Creating Robust Designs using Statistical Methods

Design for Yield (DFY)

Agilent Technologies

Creating Robust Designs using Statistical Methods

What is a Robust Design?

A design that is less sensitive

to the manufacturing process

Agilent Technologies

Advanced DFY Tools

No longer designers have to worry that their circuits have to be redesigned again.

No longer managers have to be concerned for the high costs of multi wafer runs.

ADS Advanced DFY Tools help designers achieve "First Pass Success".

Example: 2.4 GHz MIC LNA on Alumina Substrate

Example: 2.4 GHz LNA - MIC Design

Three of many different ways to match for optimum noise

Goal is to have the matching network impedance coincide with the optimum noise figure impedance, Γm

Example: Ruby Mask - 2.4 GHz LNA

Initial Test Results (Major Problem)

Finding a solution in the lab

This solution achieved a .5 db NF @ 2.4 GHz

1- Diamond Scribe out the Input Matching Network

2- Solder a loop of inductive wire from FET to connector

Page 8

Agilent Technologies

Example: Ruby Mask - 2.4 GHz LNA

Wire loop from input

port to FET's Gate

Back to the drawing board for further investigation

Understanding what went wrong

Single Line Matching – Low Q

Use of high impedance, single line was the best technique for achieving robust & optimum Results, <u>but too narrow to</u> <u>realize.</u>

Suspended line concept was utilized to produce a realizable, wider, high impedance line with a low Q broadband network

Agilent Technologies

Matching with Single Line – Low Q

NF Simulation of the Various Matching networks

Real MMIC Designs – Fabricated on the same wafer

Our Goal is to Create Something like Amp2

Real MMIC Designs – Fabricated on the same wafer

Our Goal is to Create Something like U/C 2

The DFY Process for MMIC

Typical Process Yield Curve

Mean value of Gain = 15 dB

Process Variation Result in a Normal Distribution Spread

Example of a Six Sigma Robust Design

Example

This curve could represent

a foundry's output of 100,000 Driver Amps with Gain=20 dB (+/- 3 σ = 6 dB)

Number of Chips Process Width, +/- 3σ 20 **Agilent Technologies** Page 21

Example – Six Sigma Design

100,000 Driver Amps with Gain=20 dB (+/- 3 σ = 6 dB)

Typical Process Yield Curve

100,000 Power Amps with Gain=20 dB (+/- 3σ = 6 dB)

Make the Process Yield Curve Narrower

Our Goal is to Create Something like Amp2

Amp1 & Amp2 "Yield Distributions"

The DFY Process

The DFY Process for MMIC

Yield Sensitivity Histograms (YSH)

Yield analysis Data are <u>post processed</u> via built-in AEL Expressions to extract and display YSH results and more...

YSH display yield with respect to each element variation.

YSH provide insight to how sensitive the design is with respect to each of the design's elements.

YSH help designers to pinpoint the sensitive **RED X** parts in their designs. As a result, designers make decision to replace these parts with "tighter tolerance parts" in Board application (OR) create "less sensitive matching networks" in IC designs.

Agilent Technologies

Example: VCO Design

VCO – Yield after Optimization – 37.5 %

VCO – Yield Sensitivity Histograms

VCO – Yield Sensitivity Histogram for Lres1

Higher Yield by controlling Lres1 +/- 1%

- 5% uniform variation in lumped component values

Yield Sensitivity Histogram of controlled "Lres1"

Notice now Cres1 has negative effect on Yield

Controlling Cres1 increase the Yield to 90%

Now we don't see any more "Red X" components

What we Learned from this VCO Example

Yield Sensitivity Histograms (YSH) helped us pin point the source of the yield problem in the design

YSH are generated using Post Processing of Monte Carlo Yield analysis data.

The DFY Process for MMIC

Sensitivity Analysis – How does it work?

- Change the part's nominal value by 1e-6 and monitor the change in the response (R).
- Example for capacitor, C1 with response R
- Perturb C1 by a small delta: C1' = C1(1+1e-6)

Sensitivity of S22 to all Capacitors

The DFY Process for MMIC

Agilent Technologies

A Brief Tutorial on Design of Experiments (DOE)

DOE – A Brief Tutorial – 3 elements MMIC

Start by choosing variables that affect the response

Choose three variables with their +1 and -1 :					
Width of lines (W)	W=W_nom ± .5 um				
Resistors (R)	R= R_nom ± 5%				
Capacitors (C)	C= C_nom ± 5%				

Example: For a 10u wide line, W=10 um

- -1 corresponds to 9.5 um
- +1 corresponds to 10.5 um
- 0 corresponds to nominal value, 10um

