
Tips and Tricks to Speed
LabVIEW Performance

Robert Berger
Sr. District Sales Manager

Agenda

• Recap of favorite tips and tricks from years
past

• Benchmarking techniques

• Programming techniques

• Algorithm selection

• New LabVIEW 2011 usability features

“Best of” Recap

 A rundown of some favorites from my
Performance Tips and Tricks presentations
at past NIWeek conferences

“Best of” Recap
#1 – Defer Panel Updates #4 – Variant Attributes

#2 – For Loop with Break #5 – Build Array Ordering

#3 – In Place Element Structure #6 – Parallel For Loop

Benchmarking Techniques

How do we figure out which programming
techniques are faster?

Benchmarking Techniques

• Better

• Good

• Best ??? – Google ‘timing probe idea’

to help us figure it out!

Programming Techniques

Three specific suggestions on how to improve
the performance of your VIs without having

to drop a single node or wire!

#1. Subroutine
Priority

The subroutine priority setting on a VI causes that VI to take control of
the thread in which it is executing. This allows it to run as efficiently as

possible.

#1. Subroutine
Priority

• A subroutine VI can only call other subroutine VIs

• A subroutine VI cannot call any blocking functions (Wait, One
Button Dialog, VISA calls, etc.)

• Front Panel controls and indicators are not updated during
execution

• No other VI in the calling VI’s thread can run while a subroutine
VI is running

• DEMO!!!

Subroutine Caveats

#2. Inlining SubVIs

Introduced in LabVIEW 2010, subVI inlining eliminates the overhead of
calling subVIs by telling the compiler to act as if the subVI code resides

directly on the owning diagram.

#2. Inlining
SubVIs

• The inlined VI must be reentrant, meaning it cannot hold
state information

• You cannot debug inlined VIs

• Inlining may decrease performance on large VIs

• Inlined VIs cannot contain recursive calls

• Inlined VIs cannot contain Property Nodes or Invoke
Nodes

• DEMO!!!

Inlining Caveats

#3. Easy Dynamic Calls

The “Call Setup” feature (introduced in LabVIEW 8.0)

makes it very easy to change a static subVI call into a

dynamic call to improve load time performance

#3. Easy Dynamic Calls

• If the calling VI is in edit mode, all dynamic VIs will be in
memory

• The “VI Call Configuration” dialog displays an absolute
path, but the calling VI stores a relative path

• “Reload for each call” should only be used if you need to
release the memory allocated for each subVI call

• DEMO!!

Dynamic Call Caveats

Algorithm Selection

 There are multiple ways to write this VI…can you
figure out the fastest solution?

Jumble Solver

I have a list of Jumble words, and an

open-source dictionary. I want to write a VI

that will solve the Jumbles for me.

VABWIEL  LABVIEW
Jumble Example:

New LabVIEW 2011 Usability Features

 Changes to created VI
• 4x2x2x4 connector pane (or another default pattern that you specify)

• Error terminals in lower corners (and named properly)

• Refnum/class terminals in upper corners (and named properly)

• Clean front panel

 Plugin Architecture through LabVIEW Scripting
• If you like the way we create the subVI, but you want to do something

extra, you can write a plugin VI that will perform further modifications on
the subVI

• If you don’t like the way we create the subVI, you can completely replace
our scripting code with your own

Edit>Create SubVI Improvements

New LabVIEW 2011 Usability Features
Quick Drop Launch Time

 Quick Drop is now instantly usable on first launch
• …provided you don’t try to use it immediately as soon as you launch

LabVIEW

Connector Pane Always Visible

Boolean Functions Accept Error Clusters

