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Abstract

In this paper we present an overview of the PDA technique and its application for different
target tracking scenarios, in particular for low observable (low SNR) targets. A summary of
the PDA technique is presented. The use of the PDA technique for tracking low observable
targets with passive sonar measurements is presented. This “target motion analysis” is an
application of the PDA technique, in conjunction with the Maximum Likelihood approach,
for target motion parameter estimation via a batch procedure. The use of the PDA technique
for tracking highly maneuvering targets combined radar resource management is described.
This illustrates the application of the PDA technique for recursive state estimation using the
interacting multiple model estimator with probabilistic data association filter (IMMPDAF).
Then we present a flexible (expanding and contracting) sliding-window parameter estimator
using the PDA approach for tracking the state of a maneuvering target using measurements
from an electro-optical sensor. This, while still a batch procedure, has the flexibility of
varying the batches depending on the estimation results in order to make the estimation
robust to target maneuvers as well as target appearance or disappearance.

1 Introduction

When tracking targets with less-than-unity probability of detection in the presence of false
alarms or clutter2, data association — deciding which of the received multiple measurements to
use to update each track — is a crucial part. A number of algorithms have been developed to
solve this problem [1, 2, 4, 6]. Two simple solutions are the Strongest Neighbor Filter (SNF) and
the Nearest Neighbor Filter (NNF). In the SNF, the signal with the highest intensity among
the validated measurements (in a gate — a region around the predicted measurement used
to select the candidate measurements for association, to be discussed in more detail later) is
used for track update and the others are discarded. In the NNF, the measurement closest to
the predicted measurement is used. While these simple techniques work reasonably well with
benign (high SNR and non-maneuvers) targets in sparse scenarios, they begin to fail as the false
alarm rate increases or with low observable (low probability of target detection) maneuvering

1IEEE System Magazine, 2003.
2In some real world problem, one also has fixed clutter (“targets of no interest”) which are, typically, ignored.

The clutter we consider here is the “random” one, due to sensor or background noise.
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targets [15, 19]. Instead of using only one measurement among the received ones and discarding
the others, an alternative approach is to use all of the validated measurements with different
weights (probabilities), known as Probabilistic Data Association (PDA) [4]. The standard PDA
and its numerous improved versions have been shown to be very effective in tracking a single
target in clutter [11, 19, 21, 13].

The data association problem becomes more difficult with multiple targets where the tracks
compete for measurements. Here, in addition to a track validating multiple measurements as in
the single target case, a measurement itself can be validated by multiple tracks, i.e., one faces
contention among tracks for measurements. Many algorithms exist to handle this contention: the
global nearest neighbor (GNN) approach makes “hard” assignments of measurements to tracks;
the Joint Probabilistic Data Association (JPDA) algorithm is used to track multiple targets
by evaluating the measurement-to-track association probabilities and combining them to find
the state estimate [4]; the Multiple Hypothesis Tracking (MHT) or multiframe (S-dimensional)
assignment [14, 25, 26] is a more powerful (but much more complex) algorithm that handles the
multitarget tracking problem by evaluating the likelihood that there is a target given a sequence
of measurements [6].

In the tracking benchmark problem [10] designed to compare the performance of different
algorithms for tracking highly maneuvering targets in the presence of electronic countermeasures,
the PDA-based estimator, in conjunction with the Interacting Multiple Model (IMM) estimator,
yielded one of the best solutions with performance was comparable to that of the MHT algorithm
[5, 19].

In this paper3 we present an overview of the PDA technique and its application for different
target tracking scenarios, in particular for LO (low SNR) targets. In Section 2 a summary of
the PDA technique is presented. The use of the PDA technique for tracking low observable
(LO) targets with passive sonar measurements is presented in Section 3. This “target motion
analysis” (TMA) is an application of the PDA technique, in conjunction with the Maximum
Likelihood (ML) approach, for target motion parameter estimation via a batch procedure. In
Section 4 the use of the PDA technique for tracking highly maneuvering targets combined radar
resource management is described. This illustrates the application of the PDA technique for
recursive state estimation using the IMMPDAF. Section 5 presents a flexible (expanding and
contracting) sliding-window parameter estimator using the PDA approach for tracking the state
of a maneuvering target using measurements from an electro-optical (EO) sensor. This, while
still a batch procedure, has the flexibility of varying the batches depending on the estimation
results in order to make the estimation robust to target maneuvers as well as target appearance
or disappearance.

2 Probabilistic Data Association

The Probabilistic Data Association (PDA) algorithm calculates the association probability
that each validated measurement at the current time belongs to the target of interest. This
probabilistic (Bayesian) information is used in a tracking filter, called PDA filter (PDAF), that
accounts for the measurement origin uncertainty [4].

