

User Interfaces in LabVIEW

Company Overview

employees & growing

75+
Established in 1996, offices in New York, Boston,

Chicago, Denver and Houston

Industries Served:
Automotive

Bio-medical

Chemical and Food Processing

Defense

Electronics/Semiconductor

Fuel Cells/Alternative Energy

Hydraulics

Laboratory Testing

Machine Tool

Material Handling

Medical Devices

Packaging

Pharmaceutical

Printing & Textiles

Certifications

Goal

Explore how to we make LabVIEW
UIs look:

- Comfortable

- Easy to use

- Intuitive

- Familiar

- Attractive

Alternate Title:
“Click Better! The LabVIEW UI

Story”

Modern User Interface Design

Typical LabVIEW User Interface

Typical LabVIEW User Interface

Agenda

- Definitions and principles

- Better controls/indicators

- Typedefs – strictly speaking

- Screen navigation

- Dialogs – Dia-dos and dia-don’ts

- Resizable interfaces

- Technical considerations

- Style tips and tricks

Definitions

User Interface = the things you
click on or look at to work with
your software

User Experience = the rage you
feel when your software is hard to
use

- Don’t overcrowd screens
- Keep fonts, colors, and styles consistent

- Don’t use colors that burn the user’s face off
- No gradients
- Keep text readable

- Align controls/indicators

Think about it ahead of time… don’t wing it. Plan it like you plan
the program’s business logic.

UI Principles

Better Controls/Indicators

Customizing classic controls makes them look awesome:

Classic is the New Modern

Convoluted process to customize the control:

1. Place a classic button on the front panel

2. Paint the control using the paint brush tool

3. Using the paintbrush tool, right-click near the border
of the control, then press SPACEBAR

4. Click the transparent “T” in the upper right corner

5. Repeat for the other Boolean state

Change background/foreground colors

1. Right click on the button and select Advanced 
Customize.

2. Go to Edit  Import Picture from Clipboard and
select and image to import.

3. Right click the button and select import picture from
clipboard (True, False, Decal).

4. To reposition the graphic, change to Customize Mode
(Ctrl – M)

Add custom graphics

- System buttons are the only
style that supports hovering

- Colors can be changed by
customizing the button as
shown previously.

An Aside on System Buttons

1. Make a new control and add a system button

2. Click the wrench button to customize

3. Right-click the button  Picture item

Customizing a System Button

https://www.dmcinfo.com/latest-thinking/blog/id/8868/labview-interface-boolean-graphics

1: FALSE, not hovering 2: TRUE, not hovering 3: FALSE, button down

4: TRUE, button down 5: FALSE, hovering 6: TRUE, hovering

https://www.dmcinfo.com/latest-thinking/blog/id/8868/labview-interface-boolean-graphics
https://www.dmcinfo.com/latest-thinking/blog/id/8868/labview-interface-boolean-graphics
https://www.dmcinfo.com/latest-thinking/blog/id/8868/labview-interface-boolean-graphics
https://www.dmcinfo.com/latest-thinking/blog/id/8868/labview-interface-boolean-graphics
https://www.dmcinfo.com/latest-thinking/blog/id/8868/labview-interface-boolean-graphics
https://www.dmcinfo.com/latest-thinking/blog/id/8868/labview-interface-boolean-graphics
https://www.dmcinfo.com/latest-thinking/blog/id/8868/labview-interface-boolean-graphics
https://www.dmcinfo.com/latest-thinking/blog/id/8868/labview-interface-boolean-graphics
https://www.dmcinfo.com/latest-thinking/blog/id/8868/labview-interface-boolean-graphics

