inductance grounding poses a safety and equipment hazard caused by large voltage differences between cabinets
- When circumstances permits bolt cabinets together and bond them

Grounding (Cont)

- Above 300Khz, and for protection from lightning, bond each cabinet at many points.
 - The single ground wire connecting each cabinet with ground has large inductance.
- Use grounding structure that resembles a plane, such as a large conducting sheet or a grid work of grounding wires bonded where they cross. Bond cabinets at all 4 corners. Wires in grid should be no more than 0.6 meters apart.

Mitigation Through Surge Protection

- Protection devices:
 - Metal Oxide Varistor
 - Gas discharge tube
 - Thyristors
 - Transient Voltage Suppressor (TVS)
- Each has different characteristics that makes their use complementary

Protect at Several Locations

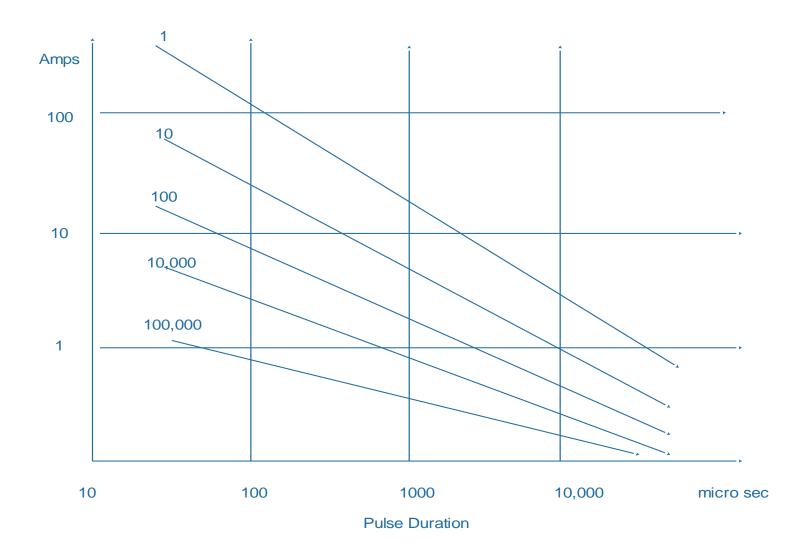
- At building entrance
- At power panel
- At equipment power input
- At signal inputs
- At critical circuits

Gas Discharge Tube

- Withstand large surge current because it clamps at low voltage
- Low capacitance
- Relatively slow turn on
- Use on communication circuits and AC line
- Because of low voltage required to maintain arc, it may not extinguish after the surge is over

Metal Oxide Varistor (MOV)

- Action in PN junctions throughout bulk material
- Ratings
 - Maximum non repetitive surge current
 - Max energy
 - Clamping ratio 1.95
 - Response time less than 20 ns
 - Clamps AC


MOV

• MOV voltage definitions:

- Maximum clamping voltage
- Varistor voltage @ 1mA
- Maximum continuous voltage
- Ground reference

- Use at building entrance, Power panel, Equipment power input
- Not suited for data transmission lines because of large capacitance
- Main issue:
 - Pick continuous voltage to pass normal supply voltage.
 - MOV clamping voltage should protect user equipment
 - The MOV should be protected from as many surges, swells, and spikes on the line as possible.
 - May require higher voltage ratings on equipment.

Life for Various Number of Pulses

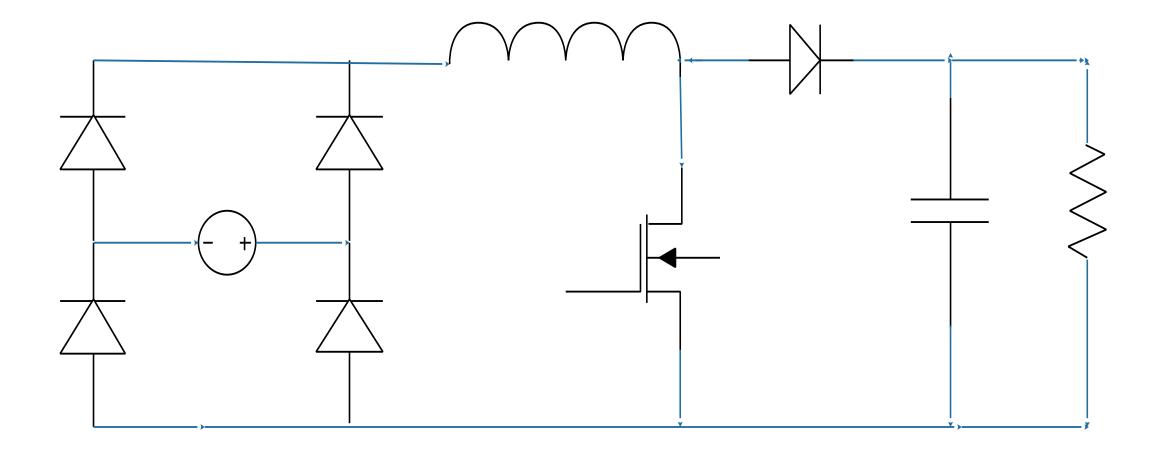
Transient Voltage Suppressor

- Lower clamping ratio than MOV's
 - 1.6 versus 1.95
- Zener diode with a larger cross section designed for surge voltage clamping rather than voltage regulation
- Generally used at lower voltages than MOV devices
- Inserted between source of surge and circuitry being protected
- Some units manufactured for protection of data lines

