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NanoCAS Lab at Stony Brook 
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• Established in 2011 

• 3 PhD students 

• 2 MS students 

• 7 MS alumni 

– Employment at 

 Intel, NVIDIA, Hynix, Marvell,  

 Continue PhD 

• Several undergraduate 

researchers 

– URECA, senior design  

– ECE Honors Program 

http://nanocas.ece.stonybrook.edu 

 



Research at NanoCAS Lab 
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Energy-

efficient circuit 

design 

Emerging 

integrated circuit 

technologies 

‒Number 1 design 

objective for 

almost any 

application 

‒ “Power Wall” 

‒ “Dark Silicon” 

‒  7 nm by 2022 

seems to be the 

end of traditional 

CMOS scaling 

‒Moore’s law 50th 

year anniversary 

Application Domain 

‒ ASICs, 

microprocessors 

‒ Low power portable 

processors 

‒ Implantable ICs 

Research Themes 



Energy-Efficient Circuit Design 
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Low 

Power 

Clocking 

Reliable 

Power 

Delivery 

Industrial liaisons from Freescale 

Semiconductor, AMD, TI 

‒Clocks consume 

significant power  

20% to 60% of the 

total power 

‒Application to low 

power SoCs, 

embedded/mobile 

computing 

 

‒Modern SoCs 

demand high 

current at low 

voltages 

1 Volt to 0.4 Volt 

‒Power delivery is 

critical 



• “An industry game changer” according to SEMATECH 

 

 

 

 

 

 

 

 

Emerging IC Technologies 
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Three-dimensional 

(3D) integration 

• CAREER Grant 

Source: Samsung 

Source: Intel 

Source: Qualcomm 

- Fabless company 



Outline 

 

• Motivation 
 

• Background 
 

• Recent Research Results in 3D ICs at NanoCAS Lab 
 

• Conclusions 
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A Brief History 
Electronics + biotechnology, ? 

 Electronics + nanotechnology, ? 

F
u

n
c
ti

o
n

a
li

ty
 

Number of devices 

First transistor, 1947 

First IC, 1959 

Intel Core i7, 2014 

ENIAC, ``the Giant 

Brain,” 1946 

Conceptual transistor, 

by J.E. Lilienfeld, 1926  

Monolithic era 
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Nanoscale Circuit Design 
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•Transistors • Interconnections 

• Transistor vs interconnect scaling? 

 

Global 

Interconnects 

Transistors 

Local 

Interconnects 



Overview of Device Scaling 
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Time 1980s 1990s 2000s 

2 µm 0.8 µm 130/90 nm 

2010s 

 22 nm 

• Constant voltage 

– Avoid multiple 

supply 

voltages 

– Reduce delay 

– Higher electric 

fields 

• Constant electric field 

– Scale supply and 

threshold voltages 

– Reduce delay 

– Reduce power 

consumption 

– Constant electric 

field 

• “Near constant 

voltage” 

– Voltages 

cannot scale 

further 

– Higher 

electric 

fields 

– Significant 

short 

channel 

effects 

•
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Device Scaling Scenarios 

10 W. Haensch et al., “Silicon CMOS Devices Beyond Scaling”, IBM Journal of Research and Development, July 2006 



Overview of Interconnect Scaling 
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• Metal pitch reduced from 1.8 um in 1994 to a few hundred 

nanometers in 2011 

- Higher coupling capacitance 

• Significant reduction in the cross-sectional area 

- Higher parasitic resistance 

 



Interconnect Scaling Scenarios 

12 E. Salman and E. G. Friedman, High Performance Integrated Circuit Design, McGraw-Hill Publishers, 2012. 



Interconnect Scaling Scenarios 

13 2005 International Technology Roadmap for Semiconductors (ITRS) 

 Interconnect-centric design era 



Vertical Integration 

14 

• One solution: Go vertical! 

A 

Longest interconnect =   

Low impedance vertical connection 

(Compared with 2 × L )   

B



Heterogeneous Integration 
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Dies with different functions, fabricated with different 

technologies are integrated 

www.monolithic3d.com 



3D Applications and Players 
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Outline 

 

• Motivation 
 

• Background 

– 3D Integration Technology 

– Power and Signal Integrity 
 

• Recent Research Results in 3D ICs at NanoCAS Lab 
 

• Conclusions 
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Example 
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• Apple A4 Chip (for 1st Gen iPad and iPhone 4) 

Off-chip vertical connections 



Different Types of 3D ICs 
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3D Package-on-