Create a clean, Windows-style UI using menu bars

Caveat: not appropriate for a touchscreen

Menu Bars

1. Go to Edit  Run Time
Menu

2. Change drop down to
“Custom”

3. Add your own structure
and options for the
menu.

4. Save .rtm file in the same
directory as the VI.

5. Handle events from the
menu items in an event
structure.

How to add Static Menu Bars

1. Obtain a reference to the
vi’s menu bar.

2. Use “Insert Menu Items” to
dynamically add menu
items and sub menu items.

How to add Dynamic Menu Bars

Menu Bar Demo

Typedefs – Strictly Speaking

- Control

- Type Def

- Strict Type Def

All are saved as *.ctl files

Types of Controls

- Good for pretty buttons that you want to be able to
reuse

- Each one is its own unique snowflake

- Can be customized independently

- Only the data type is important

- Won’t update globally

Control

- Only the data type is important

- Each instance does update when the data type
changes

- The visible properties do not update

Type Def

- Data type and visible properties are important

- All instances change when the typedef changes,
including graphical properties

- Every instance has to look the same

- Visual properties cannot be changed
programmatically
- Value can be set
- Cannot change colors, etc.

Strict Type Def

- Strict typedefs can be very limiting

- May cause issues for RT systems, since it has UI info
embedded

Strict Typedef Limitations

Typedef Strict Typedef

Say you have several instances of a typedef and your
code changes something programmatically. You can still
propagate changes to all instances:

1. Change it to a strict typedef (your VI will be broken)

2. Make your changes to the strict typedef

3. Apply changes, so all instances get the new look

4. Change back to a typedef (VI should be OK)

Propagating Typedef Changes

Multi-Screen Applications

- How will the user navigate?

- Provide clear, intuitive direction

- How do you keep the UI responsive?

- How do you lay out the screens?

- How do you manage the increased code complexity?

Multi-Screen (View) Challenges

Interface Specification Outline

Home

Pre-Run

Live Display

Post-Run

Data Viewer

Report
Display

System
Settings

Users
Hardware

Configuration
Channel

Configuration

Pros:
- Screens can be separated by tab

- Single supporting thread can assist with navigation
- Tabs have useful sizing/snapping features

Cons:
- Does not scale well beyond 5 (or so) screens
- Supporting code can be very monolithic, results in huge

complex event structures, hard to add new features

Option 1: Tab Controls

Example: Using Tabs

Pros:

- Allow for more modular code, loading individual VIs into supervisory
interface

- Allows for more feature rich screens, without monolithic thread support

Cons:

- Requires careful application architecture to implement

- Must be very aware of VI state and reentrancy settings, can leave threads
running in background inadvertently

- Requires well defined communication design pattern to allow effective
sequencing of screens.

Option 2: Subpanels

Add Subpanel to Front Panel

Example, Using Subpanels

Subpanel property node is added to block diagram
automatically:

Example, Using Subpanels

Simply connect a reference to the VI you want in the
subpanel

Example, Using Subpanels

Add a mechanism for switching between different VIs

Example, Using Subpanels

Subpanel Demo

- Use a tab control that is set to the same size as the
subpanel

- Helps lay out the subpaneled VI

- Programmatically align the front panel of the
subpaneled VI with the origin

Subpanel Recommendations

Intermission

Dialogs – Dia-dos and Dia-don’ts

- Used to:

- Communicate important
information to the user

- Get the user’s attention

- Collect data from the user

Dialog Boxes

- Modal dialogs will…
- Stay on top of all other windows
- Be the only window with which the

user can interact

- Floating dialogs will…
- Stay on top of all other non-floating windows
- Allow the user to interact with all visible windows

- Context help window is floating

Floating vs. Modal

- Make sure you need a dialog
- Put all blocking dialogs into a UI loop
- Provide a mechanism for data from dialog to be used
- Think about how it communicates with the rest of the

application
- Use a reasonable timeout if the response is time-sensitive
- Make your own modal dialogs to match application style
- Output a Boolean to indicate whether or not the user

canceled

Dia-dos

- Block execution of your control or data acquisition
loop

- Create modal dialogs that won’t close

- Create dialogs that write to global variables

- Make a one-button dialog without considering other
ways to display the same status

- Use menus in dialogs

Dia-don’ts

- Window Behavior

- Default

- Floating

- Modal

- Execution mode

- Asynchronous

- Synchronous

Window Behaviors

Resizing Interfaces

- Ideally, avoid resizing interfaces

- Often, it’s simplest to figure out what the monitor
resolution is, then size things appropriately

Committing to a Monitor Size Forever

This is a man committing to his monitor. FOREVER.

