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Signals From Noise: Calculating Delta-Sigma SNRs 

by Dave Van Ess, Principal Application Engineer, MTS, Cypress Semiconductor 

 

 

Understanding the operation of a Delta-Sigma ( - ) analog-to-digital converter (ADC) 

can appear to be complicated. Many articles and textbooks, when trying to explain the 

operation, choose to gloss over the basics and have you accept their word that they 

function the way they do. I refer to this as “Proof By Intimidation” (PBI). Actually, if 

broken down correctly, Delta-Sigma ADC operation can be explained in several easy to 

manage portions. 

 

A Delta-Sigma ADC contains the following: 

• A  Delta-Sigma Modulator (DSM) to convert an analog signal to a digital density 

• A digital filter to convert a density signal to a digital word. This digital word is 

sometimes called Pulse Code Modulation (PCM) 

A simplified block diagram is shown below. 

 
Fig. 1: ADC Comprised With  Delta-Sigma Modulator And Digital Filter 

 

 

A Bit about Density 

 

Before starting to analyze the Delta-Sigma modulator, a brief explanation of digital 

density is warranted. Suppose you wish to supply 75% of a reference voltage. You can 

either design circuitry that will supply 75% of the reference all the time, or supply all of 

the reference 75% of the time. Either way, on the average you get 75% of the reference. 

An example is a PWM filtered DAC. Increase the PWM duty cycle and the filtered 

output gets larger. Reduce it and the output gets smaller. The figure below shows a signal 

value “x” that is between two references values (± s. The difference between the 

reference values is the quantization level s.  

 
Fig. 2: Signal Value Represented By Percentages Of Two Bounding References 
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The density is set so the average of the digital waveform equals the average of the signal. 

Note that in the figure two different waveforms are shown and both average to the signal 

value. The first is a simple PWM waveform where its density is the “duty cycle.” The 

second waveform is far more complex. With density, the actual waveform shape is not 

important. What matters is the percentage that it is high. Given the references ± s and a 

density value the average signal is: 
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In Fig. 2 the error between the density waveform and the signal is shown in red. While it 

averages to zero, the rms error is: 
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The error is as little as zero at the reference boundaries and is the largest ( s), half way 

between the references. For a varying signal that is evenly distributed between the 

boundaries, the rms error is: 
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This equation doesn’t state where the noise will be. The shape of density waveform 

determines this. What it says is that when all the quantization noise is accounted for, it 

will be s/ 6. This value will be important in calculating the noise density distribution of a 

Delta-Sigma Modulator. 

 

 

Delta-Sigma Modulator 

 

A Delta-Sigma Modulator must have: 

• A difference (delta) circuit 

• An accumulate (sigma) circuit 

• A quantization (modulation) circuit consisting of an ADC and a DAC 

 

The modulator in Fig. 1 meets these requirements as the comparator acts as a single bit 

ADC and the multiplexed references make up a single bit DAC.  The waveforms for a 

simulation, in Excel, are shown in Fig. 3, overleaf. 
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Fig. 3: Waveforms For Signal Stage Delta-Sigma Modulator 

 

The blue signal is the input and the red is its quantized output. The difference between 

them is the quantization error that is displayed in green. Note that it has a range of ±s. 

The square of this error is shown in orange and has a range of 0 to s
2
. The mean of this 

squared error signal is s
2
/6. Taking the square root of this mean results in an rms value of 

s/ 6. This is the expected value for the quantization noise of a density signal. Again, it 

doesn’t say where the noise is but that when all totaled it equals s/ 6. To figure out the 

shape of the noise, the quantization noise model (see Fig. 4) is used. 

 
Fig. 4: Delta-Sigma Modulator Quantization Noise Model 

 

To calculate the shape of the noise we now assume the input is adequately busy so the 

quantization error looks like white noise. Equation  shows the output to be a function of 

the input and the quantization noise: 
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Separating out just the noise component results in: 
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Now, all noise will be found within the Nyquist Region (0 to fs). Integrating the squared 

signal over this spectrum allows the value of the noise density (e) to be calculated. It has 

already been shown, both mathematically and empirically, that the total noise must add 

up to s/ 6. 
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Solving for eq results in: 
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Substituting this into Equation 5 results in: 
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The spectral density for this modulator with a sample rate of 1Msample/s and the 

quantization level (s) of 1 V is shown in Fig. 5. 
 

 
 

Fig. 5: Spectral Density For Single-Stage DSM 

 

 

Multi-Stage Delta-Sigma Modulator 

 

A higher-order modulator can be built by adding a difference circuit and integrator to the 

input of a lower-order modulator. The input to this new differentiator is the input signal 

and the fed back output of the lower-order modulator. A quantization module for a multi-

order modulator is shown in Fig. 6. 