Package, Amkor 

Interposer 

Based 

Integration, 

Xilinx 

Through Silicon Via (TSV), Intel 



Current Status in Industry 
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• Hyper Memory Cube (already commercially available) 

Micron Wide I/O DRAM (15X faster, 70% less energy and 90% less space) 

• Memory-Processor Stack (next step)  

AMD xPU + DRAM stacking 



Wafer-Level TSV Based 3D Integration 
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• Multiple wafers are  

‒ Thinned 

‒ Aligned 

‒ Bonded 

• No fundamental  

limitations exist 

- Alignment accuracy of 1 um 

- Adhesive, oxide, metal 

bonding 

- Wafer thinning capability 

 0.1 um for SOI  

 15 um for bulk silicon 

 



Through Silicon Via 

22 

Courtesy of IBM 

• TSVs are large  

- Diameter in the 2 to 10 um range 

- Height in the 8 to 60 um range 

• TSVs have parasitic impedances (RLC) 

 

Ctsv

substrate
Ltsv

Rtsv



TSV Fabrication Techniques 
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• Via-first 

-Prior to FEOL 

process 

 

• Via-middle 

-After FEOL 

-Before BEOL 

 

• Via-last 

-After BEOL 



Primary Challenges 
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• Fabrication 

– TSV reliability and stress 

– Bonding techniques 

– Thermal/Cooling 

• Design 

– Architecture  

– Design for test 

– EDA tools 

– Design for thermal integrity 

– Physical design 

 Power integrity 

 Signal integrity 

 



Research Focus on 3D ICs 

 Signal Integrity for 3D ICs 
 

– TSV-to-transistor noise 

modeling 

 [Integration’14,GLSVLSI’13] 

- Noise analysis for 

implantable 3D ICs 

 [ISCAS’11, BioCAS’11] 
 

Power integrity and power 

aware design for 3D ICs 
 

– Power distribution in 

processor-memory stacks 

 [JETCAS’12, SOCC’12, 

GLSVLSI, 13] 

– Decoupling capacitor 

topologies for 3D ICs 

 [TVLSI’15, ISQED’15] 

– Resource allocation in 3D ICs 

 [ISQED’15, GLSVLSI’13] 

– Low power 3D ICs 

 [ISCAS’15] 
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Power Integrity and Delay Uncertainty 

 Power distribution network 

 Ground distribution network 

Ideal power 

supply 

VDD 

• “I have thought about some of the problems of building electric circuits on a 

small scale, and the problem of resistance is serious.”    Feynman, 1959 

dt

di
LIRVV ppDDp 

dt

di
LIRVV ggGNDg 

T min 
T max 
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Impedance Characteristics 

nconsumptioPower 

ripple Allowed voltageNominal
         

Current

ripple Allowed voltageNominal

2

target





Z

• 65 nm CMOS microprocessor* 
− P = 250 watts 

− VDD = 1.2 volts 

− Ripple = 10% of VDD 

− Target impedance ≤ 0.3 milliohms 

G. Konstadinidis et al., “Implementation of a Third-Generation 16-Core 32-Thread Chip-Multithreading SPARC Microprocessor,”      

IEEE International Solid State Conference, February 2008 27 



Decoupling Capacitance 

Decoupling 

capacitance 

Stage 1 Stage 2 

E. Salman, E. G. Friedman, R. Secareanu, and O. Hartin, “Worst Case Power/Ground Noise Estimation Using an 

Equivalent Transition Time for Resonance,” IEEE Transactions on Circuits and Systems I: Regular Papers, May 2009 28 



• Decap is required to satisfy target impedance 

• Resonance should be carefully considered 

Decoupling Capacitance and Impedance 

29 

ωres 

Z target 



Signal Integrity 

Circuit 

block 1   

Driver Receiver 

Circuit 

block 2   
Aggressor 

Victim 
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3D Processor-Memory Stacks 
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• Higher on-chip memory bandwidth 

• Reliable power delivery is an important challenge 

3D processor-memory stack  J. L. Hennessy and D. A. Patterson, Morgan Kaufmann 2011 



3D Processor-Memory Stacks 
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IEEE Design & Test of Computers, 2009 

• Potential architectural benefits of a 9 plane memory + 

processor stack (1 GB embedded memory) 

- Access latency, footprint, energy consumption 

• Power delivery is identified as a primary challenge 



Nine Plane 3-D Processor-Memory Stack 

• How many power/ground TSVs are required? 