- If you absolutely MUST allow resizing, try panes
- Use splitters to create a hierarchy of panes
- Right-click splitters to set how the panes move
- “Splitter Sticks Right”  The splitter moves and

sticks with the pane on the right
- Set controls to be fit to their pane or to scale with

their pane
- Set a minimum VI size

Panes

Pane Demo

- Available from the NI Community/VIPM

- Save the front panel state as-is and associates it with
a keyword

- Define several layouts for different monitor sizes

- At runtime, decide which configuration to use

Front Panel Layout Tool

Technical Considerations

- What is the UI loop?
- Common architectural component
- Event structure in a while loop

- Why should I have one?
- This is the loop that SHOULD wait on UI events, NOT

your main processing loop
- Don’t do any other processing here… keep the UI

responsive
- Main processing loops should continue executing

independent of user interaction

UI Loop

- Has multiple cases to handle direct interactions from
the user interface

- Only one event case can execute for a single event

- A single event case can handle multiple events

Event Structures

- Default system fonts can and will change between
operating systems or versions of Windows

- Be wary of the default Windows zoom level (125%)

- Explicitly set the fonts you use on the front panel,
instead of relying on the “System”, “Dialog” or
“Application” fonts

- It’s easy to use third-party fonts, BUT it’s hard to
include in an installer

Fonts

Be Careful with Fonts

When running an EXE, no one wants to see the LabVIEW
“Run” or “Abort” buttons. Hide them!

Toolbars

- Set it so the toolbars are visible in the development
environment

- Hide them if the App.Kind property is executable

Setting Toolbars Programmatically

Closing the Application

With an EXE, close labview at the end of
the program so the VI doesn’t just sit there.

- XControls have dynamic run-time and edit-time
behavior that is defined by VIs that run in the
background

- That sounds great…but is it?

- Seems cool, really brittle

- Hard to debug

- Need a really good reason to use it

XControls

Style Tips and Tricks

- Easy inspiration online
- Think clean design
- Use readable text

colors with good
contrast

Key colors:

Red = bad/stop
Green = OK/continue

Color Palette Basics

Please use these to organize, space and align objects.

Sometimes have to move or hide the label before trying
to align items for a clean look.

Align/Distribute Tools

- Right-click a control/indicator 
Advanced  Customize

- Select Window  Show Parts
Window

- Cycle through each customizable
part of the control

- Enjoy the terrible UI on a useful UI
tool!

Control Parts Window

- Allows you to preview how a VI will look when it runs

- Removes overlay shadows

- Removes grid lines

- Mouse and keyboard navigation work as if it’s running

Control-M

- It’s comforting to the user
to know that something
is happening

- Using the cursor
set/unset busy VIs can
help

- Have a plan to unset in
the event of an error or
other problem!

User Feedback

- Touchscreens present unique
challenges

- Can be slow or
unresponsive (especially
resistive types)

- Less dexterity than a
mouse

Touchscreen Design

But if they really do want one…

- Make buttons large enough for

fat fingers
- Plan for user entry popups
- Remember: no tactile feedback

Touchscreen Design

NO. Just don’t…

- Be clear about what is realistic in LabVIEW
- Available controls/indicators
- Available shapes and animations

- They should focus on user needs and clarity

- They will be using their professional design tools
(Illustrator, Inkscape, etc…), not LabVIEW
- Cannot use vector graphics
- PNGs with transparent backgrounds

Working with a graphic designer?

Additional
Resources

- NI Community UI Interest Group at
https://decibel.ni.com/content/gro
ups/ui

- Creating Quality UIs from NI
Developer Days at
https://decibel.ni.com/content/gro
ups/ui/blog/2010/04/29/creating-
quality-uis-with-ni-labview--
developer-days-2010-presentation

https://decibel.ni.com/content/groups/ui
https://decibel.ni.com/content/groups/ui
https://decibel.ni.com/content/groups/ui
https://decibel.ni.com/content/groups/ui
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation
https://decibel.ni.com/content/groups/ui/blog/2010/04/29/creating-quality-uis-with-ni-labview--developer-days-2010-presentation