 
 

Fig. 6: L
th

-Order Delta-Sigma Modulator Quantization Noise Model 
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With the addition of a new integrator also comes a new feedback loop. As shown above, 

this modulator has “L” feedback loops. Equation 8 shows the output to be a function of 

the input and the quantization noise.: 
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Showing this to be true for all values of “L” requires proof by deduction. For L = 1 the 

equation is: 
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Earlier this was shown to be true. If the response for an M
th

-order modulator is: 
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Making an (M+1)
th

-order modulator requires that an integrator and feedback path be 

added to the input. Doing so results in: 
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So if the equation holds for a particular-order modulator then it also holds for the next 

higher-order modulator. Since it was shown to hold for a 1
st
-order modulator, it follows 

that it holds for all higher-order modulators. 

 

To calculate the shape of the noise, we now assume the input is adequately busy so that 

the quantization error looks like white noise. Equation 12 shows the output to be a 

function of the input and the quantization noise. 
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Separating out just the noise component results in: 
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Now all noise will be found within the Nyquist Region (0 to  fs). Integrating the squared 

signal over this spectrum allows the value of the noise density (e) to be calculated. Using: 
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Integrating the noise over this region results in: 
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Substituting this value into Equation 13 results in Equation 16 for the shape and 

magnitude to the quantization noise: 
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The spectral density for this modulator with a sample rate of 1Msample/s and the 

quantization level (s) of 1 V is shown Fig. 7. 
 

 
Fig. 7: Spectral Density For Multi-Order Stage DSMs 

(In every case the integrated noise over the whole Nyquist bandwidth is s/ 6) 

 

 

Signal-to-Noise Ratio For An Ideal Filter 

 

With the noise pushed towards the Nyquist limit, filtering the data with a low-pass digital 

filter greatly reduces the noise seen in the result. Equation 17 gives the total quantization 

noise for an ideal filter, as a function of the cutoff frequency (fc) and DSM order (L): 
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For a cutoff frequency much lower than the sample frequency, Equation 18 is a 

reasonable approximation: 
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The maximum peak-to-peak amplitude for an input sinusoid is s. Its rms value is s/√8. 

Given this the signal-to-noise ratio is: 
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Note that the cutoff frequency term has been replaced with an over-sample ratio (OSR). 

To express SNR in dB, the following approximation is used for the factorial term: 
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It has accuracy better than a third of a dB for modulation orders between one and six. 

 

Using this approximation, the SNR shown in Equation 19 can be expressed in dB. With 

an OSR of 2
n
 the SNR is: 

( ) 76.236.91201.3 += LLnSNR
dB

     (21) 

 

Table 1 gives the SNR and equivalent number of bit (ENOB) for modulation order and 

over sample value. 

  OSR (2
n
) 

  2
4
 2

5
 2

6
 2

7
 2

8
 

1 
24 dB 

3  bits 

33 dB 

5  bits 

42 dB 

6  bits 

51 dB 

8  bits 

60 dB 

9  bits 

2 
39 dB 

6  bits 

54 dB 

8  bits 

69 dB 

11  bits 

84 dB 

13  bits 

99 dB 

16  bits 

3 
53 dB 

8 bits 

75 dB 

12  bits 

96 dB 

15  bits 

117 dB 

19  bits 

138 dB 

22  bits 

4 
68 dB 

11  bits 

95 dB 

15  bits 

122 dB 

20  bits 

149 dB 

24  bits 

177 dB 

29  bits 

5 
83 dB 

13  bits 

116 dB 

19 bits 

149 dB 

24  bits 

182 dB 

30 bits 

215 dB 

35  bits 

Modulator 

Order (L) 

6 
99 dB 

16 bits 

137 dB 

22  bits 

176 dB 

29 bits 

215 dB 

35  bits 

254 dB 

42 bits 
 

Table 1: SNR And ENOB As Function Of Modulator Order And OSR 

 

Note that for a doubling of the OSR (halving of the cutoff frequency), the resolution 

increases by L+  bits. Now in no way does this say that you could slap together a sixth-

order modulator and /256 filter to build a 40-bit ADC. There are many other noise 

sources that will reduce the overall SNR. This only gives the quantization noise 

contribution to SNR. 

 

 

Signal-to-Noise Ratio For A SINC
K

 Filter 

 

A SINC
K
 is a digital low pass filter that collects the output of the DSM at some higher 

sample frequency (fs) and uses it to generate a higher resolution signal at some lower 

decimated output frequency (fd). Its wider use is the result of ease of construction, as it 

does not require the use of a multiplier to generate weighted samples to accumulate. It is 

constructed with a series of digital accumulators operating at the sample frequency 

followed by difference circuits operating at the lower decimation frequency. A block 

diagram is shown in Fig. 8, overleaf. 
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Fig. 8: Block Diagram For SINC
K

 Decimation Filter 

 

The over-sample ratio (OSR) is the ratio of these two frequencies. The transfer function, 

expressed in z transforms is: 
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Using Equation 22, the frequency response is: 
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From the equations it is apparent why it is called a “SINC” filter. 

 

To calculate the total noise, the spectral noise of the DSM, from Equation 16, must be 

multiplied by the frequency response of the filter from Equation 23. The result is: 
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This filter is not ideal and does not remove the entire signal above some cutoff frequency. 

To calculate the total noise, it must be integrated over the whole Nyquist region. Doing 

so results in: 

( )
( )

( ) ( ) dfffOSRff
OSRL

L

f
f

K

s

fs

KL

sK

L

s

2
2

0

)(2

0 sinsin
2

!2

!

