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Epidemiology

The study of disease

•Causes

•Spread

•Outcomes

•Treatments

•Public health
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Covariates

Factors that affect the risk of getting

a disease and disease outcomes

Age

Gender

Socioeconomic status

Race

Genome

Weight

…
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Covariates are interrelated

weight diabetes

blindness

P(d|w) =0.3

P(b|d) = 0.2

0.061

The interrelated covariates can be analyzed as a system.

Identify what is: a direct cause, an indirect cause, not a cause

Not a direct cause
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Covariates are interrelated

smoking cholesterol

Heart

disease

The interrelated covariates can reinforce one another

or attenuate one another 

+

P(h | s+c) = 0.3

0.1 0.1
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Covariates are interrelated

smoking
alcohol 

use

liver

cancer

Covariates can themselves be correlated 

+

P(c | s+a) = 0.3

0.1 0.1

0.4
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Common cause

smoking
alcohol 

use

liver

cancer

Risk can be reduced by eliminating a common cause even 

though the cause is not itself directly associated with the disease.

+

P(c | s+a) = 0.3

0.1 0.1

0.4

education
-0.5 -0.4
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Cause and Effect

breathing

lung

cancer

One might  conclude that lung cancer causes breathing.

Correlation does not imply causality.

Real causes may not even be part of the analysis.

1.0

smoking
0.2
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Analysis in Epidemiology

Lot of challenges:

Data is hard to obtain

Causes are interrelated

Causes are easily confused with

one another and with effects

Solution approach:

Careful design of studies

Including medical knowledge

Appropriate analytic methods
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Study Design: Case / control

Select cases and controls matched on

as many covariates as possible 

Follow them over time using

Direct observation

Medical records

Pros and cons:

Effect of covariates can be managed

Additional data can be collected

Expensive � smaller studies
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Study Design: Retrospective

Select a cohort (cases and controls)

Analyze existing data (e.g., medical records)

for members of the cohort

Pros and cons:

Can work with large cohorts (*)

Can look over a longer timeframe (*)

Less control over cohort

� It is easier to introduce bias

(*)  If appropriate data exists
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Goal: Impact on public health 

�Deal with an important problem

�Cover of a significant part of the population    

Large support in cohort

Broadly applicable

�Convincing results 

Clear outcome

Statistically significant

�Accurate results 

The impact should be positive !
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Analytic Approach 
#Case     #Ctrl

# Exposed

# Not exposed

A          B

C          D

(*) Risk = A / ( A + B )

Relative Risk  = [ (A/(A+B) ] / [ (C/(C+D) ] 

Odds Ratio = (A/B) / (C/D) = AD / BC 

(*) Only requires data from exposed people

METRICS:
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Generalizability
#Case     #Ctrl

# Exposed

# Not exposed

A          B

C          D

Results can only be generalized to the part of the 
population for which the cohort is representative

This in turn requires either a very large cohort or a
willingness to accept less control over the cohort 
composition with the attendant risk of bias. 
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Confidence in Results
#Case     #Ctrl

# Exposed

# Not exposed

A          B

C          D

If we assume that OR is a normally distributed random variable (not always a 
valid assumption), we can compute a confidence interval using standard 
statistical tests; e.g., Chi squared, T-test based on the properties of the normal 
distribution. 

Ex. OR =  2.21 ; CI 95% [1.98,2.49]

OR = AD / BC
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Fisher’s Exact Test
#Case     #Ctrl

# Exposed

# Not exposed

A          B         A+B

C          D        C+D

A+C       B+D     N 

pValue = Prob {OR has a value >= 2.21 or more by chance}

If we are willing to assume that all possible arrangements of A, B, C, and D are 
equally likely, then we can count the number of ways  A, B, C, and D can take 
values yielding OR >= 2.21, subject to the restrictions implied by the row and 
column sums.

OR = 2.21
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Fisher’s Exact Test
#Case     #Ctrl

# Exposed

# Not exposed

A          B         A+B

C          D        C+D

A+C       B+D     N 
At first glance, this seems to require a huge amount of computation.
But in fact the value of A fixes the values of B, C and D.
Futhermore, N( A,B C,D), the number of ways A, B, C and D can occur is:
N( A,B C,D)= [ (A+B)! (C+D)! (A+C)! (B+D)! ] / [ A! B! C! D! (A+B+C+D)! ] 
and
pValue = SUM on A = 0 , … min( 0 , min(A+B),(A+C) ) of N( A,B C,D)   

We avoid numerical problems by storing values of logarithms of factorials

OR = 2.21
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Survival Models

In order to quantitatively assess and coherently explain the effect of
an exposure (e.g., treatment ) on survival, we need a functional model
of survival. 

The simplest model is to say that the probability of survival over a small
interval of time, t, is constant but the constant is different for people who are
exposed (s1) in comparison with unexposed people (s2). 

If T = nt  (n>>1) then the probability of person surviving past T is 
(s1)

n, for exposed people and (s2)
n, for unexposed people. 

Since  e = Lim n� INF  (1 - 1/n)
n

For large n, these values converge to exp( -n*f1) and exp(-n*f2 ) 
where fi = 1 – si
and the effect of treatment on survival is the ratio of these two quantities
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Survival Models

Of course the assumption that the instantaneous probability of survival 
remains constant over a long period of time may not be true. The
assumption must be tested. The simplest way of doing this is to plot 
the log of survival as a function of time and see how close the plot comes 
to a straight line. Here are also numerical tests that are best carried out
with a computer.