Agilent Technologies

Page 46

Main Effect of Capacitors, C on Gain

Average gain for C=-	Gain	С	R	W
12 7725 dB (vollow)	40.05			
13.7725 UB (yellow)	12.85	-1	-1	-1
	13.01	-1	-1	1
	14.52	-1	1	-1
Average gain for C=	14.71	-1	1	1
13.86 dB (blue)	12.93	1	-1	-1
	13.09	1	-1	1
	14.61	1	1	-1
Slope= .044	14.81	1	1	1

Main Effect of Resistors, R on Gain

W	R	С	Gain	Average gain for R=-1
-1	-1	-1	12.85	12.97 dB (blue)
1	-1	-1	13.01	
-1	1	-1	14.52	
1	1	-1	14.71	Average gain for R=1
-1	-1	1	12.93	14.6625 dB (green)
1	-1	1	13.09	
-1	1	1	14.61	
1	1	1	14.81	Slope = .85

Plotting Main Effects of C and R

Interaction Effect of (W and R) on Gain

W	R	С	Gain	Average gain for W*R=-'
-1	-1	-1	12.85	13.8075 dB (blue)
1	-1	-1	13.01	
-1	1	-1	14.52	
1	1	-1	14.71	Average gain for W*R=1
-1	-1	1	12.93	13.825 dB (pink)
1	-1	1	13.09	
-1	1	1	14.61	
1	1	1	14.81	Slope = .0088

Plotting Interaction Effects of W and R

Obtaining the Rest of the Coefficients

<u>Term</u>	Coefficient	
Constant (nominal gain)	13.8	
w	.09	these three
R	.85	coefficients in the
С	.044	previous sildes
W*R	.0088	
W*C	.0013	
R*C	.0050	
W*R*C	0.0025	

Construct a linear equation to represent the experiment results. Gain=13.8+.09W+.85R+.044C+.0088WR+.....etc.

Page 52

Display All Effects on a Pareto Chart

DFY tools allow designers to find the areas in the design that need to be redesigned

DOE INTERACTIONS

Another DOE Example with 5 variables:

- 1. Width of lines due to process +/- .5 microns
- 2. IMN_C1 (Input Matching Network) C1 +/- 5%
- 3. IMN_R1 (Input Matching Network) C1 +/- 5%
- 4. OMN_C1 (Output Matching Network) C1 +/- 5%
- 5. OMN_R1 (Output Matching Network) R1 +/- 5%

DFY-DOE

2

Open the Design file: E_LNA_DOE2_on_five_v ariables

I want to study the sensitivity five elements that could affect the output results: IMN C1 and R1, OMN C1 and R1, and line widths

- The <u>five elements</u> we want to run DOE on are:
- IMN_R1 IMN_C1
- Line widths
- OMN_R1 OMN_C1
- •Notice the variable x that I have created. As x changes, all line widths will change +/-.5

VAR VAR1 w10=10*(1+x) w15=15*(1+x) w20=20*(1+x) w25=25*(1+x) w30=30*(1+x)

VAR VAR5 x=0 {d} VAR VAR2 IMN_C1=.9 {d} IMN_R1=8 {d} VAR VAR3 OMN_C1=.26 {d} OMN_R1=20 {d}

DOE Analysis

on 5 variables: line widths +/- .5 u IMN_C1 and R1, OMN_R1 and C1 +/- 5%

When the simulation is done, this data Display will pop automatically

NF is affected by OMN_R1 and line widths (especially of the IMN)

Effect of OMN_R1 and Line widths on NF are correlated – they both have the same slope

S22 is affected mostly by OMN_C1 and Line widths:

C1 adds 2 dB to S22 Line widths add 1.5 dB to S22

There is an interaction effects between OMN_R1 and Line widths

See next page

Interaction effects between OMN_R1 and Line widths to S22

If OMN_R1 is high and Line Widths is High, S22 gets worse by 2 dB If OMN_R1 is high and Line Widths is Low, S22 gets better by 2.3 dB If OMN_R1 is low and Line Widths is High, S22 gets worse by 1 dB If OMN_R1 is low and Line Widths is Low, S22 gets better by .8 dB

NF Simulation of the Various Matching networks

- Different Topologies produce different yield
- Selecting low Q topologies is a must.
- YSH help you find where the problem is coming from.
- DOE analysis help you find the sensitive high-Q matching networks and interactions between them