3

1
=  (25) 

 

I am not going to even try to integrate this function. So the total noise depends on the 

modulator order (L), decimator order (K) and over-sample ratio. The maximum input 

sinusoid is still s/ 8. This works out to three variables and unfortunately tables in print 

best work for only two. So Table 2, overleaf, gives the signal-to-noise ratio and 

equivalent number of bits for an OSR of 16. 
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  Decimator Order (K) 

  1 2 3 4 5 6 

1 
22.8 dB 

3  bits 

34.9 dB 

5  bits 

37.6 dB 

6 bits 

39.6 dB 

6  bits 

41.0 dB 

6  bits 

42.1 dB 

6  bits 

2 
24.6 dB 

3  bits 

46.9 dB 

7  bits 

60.0 dB 

9  bits 

62.5 dB 

10 bits 

64.7 dB 

10  bits 

66.6 dB 

10  bits 

3 
25.1 dB 

3  bits 

49.1 dB 

7  bits 

71.0 dB 

11  bits 

83.0 dB 

13  bits 

86.8 dB 

14  bits 

89.4 dB 

14  bits 

4 
25.3 dB 

4 bits 

49.8 dB 

8 bits 

73.4 dB 

12 bits 

95.1 dB 

15  bits 

107.1 dB 

17  bits 

111.1 dB 

18  bits 

5 
25.4 dB 

4 bits 

50.1 dB 

8 bits 

74.0 dB 

12 bits 

97.6 dB 

16 bits 

119.2 dB 

19  bits 

131.2 dB 

21  bits 

Modulator 

Order (L) 

6 
25.5 dB 

4 bits 

50.3 dB 

8 bits 

74.6 dB 

12 bits 

98.5 dB 

16 bits 

121.8 dB 

20 bits 

143.3 dB 

23  bits 
 

Table 2: SNR/ENOB As Function Of L And K, OSR = 16 

 

For any particular row, the most significant increase in resolution is reached for a 

decimation order that is one larger than the modulation order (K = L+1). Table 3 is for 

the same parameters except the OSR is set to 32. 
 

  Decimator Order (K) 

  1 2 3 4 5 6 

1 

28.9 dB 

4  bits 

D 1 

43.9 dB 

7 bits  

D 1  

46.9 dB 

7  bits  

D 1  

48.7 dB 

7  bits  

D 1  

50.0 dB 

8 bits  

D 1  

51 dB 

8  bits  

D 1  

2 

30.6 dB 

4  bits  

D 1 

59.0 dB 

9  bits  

D 2 

74.0 dB 

12 bits  

D 2  

77.5 dB 

12  bits  

D 2  

79.8 dB 

13 bits  

D 2  

81.6 dB 

13  bits  

D 2  

3 

31.1 dB 

4  bits  

D 1 

61.2 dB 

9  bits  

D 2 

89.1 dB 

14  bits  

D 3 

104.1 dB 

17 bits  

D 3  

107.9 dB 

17  bits  

D 3  

110.5 dB 

18 bits  

D 3  

4 

31.3 dB 

5 bits  

D 1 

61.8 dB 

10 bits  

D 2 

91.5 dB 

15 bits  

D 3 

119.2 dB 

19  bits  

D 4 

134.2 dB 

22 bits  

D 4  

138.2 dB 

22  bits  

D 4  

5 

31.4 dB 

5bits  

D 1 

62.2 dB 

10 bits  

D 2 

92.3 dB 

15 bits  

D 3 

121.7 dB 

20 bits  

D 4 

149.3 dB 

24  bits  

D 5 

164.3 dB 

27 bits  

D 5  

Modulator 

Order (L) 

6 

31.5 dB 

5 bits  

D 1 

62.4 dB 

10 bit  

D 2 

92.7 dB 

15 bits  

D 3 

122.56 dB 

20 bits  

D 4 

151.9 dB 

25 bits  

D 5 

179.4 dB 

29  bits  

D 6 
 

Table 3: SNR/ENOB As Function Of L And K, OSR = 32 
 

Also included in the table is the difference in increased resolution for a doubling of the 

OSR. The increase of resolution, when L  K, is K bits. When K > L, the increase limits 

to L +  bits. 
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For an ADC with a decimator order one larger than the modulation order, the resolution, 

in bits, is: 

( )
2
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2
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)2log(
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+= L
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Again, in no way does this say that you could slap together a third-order modulator, 

fourth-order decimator, and a 64 OSR and expect to get a real 20  bits. There are many 

other noise sources that will reduce the overall SNR. It only tells you the quantization 

noise contribution to SNR. 

 

Defining the cutoff frequency as the point where the signal is 3 dB down, the following 

equations define it as a function of the decimator output frequency and decimator order: 
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For a third-order decimator with an output frequency of 10 kHz, the cutoff frequency is 

2.58 kHz. 

 

Knowing how a DSM alters the spectral density of noise and knowing your digital filters 

transfer function, it possible to calculate an ADC’s total quantization noise. With this 

valuation it is straightforward to determine its SNR and effective number of bits. 

 

 