If the assumption holds true over shorter time intervals it is possible 
to analyze each interval separately, but the explanation becomes more
complex as the number of subintervals increases. 
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Survival Models
A more general assumption is that the probability of survival as a function of time
is of the form 

ps(t) = f(t) * exp(-s)
This, of course, is totally general since f(t) could be anything.

But now suppose we can model the survival probabilities with and without 
treatment as 

ps1(t) = f(t) * exp(-s1) and ps2(t) = f(t) * exp(-s2)

Their ratio is then * exp ( -(s1-s2) ); i.e., their ratio is a constant

This is known as a proportional hazards model

Such models are important because they can be generalized further to take into 
account the effects of covariates, compute these effects, and most importantly, 
describe these effects in a simple way.

But, again, this relies on the assumption that the survival function is of this form
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Cox Proportional Hazards Model
Suppose we want to find the relationship of survival to an exposure, say a 
particular medication or compare the effects of two medications in the presence of 
covariates; e.g., age (a), gender (g), race (r), and disease stage (d), each of 
which can take different values from a finite set. The survival function is now 
generalized to 

ps(t) = f(t) *exp  { - [ caa  +  cgg  +  crr  +  cdd ]  }

We can also define, T, the average survival time as the expected value of t given 
the probability density function ps(t) .

We have thus succeeded in building a multiplicative model including all the 
covariates and relating their effects on survival time, T.

The multiplicative model is consistent with the assumption (which may not be 
true) that the effect of the covariates is to alter the instantaneous survival rate.

Note that if we divide value of ps(t) for two different values of a covariate, we get a 
constant; hence the name proportional hazard model.



22

Cox Proportional Hazards Model
If we consider the log of  ps(t) we have

log [ps(t)] = log[f(t)] + ca*(-a)  + cg*(-g)   + cr*(-r)   + cd*(-d )  

And we can determine the values of the parameters, ci using linear regression, a 
well-known method for fitting data to a linear model, minimizing the sum of the 
squares of the error between observed values and the value given by the model. 

We now have a model that relates the values of the covariates to survival in a 
clear and simple way; i.e., we have a quantitative model for the system model 
formed by the covariates.

Given such a clear model we now have hopes of actually affecting public health 
policy. 
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Cox Proportional Hazards Model
The model 

ps(t) = f(t) *exp  { - [ caa  +  cgg  +  crr  +  cdd ]  }

assumes at the effects of the covariates are independent of one another. This is 
not always. Consider the effects of smoking and cholesterol on heart disease.

We can  extend the model above by adding variables corresponding to 
combinations of  covariates; e.g., cagag.

This can be done manually or combinatorially.

This is particularly attractive when considering genetic factors where the effect is 
likely to be from a combination of genes that individually show little effect. When 
the number of genes being considered is large, the combinatorics is daunting. 
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Genetic Models
The notion of considering combinations of factors is particularly attractive when 
considering genetic factors where the effect is likely to be from a combination of 
genes that individually show little effect. 

Genetic models can be formed based on models relating the function of proteins
that are synthesized by specific genes, more specifically, the variations in alleles 
(single nucleotides) within the genes. These are called single nucleotide 
polymorphisms (SNPs). This is another type of systems model.

When the number of SNPs being considered is large, the combinatorics is 
daunting. Over 3 million SNPs have already been identified in the human genome 
and one can test for one million of them simultaneously using microchips which 
now cost roughly $400.  163000000 is a very large number!

Genetic models do not require analysis of clinical data, although ultimately the 
conclusions reached using them requires validation using clinical data.

Genetic modeling forms a separate branch of epidemiology.
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The Kaplan-Meier Procedure  

In most real epidemiological studies we also have to deal with the problem of that 
some people leave the study before it ends. . This is called censoring.

If what we are calling survival time ) is not time to death(e.g., time to onset of a 
disease, people may leave because they die.

We also remain concerned about all the assumptions we have been making 
about the functional form of the survival function.

The Kaplan-Meier procedure deals with both of these problems. Its drawback is 
that it yields a survival curve rather than a function and it only compares different 
values for a single variable before becoming unwieldy. (We must still remember 
that our goal is to produce results that others are willing to act on.) 
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The Kaplan-Meier Procedure  

The Kaplan-Meier procedure is a product-limit calculation which gives the fraction 
of people surviving to the end of interval An as the product of the fractions of 
people surviving through all intervals up to that point; i.e.,

Sn = s1 * s2 *… sn

Note that this is similar to the functional forms we used before but we now make 
no assumptions about the survival rate remaining constant beyond the length of a 
single interval, which we can make as short as the time between “deaths”.

The si are computed directly as the fraction of people at risk that survive to the 
end of interval Ai . The definition of at risk is still alive and still in the study. As 
people leave the study through death or censoring, they are no longer part of the 
denominator of the fraction.
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The Kaplan-Meier Curve

Fraction
surviving

Time

With treatment

Without treatment
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Extensions and Conclusions

The proportional hazards model can be extended to account for censoring.

The Kaplan-Meier procedure can be extended to account for covariates.

The general approaches described here can be used with other functional forms.

Simplicity can be traded for accuracy.

Larger cohorts allow for greater confidence.

Biases may be entirely missed.

Causes may be missed or confused with effect.

Interactions may be missed.

Ultimately, mathematical results must be reconciled with medical knowledge.