Matching Utility Tool in ADS

Impedance Matching	·····	→ ≟ ∰ 淪 \ 🧶 ֎ 🕷	
	Impedance Matching Utility File Tools View Help Impedance Schematic Impedance Schematic Impedance Schematic Impedance Matching Impedance Current Schematic Impedance Matching Impedance Impedance Schematic Impedance Schematic Impedance Matching Impedance Current Schematic Impedance Matching Assistant Matching_tool_study2 Impedance Schematic Overview Match DesignGuide: SmartComponent Overview 1. Place a SmartComponent from the "Match DG" predicted collar or menu). 2. Design SmartComponent from the "Match Assistant" 3. Set SmartComponent from the "Match Assistant" 3. Set SmartComponent simulation frequencies from Impediation. The "Automatically Display Results" option control following simulation. The "Automatically Set Frequencies based on design specifications. 4. Simulate SmartComponent from the "Simulation Assistant" 5. Network sensitivity to component tolerance can be tab. The "Yield Assistant" can also optimize your r 6. If, during any simulation, you chose not to "Automm may open the display from the "Display Assistant"	SmartComponent DA_LCB and passMatch1 SmartComponent Capability Design, Simulate, Yield, Display Yield Assistant Display Assistant alette nt" or "Matching Assistant" tab. the "Simulation Assistant" tab. the "Simulation Assistant" tab. is automatic launching of display tencies" button sets simulation ssistant" tab. e assessed using the "Yield Assistant" network for maximum yield. atically Display Results," you tab.	C C S B 2 P 8 G C S D D c J u d c 5-B2P2_Include Jde Iel=VBIC -TEMP=25 atohing_tool_study2 C t c state i c on space s process was taken g iconplace at we can find a matching topology
	Pa	ge 67 🙀 🙀	jilent lechnologies

	File Tools View Help
	√
	Current Schematic SmartComponent
\sim	[Test_Match_tool_pri]: 3
imma1	Current Design SmartComponent Capability Matching_tool_study2 Design, Simulate, Yield, Display
Imma <u>i=sm_gar</u>	Overview Matching Assistant Simulation Assistant Yield Assistant Display Assistant
	Automated SmartComponent Simulation Simulation Frequency Sweep
n=1 0.0bm	Start 3 GHz Vatomatically Display Results Z=50 Ohi
0.000	Stop 4 GHz Automatically Set Frequencies
	Step .1 GHz V
Step1: Sir In D	Num. of Points 11
file and Stop2: Go	Simulate Create Template Update From Template Help
Step2: 00 Step3: Lib Step4: Pla Step5: Usi	Helps hing topology
Step6: Fi Step7: Cli Step 8: Tt	"Simulate" automatically simulates selected SmartComponent "Create Template" creates a simulation template for manual SmartComponent simulation "Update From Template" closes the manual template and updates SmartComponent parameters
	Page 69 Agilent Technologies

Bandpass Matching Network **Display Assistant**

R

€

÷

123 4 567 8

Eqn

� ☆

A

Need Help? Please see the Utility User Manual for complete instructions on using this Display Assistant.

Impedance Matching Utility

	Fp1 (GHz)		Fp2 (GHz)			Gain Change
Input Parameters	3.000		4.000			0.000
	Gain at Fp1	Gai	n at Fp2	Max PB G	ain	Min PB Gain
Performance	-0.044		-0.029	-0.0	006	-0.044
	F (GHz)	S	11 (dB)	S11	^2	S21 (dB)
Marker M1	3.10	•	-26.18	0	.00	-0.01
	F (GHz)	S	11 (dB)	S11	^2	S21 (dB)
Marker M2	3.00		-20.01	C	0.01	-0.04

PB: Passband Fp1: Lower Passband Edge Fp2: Upper Passband Edge

Page 70

ADS Matching Tool (Set Yield Specs and Tolerances)

Impedance Matching I	Utility				
					× (
<u></u>					
Current Schematic		SmartComponent			
[MATCH_TOOL_PRJ]: 18	3	DA_LCBandpassMa	atch1		
Current Design		SmartComponent Ca	pability		
Matching_tool_study2		Design, Simulate, Yi	ield, Display		
Overview Matching Ass	istant Simulation Assistant	Yield Assistant Displ	lay Assistant		
Automated SmartCompor	nent Yield Simulation				
			_		
Yield Frequency Sweep		Statistical	Components	mme	2
Start 3	GH	z 💌 📙		mma. mma	∠ 2=sm_gamma2fS)
Stop 4	GH	Iz C2			
Step 10	MH	Iz 🔽 L3		-	
Num. of Points 101			View Components		
Automatically Set Frequencies Set Yield Spec/Goals # Simulations # Iterations				2_Ma	tching_tool_study2
Automatically Display	Results 🔲 Yield Optimiz	ation 250	10		
Simulate	Statistical Component ¥	alues			×
Helps	Component	Stat Nominal Value	Statistics	Opt Nominal Valu	ue Optimization
"Simulate" or "Optimize	L1 4	.95 nH	stat{ uniform +/- 5 % }	4.95 nH	none
"Create Template" "Close Template"	C1 4	05.88 fF	stat{ uniform +/- 5 % }	405.88 fF	none
Close remplate	C2 3	.02 pF	stat{ uniform +/- 5 % }	3.02 pF	none
J	L2 5	20.45 pH	stat{ uniform +/- 5 % }	520.45 pH	none
	L3	52.12 pH	stat(uniform +/- 5 %)	152.12 pH	none
	L4 I	20.6 pH	staty uniform +7- 5 % }	120.6 pm	none
					<u> </u>
	View Statistical Comp	oonents Mo	odify Statistics/Optimization	on	Close

