IEEE Distinguished Lecture

Hofstra University

October, 2012

REVERSING TIME:

A WAY TO UNRAVEL DISTORTED

COMMUNICATIONS?

Dr. JAMES V. CANDY

Lawrence Livermore National Laboratory & University of California, Santa Barbara

This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

ORGANIZATION

- INTRODUCTION
- BACKGROUND
- WHAT IS TIME-REVERSAL?
- T/R PROCESSING FOR COMMUNICATIONS
- PROOF-OF-PRINCIPLE EXPERIMENTS
- NARROW-BAND P2P?
- NARROW-BAND A2P?
- WIDE-BAND A2P?
- SUMMARY

INTRODUCTION

Signal Processing

is based on developing a processor to **extract** the useful information from noisy uncertain data while **rejecting** the extraneous

In acoustics, the <u>signal</u> can be a sound, a digitized measurement, an image, a noisy measurement ... or even a "wave"

A <u>wave</u> is a special signal based on *space* and *time* (e.g. pebble dropped into a puddle)

Flaw detection and imaging can be achieved using acoustic transmitters in an ultrasonic array

T/R Prototype Unit

Control Computer/Display

The ocean is a complex noisy, dynamic environment

APPLICATION: Medical Ultrasonic Scanner

The application of acoustical processing techniques to ultrasonic data more detail for analysis

BACKGROUND

Signal processing enables a solution to the communications problem in hostile environments

Time reversal processing enables such a solution since it retraces paths to increase SNR and "unravel" distortions

Reverberation and scattering can lead to unwanted distortion that time-reversal processing can "fix"

TIME-REVERSAL

Background & Theory

Time-Reversal Methods enable Communications in Severe Multipath Environments

ADVANTAGES

- Communication in the presence of multipath and an inhomogeneous medium
- Application of Time Reversal Signal Processing (space-time equivalent of matched-filter in software)
- For example, transmission from remote, embedded sensors and point-to-point communications
- Can be extended to the RF spectrum
- Reasonably straightforward software receiver designs can carry out system functions

ISSUES

- Signals must be collected, digitized, time-reversed and processed on transmission and/or reception
- External noise, TX/RX dynamic range, power levels and medium losses
- Digitization will be the cost driver

T/R communication systems can:

- mitigate multipath, multiple scattering, inhomogeneous effects
- focus signal energy at a client station through a hostile medium
- provide a secure link (unique medium function) from host-to-client
- be deployed in point-to-point (P2P) or array configurations (A2P, A2A)
- compliment existing communications technology
- be implemented in software

WHAT IS TIME-REVERSAL??? T/R system is an intelligent, *optimal*, space-time, matched-filter that "learns" the medium

T/R operations are equivalent to using the medium to "physically" estimate multichannel autocorrelations providing both TEMPORAL (multiple arrivals) GAIN & SPATIAL (array) GAIN

The medium (Green's function) provides UNIQUE paths (channels) from the host array to each client station---this is the <u>key</u> to be exploited in T/R communications

T/R receiver realizations can implemented on transmission or reception:

I. POINT-TO-POINT EXPERIMENTS IN A REVERBERATIVE STAIRWELL

We define the following terms:

- <u>Symbol Error</u> error between true symbol sample transmitted and sample extracted by recvr (made up of bits)
- <u>Bit Error</u> error between true bit transmitted and actual bit extracted by recvr
- <u>Open Communications</u> both host & clients can broadcast openly in the environment (city, urban env.,etc.) and everyone can listen
- <u>Secure Communications</u> both host & client broadcast but NO ONE can listen
- <u>Covert Communications</u> host broadcasts & ONLY client can listen

We developed a P2P ACOUSTICS experiment in a hostile, highly reverberant free space environment to evaluate the T/R receiver:

Typical T/R acoustic receiver performance on experimental data is quite reasonable

T/R acoustic receiver performance comparison (ensemble average) of Symbol Error vs. Threshold

II. ARRAY-TO-POINT EXPERIMENTS IN A REVERBERATIVE STAIRWELL

We developed A2P ACOUSTICS experiment in a hostile, highly reverberant free space environment to evaluate the T/R receiver:

T/R Arrays can provide significant SNR gain and performance over a single channel (sensor) reception in a hostile environment

1-BIT Performance is possible and works!