TVS (CONT)

- Specified in KW of peak pulse power
 - Clamping Voltage times peak pulse current
- Clamping Voltage
- Rated Working Peak Voltage (Rated Standoff Voltage)
- Peak Pulse Power Dissipation
- Peak Impulse Current
- Some units made with low capacitance for data lines

TVS (CONT)


- TVS Voltage definitions:
- Vc Clamping voltage
- Vbr Start of avalanche
- Vwm Rated standoff voltage

• Ground Reference

Second Order Low Pass Filter

- Response to short voltage pulse:
 - Approximate by impulse equal to time duration times voltage amplitude
 - Amplitude of normalized impulse response depends upon damping constant
 - Amplitude = 0.38, damping = 1; Amplitude = 1, damping = 0
 - Impulse response of L-C network at end of 20 micro second pulse = 0.7% of final amplitude, $\omega_n = 2640 \text{ rad/s}$
 - Normalized amplitude times ω_n
- Used on: power rectifiers and high power factor rectifiers

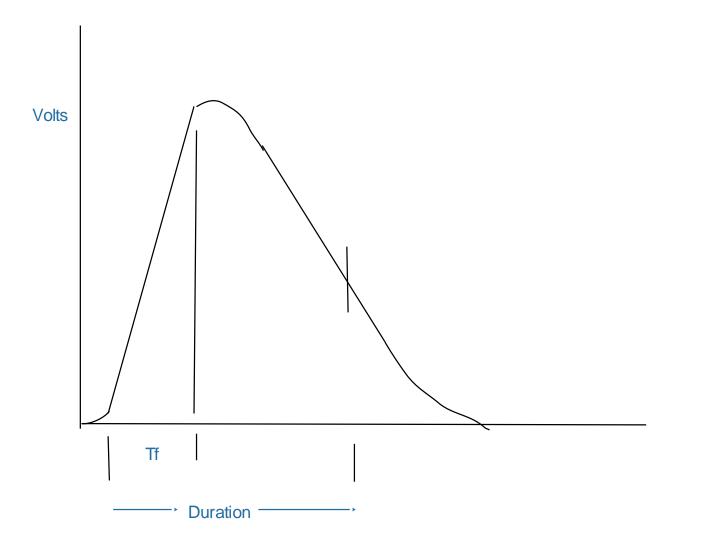
High Power Factor Rectifier

High Power Factor Rectifier

- 88 Volts to 264 Volts
- Output power 270 Watt
- Inductor = 650 micro Henry; Capacitor = 220 micro Farad
- $\omega_n = 2640 \text{ rad/sec}$
- For 1000 volt 20 micro second pulse and undamped filter
 - V = 53 volts

Surge Testing

Standard groups specify testing standards for various types of overvoltage transients


- Standards:
 - IEC 61000-4-2 Electrostatic Discharge
 - IEC 61000-4-4 Electrical Fast Transient/Burst (EFT)
 - IEC 61000 4-5 Lightning strikes & Switching Transients
 - ANSI/IEEE 62.41-1991

IEC 61000-4-5

- Contains test for both power and communication lines
- Test levels:

	• Level	open circuit Voltage	Short circuit Peak Current
• 1	. Well protected	0.5 KV	0.25 KA
• 2	2. Protected	1.0 KV	0.5 KA
• 3	8. Typical Industrial	2.0 KV	1.0 KA
• 4	. severe Industrial	4.0 KV	2.0 KA

Surge Specifications

Surge Pulse Characterization

- Front time (rise); Second time (fall time) to 50% of maximum
- Combination generator provides open circuit voltage and short circuit current
- Standard power circuit pulses:
 - 1.2 X 50 micro second open circuit voltage waveform
 - 8 micro second to 20 micro second short circuit current
- Telecommunications
 - 10 X 700 Micro second open circuit voltage waveform
 - 5 X 300 Micro second short circuit voltage waveform

References

- IEEE Recommended Practices for Powering and Grounding Electronic Equipment
- Varistor Introduction Vishay, BC Components
- Selecting Varistor clamping voltage: Lower is not better
 F.D. Martzloff and T.F. Leedy
- Selecting a Littlfuse Varistor AN9771.1
- Micronotes 102, 104, 122, 125, 126
- TVS Diode Arrays (Low Capacitance ESD Protection)