Page 73

STATISTICAL RESPONSE PLOTS Display Assistant DesignGuides

Need Help? Please see the appropriate DesignGuide User Manual for complete instructions on using this Display Assistant. The Display Assistant Chapter provides general-use instructions, and specifics for this Display Assistant are found in the component documentation.

Page 74

Agilent Technologies

STATISTICAL RESPONSE PLOTS Display Assistant DesignGuides

Need Help? Please see the appropriate DesignGu for complete instructions on using this Display As Assistant Chapter provides general-use instructic for this Display Assistant are found in the compor

Agilent Technologies

0.00 0.00 -0.05 -0.05 -0.10 -0.15 -0.10 mean +- one sigma -0.20dB(SRP) -0.15 -0.25--0.20 -0.30--0.35_ -0.25 -0.40 -0.30 -0.45 -0.50 -0.35 3.2 3'0 3.1 3.3 3.4 3 5 3.6 3.7 3.8 3.9 з'n 3.1 3.2 3.3 3.4 35 3.6 37 3.8 39 freq, GHz freq, GHz

dB(SRP) vs Frequency

dB(SRP) Statistical Response Plot

In this Statistical Response plot, the center line is the average of the measurements, the top and bottom lines are, respectively, the average measurement plus and minus, one measurement standard deviation

Page 76

ADS Matching Tool – Transform to Microstrip lines

File	c Impedance Matching Utility File Tools View Help		<u>_0×</u>		<u>_</u> _×	Type a question for help 🗸 🗙
	ý 📽 🗱 🖂 ÷+0 🗙 🖽			E 4	<u>A</u> → ﷺ Design	
File	Current Schematic	SmartComponent DA_LCBandpassMatch1	•			• • • 4 • • • 1 • • •
	Current Design Matching_tool_study3	SmartComponent Capability Design, Simulate, Yield, Disp	Transformation Assista	nt:2	eft-click component type to	o transform.
iol_pi iew	j]DA_LCBandpassMatch1_Matching_tool_study2 (5 Insert Options Tools Layout Simulate Window Dyna	ichematic):2 micLink Grids Local Powe	 LC to TLine TLine to TLine (Kurod LC, TLine to Microstrip 	la)		
1			Component Selection		—i —	
· · · · · · · · · · · · · · · · · · ·	Loss kas Bandpars Marbt Design Asstriat Need Help? Pieze see the appropriate DesignG nde User M	taitai				
	INSUB Parameters=H3LGH 2046 Hawked web of MATT INSUB Parameters=H3LGH 2046 Hawked web of MATT INSUB Port INIT Subset*/INSub/* INIT Port INIT Port INIT Port INIT Po	H#1pF#(50H)*50; Olmi#250; roz z 1p#S(1, 1.6479(3pF POT P2 Num=2 C Num=2 C=6.62396 pF.	Add Add All	Cut		
· · · ·			☑ Unit Element (45 deg) Zo = 50)hm 💌	Add Transmission Lines Before Network After Network	Microstrip Substrate h = 100 um 💌 Er = 12.9
· · ·			Transform	Undo	ок	Cancel Help
· · · ·			Topologies shown in grey a	are not available	for transformation	

The DFY Process for MMIC

The DFY Process

Yield Optimization (Design Centering)

Yield Optimization (Design Centering)

Yield Optimization (Design Centering)

Understanding the Mechanism of Design Centering

Ex. Resistive Divider

Design Centering

Yield Sensitivity Histograms

Agilent Technologies

Yield Optimization (Design Centering) - Example

Plotting the Tolerance and Acceptance Regions

Monte Carlo Yield Simulation Results

Yield Sensitivity Histograms – R1

Yield Sensitivity Histograms – R2

Design Centering – Maximizing the Yield

Running "Yield Optimization / Design Centering"

Yield Sensitivity Histograms

The DFY Process for MMIC

- Design for nominal performance using performance optimization
- Find the yield
- Use YSH, Sens and/or DOE to find the problematic areas
- Fix them
- Perform Design centering
- Find the final yield.
- Fabricate Sell Make Tons of Money and be happy for ever!

Agilent Technologies