UNIVERSITY OF CALIFORNIA, Santa Barbara & Lawrence Livermore National Laboratory J. V. Candy 2/9/2006 37

T/R Receiver Realization III: G-function on Rcv

T/R III focusing at clients 1 & 2: % symbol error

Overall T/R receiver performance is encouraging for 24-bit designs:

Overall for T/R receivers focusing at clients 1 & 2 demonstrates the degradation:

Proof-of-principle experiments have shown outstanding results for these experiments

standard receivers try to "ignore" multipath by using only direct path information (time gating)

arrays have been recently introduced into comms area, but not intelligent (learn Green's function) T/R arrays

BUT

we have shown for P2P and A2P communications the concept of a time-reversal (T/R) receiver is capable of operating successfully in a highly reverberative environment even in a 1-BIT T/R receiver realization

III. ARRAY-TO-POINT EXPERIMENTS IN A TUNNEL-LIKE STRUCTURE

Synchronization & demodulation create a significant problem for carrier-based NB receivers (collaborating with MIR people)

To improve our performance we:

- decided on a wide-band design (F_{BW}=BW/F_C>20%;F^{TR}>50%)
- chose to use a "transmitter-reference" (XR) synchronization and modulation/demodulation scheme (2 pulses/bit; polarity check)
- designed a gaussian-windowed chirp pulse for our BPSK codes
- performed experiments in our canonical stairway and compared performance to validate design

performed experiments in the tunnel-like (cave) demonstrating the capability

The raw transmitter-reference (XR) information is broadcast in the highly reverberant tunnel-like environment

UNIVERSITY OF CALIFORNIA, Santa Barbara & Lawrence Livermore National Laboratory J. V. Candy 2/9/2006 47

Wide-band T/R works for both 24 & 1-bit realizations

Summary:

- We have discussed the idea of communications in a hostile environment using time-reversal processing with multi-channel (intelligent array) signal processing
- We have discussed the approach using theory, simulation, experiment and prototype design
- We have performed :
 - theory (T/R operators and multi-channel (array) signal processing)
 - algorithms (processing)
 - simulations
 - experiments (media and test beds)
 - prototype development
- leading to a commercializable receiver for military and civilian applications

T/R (on transmission) provides the MF solution to the problem of determining the optimal input to maximize the SNR at the source

MF problem:

GIVEN a "known" signal (Green's function) of the medium from source-to-transmitter in additive random noise, **FIND** the *input function* that *maximizes* the SNR at the source (focus)

The T/R solution (transmission) in AWN to the MF problem is given by:

$$SNR_{out} = \frac{\left| \int_{-\infty}^{T} f(\mathbf{r}_{o}, \alpha) g(\mathbf{r}_{o}, T - \alpha) d\alpha \right|^{2}}{\frac{N_{o}}{2} \int_{-\infty}^{T} g^{2}(\mathbf{r}_{o}, T - \alpha) d\alpha} = \frac{\left| f(\mathbf{r}_{o}, t) * g(\mathbf{r}_{o}, t) \right|^{2}}{\frac{N_{o}}{2} \int_{-\infty}^{T} g^{2}(\mathbf{r}_{o}, T - \alpha) d\alpha}$$

which leads to the maximization of the numerator (as before) giving the solution

$$f(\mathbf{r}_o, t) = g(\mathbf{r}_o, T - t)$$
 \leftarrow time-reversed Green's fcn

For a "known" signal (Green's fcn) the optimal SNR solution is the T/R processor.

$$z(\mathbf{r}_o, t) = f(\mathbf{r}_o, t) * g(\mathbf{r}_o, t) = g(\mathbf{r}_o, T - t) * g(\mathbf{r}_o, t)$$

The channel Green's function can be estimated optimally or using a simple pilot (chirp)

Wave propagation in media (water, air, tissue, materials etc.) causes reflections and transmissions of energy at each interface