• How much decoupling capacitance is required? 
‒ Satisfy power supply noise (target impedance) 

‒ Minimize area 
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Design Space for Via-First TSV 

• Monotonic response 

• Typically over-damped 
- Relatively low peak-to-peak noise 

• High number of TSVs to reduce effective resistance 

• High decoupling capacitance to reduce transient IR drop 

34 
S. M. Satheesh and E. Salman, “Power Distribution in TSV Based 3D Processor-Memory Stacks,” IEEE Journal on Emerging and 

Selected Topics in Circuits and Systems, December 2012 



Minimum Physical Area for Via-First TSV 

• Decap is implemented as MOS-C 
- 39 fF/um2  32 nm technology node (from EOT) 

• Optimum pair exists that minimizes area 
- 2750 TSVs and 2.7 nF of decoupling capacitance 

- 9% area overhead  

- 34 mV peak-to-peak noise 

35 
S. M. Satheesh and E. Salman, “Power Distribution in TSV Based 3D Processor-Memory Stacks,” IEEE Journal on Emerging and 

Selected Topics in Circuits and Systems, December 2012 



Design Space for Via-Last TSVs 
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• Non-monotonic response 

• Typically under-damped 

• Relatively high peak-to-peak noise 

• High sensitivity to design variables 

• Careful analysis is required 

S. M. Satheesh and E. Salman, “Power Distribution in TSV Based 3D Processor-Memory Stacks,” IEEE Journal on Emerging and 

Selected Topics in Circuits and Systems, December 2012 



Power Gated 3D ICs 

• An effective method to reduce leakage power consumption 

• Total power consumption = dynamic power + leakage power 

Power Gating: turn off the inactive blocks to save leakage 

Intel Atom Processor 

* U. Nawathe et al., “Implementation of an 8-core, 64-thread, power-efficient SPARC server on a chip,” JSSC, vol. 43, Jan. 2008 

* Niagra 2 (2008) 
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Power Gating: Sleep Transistors 

• Sleep transistors are inserted along the power delivery path 

High Vth  

Transistors 

* R. Jotwani et al., “An x86-64 Core in 32 nm SOI CMOS,” JSSC, vol. 46, Jan. 2011 

• Sleep transistors also consume significant area 

– More than 1 meter overall width 
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Allocate Area between TSVs and Sleep Transistors 

• Area contention 

• Both affect power integrity 

• Minimize power supply noise 

  Subject to: 

 Leakage power 

 Turn on time 

Power Supply

Sleep 
Transistor

C
Sleep 

Transistor

C

Via-last 

TSV 

39 



Proposed Design Flow 

Yes 

No 

* H. Wang and E. Salman, IEEE International Symposium on Quality Electronic Design, March 2015, best paper nomination 

Determine the 
available area A 

Determine the maximum area 
allocated to sleep transistors to 

satisfy leakage current (kmax × A) 

Determine the minimum area 
allocated to sleep transistor to 
satisfy turn-on time (kmin × A) 

Use the proposed methodology 
to determine the optimal kopt 

 kmin < kopt < kmax  

Allocate area based 
on the optimal kopt  

? ? 
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Closed-Form Expressions for Optimum k 

• Effective resistance of TSVs 

 

• Effective resistance of sleep transistors 

 

• Optimization objective 

• Optimum k 

* H. Wang and E. Salman, IEEE International Symposium on Quality Electronic Design, March 2015, best paper nomination 41 



Comprehensive Simulation Setup 

42 



Distributed Circuit Loads 

Power density matches OpenSPARC T2 Core: 40 W/cm2 

(Unit of peak current: mA)

22.8 45.6 45.6 45.6 45.6 22.8

54.826.5 81.3 109.6 109.6 109.6

7.8 71.7 127.8 127.8 127.8 63.9

7.8 71.7 127.8 127.8 127.8 63.9

3.7 35.6 63.9 63.9 63.9 32.0

Circuit load

* H. Wei et al., “Cooling 3D Integrated Circuits using Power Delivery Networks,” IEEE Int. Electron Devices Meeting, 2011 43 



Results 

From simulation Closed-form expression 

Error < 4% 

Noise reduction: up to 42% 

* H. Wang and E. Salman, IEEE International Symposium on Quality Electronic Design, March 2015, best paper nomination 44 



Problem: Utilization of a Decap 

Decap 

Sleep  
Transistors 

Vdd 

Virtual Vdd 

Circuit Block 

Decap 

Circuit Block 

• Utilize decap for nearby blocks 

• Not as effective in 2D ICs: large impedance 

• New opportunity in TSV-based 3D ICs 

 

Decap Power-gated 
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Proposed Reconfigurable Topology 

• Two reconfigurable switches are added: 

– When the circuit block is ON, connect decap to virtual Vdd 

– When the circuit block is OFF, connect decap to global Vdd 

Decap 

Sleep  
Transistors 

Vdd 

Virtual Vdd 

Circuit Block 

Decap 

Circuit Block 

Decap 

* H. Wang and E. Salman,  IEEE Transactions on VLSI Systems (in press). 

Power-gated 
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Power Gating Scenarios 

Top Plane Middle Plane Bottom Plane 

Scenario 2 ON OFF ON 

Scenario 3 OFF OFF ON 

47 



Simulation Results – Peak Power Supply Noise 

Scenario 2 Scenario 3 

* H. Wang and E. Salman,  IEEE Transactions on VLSI Systems (in press). 

9.7% 

24.1% 
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Simulation Results – RMS Power Supply Noise 
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26.5% 

Scenario 2 Scenario 3 

45.7% 



Temporal Power Supply Noise Waveform 

Transient power noise (Scenario 3) 
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Spatial Power Supply Noise Distribution 

Average reduction: 23.1%  
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Simulation Results – Power Gating Noise 

Top Plane Middle Plane Bottom Plane 

Scenario 2 ON OFF  ON ON 

Scenario 3 OFF OFF  ON ON 

Sleep  
Transistors 

Vdd 

Virtual Vdd 

Circuit Block Circuit Block 

In-rush current 
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Temporal Power Gating Noise Waveform 

Sleep state  active state at 1 ns 
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Simulation Results – Power Gating Noise 

Scenario 2 Scenario 3 

79.2% 82.5% 
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Area and Power Overhead 
 

• Physical area increases only by 1.93% 

 

 

 

 

 

 

 

• Power overhead can be further reduced by utulizing 

metal-insulator-metal (MIM) capacitors 

Power 
consumption 

(mW) 

 
Traditional 

 
Reconfigurable 

 
Increase (%) 

Scenario 1 26.45 26.81 1.36 

Scenario 2 17.57 18.07 3.41 

Scenario 3 8.89 9.41 5.85 
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TSV Noise Coupling 

• Noise couples into the substrate due to both oxide and MOS 

capacitance 

• Aggressive signals such as clock networks 

• Affects the operation of a transistor (both on and off) 

─ Memory circuits 

─ Analog devices in heterogeneous 3D integration 
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Effect of TSV Noise on Devices 
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H. Chaabouni, et al. "Investigation on TSV impact on 65nm CMOS devices and circuits,” IEEE International 
Electron Devices Meeting, 2010. 



Modeling TSV Noise Coupling 

Accurate, but…computationally prohibitive! 

- Fast evaluation is difficult 

- Early stages of TSV floorplanning 

- Substrate contact locations 

 

• 3D field solver: HFSS  not possible for practical circuits 

• Discretized model based on transmission line matrix method 

58 



Compact π Model 
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• Single TSV cell and an equivalent π network. 

 

 

 

• Approach 

1. AC analysis of the 

distributed mesh 

to obtain Y11(jω), 

Y12(jω), Y21(jω), 

Y22(jω) 

2. Obtain the R and 

Cs within the π 

network to match 

the four 

impedances 

3. Single R and C 

value until 100 

GHz. 

 

 



Validation of the Compact π Model   
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• The transfer function of the compact model is compared 

with the transfer function of the distributed mesh 

 

 



Characterizing TSV-to-Substrate Coupling 

• TSV noise is affected by several design parameters 

- Distance between TSV and victim node (d1) 

- Number and location of substrate contacts (d2) 
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Closed-Form Expression for Each Admittance 

• Analyze the distributed mesh to obtain the impedances (Dots) 

• Approximate the surface with a logarithmic function using 3D 

least square regression analysis (Surface) 

Resistance Rsub of the Ysub(jω) 

* H. Wang, M. Asgari, and E. Salman, ACM Great Lakes Symposium on VLSI , May 2013. 62 



Fitting Coefficients and Accuracy 

* H. Wang, M. Asgari, and E. Salman, ACM Great Lakes Symposium on VLSI , May 2013. 

• Average 

error is 

4.8%  
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Design Guidelines – Differential TSV Signaling 

* H. Wang, M. Asgari, and E. Salman, Integration, the VLSI Journal, June 2014. 

32% 
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Conclusions 
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• Among various “emerging” technologies, 3D integration 

seems to be the most viable in the near-future 

• Research is needed, but no fundamental limitations exist 

• Opportunities are beyond high performance computing 

– Sensing and actuating 

 Mobile electronics 

 Healthcare 

 Environmental control… 

• We have demonstrated several design methodologies to 

enhance power and signal integrity in 3D ICs 
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