The following assumptions are made to obtain the recursive PDAF state estimator (tracker):

1. There is only one target of interest whose state evolves according to a dynamic equation
driven by process noise.

3In deference to a certain (non-equationphile) person’s desires, this paper rose to the challenge of being (almost)
totally equation challenged. An equationful version of this paper can be found in [18].
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2. The track has been initialized.

3. The past information about the target is summarized approximately by assuming the
pdf (probability density function) of the current state conditioned on the past data to be
Gaussian with mean given by the predicted state, with its associated prediction covariance
matrix. The above basic assumption of the PDAF is similar to the GPB1 approach [3],
where a single “lumped” state estimate is a quasi-sufficient statistic.

4. At each time, a measurement validation region is set up.

5. Among the possibly several validated measurements, at most one of them can be target-
originated — if the target was detected and the corresponding measurement fell into the
validation region.

6. The remaining measurements are assumed due to false alarms or clutter and are modeled
as i.i.d. (independent identically distributed) with uniform spatial distribution.

7. The target detections occur independently over time with known probability PD.

These assumptions make it possible to obtain a state estimation scheme that is almost
as simple as the Kalman filter (KF), but much more effective in clutter. The PDAF uses a
decomposition of the estimation with respect to (w.r.t.) the origin of each element of the latest
set of validated measurements.

From the Gaussian assumption, the validation region (gate) is an elliptical region centered
at the predicted measurement. The size of this region is determined by the gate threshold and
the covariance of the innovation corresponding to the true measurement. It is critical to have
“realistic” covariances to ensure that the correct measurement is validated. Since targets can
change drastically their behavior, a (single model based) KF will have difficulty providing the
required realistic covariances. This is discussed in more detail in Section 4 where the IMMPDAF
is described.

In view of assumption 5 above, the association events: {the i-th validated measurement is
the target originated} where the index i runs over all the validated measurements; and {none
of the measurements is target originated, i=0} are mutually exclusive and exhaustive.

Using the total probability theorem [3] w.r.t. the above events, the conditional mean of the
state at current time (overall estimate) can be written as the sum over all i of the updated state
estimates conditioned on the event that the i-th validated measurement is correct, weighted by
the conditional probability that the i-th validated measurement is correct — the association
probability, obtained from the PDA procedure, discussed in the sequel.

The estimate conditioned on measurement i being correct is obtained with a standard KF
or an extended KF. For i = 0, i.e., if none of the measurements is correct, or, if there is no
validated measurement, the updated state is the predicted state.

The state update equation of the PDAF, after some manipulations, ends up as a standard
KF/EKF update with a combined innovation, which is the weighted sum of the all the inno-
vations corresponding to the validated measurements with the above association probability as
weightings.

The covariance associated with the updated state is given by the standard KF/EKF covari-
ance update with two modifications: (1) with some probability, none of the measurements is the
correct one (in which case one keeps the predicted covariance); (2) an extra term is added — the
so-called “spread of the innovations” (similar to the spread of the means term in a mixture [3]).
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The latter accounts for the fact that one could not decide with certainty which is the correct
measurement and this causes the state uncertainty to be larger.

The prediction of the state and measurement is done as in the standard filter.
To evaluate the association probabilities, a probabilistic inference is made from both the

number of measurements in the validation region (from the clutter density, if known) as well as
their location.

Using Bayes’ formula, the probability that validated measurement i is the correct one is
obtained as the joint density of the validated measurements conditioned on measurement i
being the correct one multiplied the prior probability of measurement i being the correct one
and divided by a normalization constant.

The joint density of the validated measurements conditioned on measurement i being the
correct one is the product of

• the (assumed) Gaussian pdf of the correct (target originated) measurement, and

• the pdf of the false measurements, assumed uniform in the validation region volume (which
follows from the validation ellipse or ellipsoid).

The pdf of the correct measurement is a Gaussian with mean the predicted measurement and
the standard innovation covariance (the “innovation Gaussian”), restricted to the gate (divided
by the gate probability).

The pdf of all the measurements in the gate given the measurement i is the correct one is
then the product of the above Gaussian evaluated at measurement i, with the uniform density
(inverse of the validation region volume) for the remaining measurements (deemed false).

The probabilities of the association events conditioned only on the number of validated
measurements are evaluated using the probability mass function (pmf) of the number of false
measurements (false alarms or random clutter) in the validation region.

Two models can be used for the pmf µF (m) in a volume of interest V :

(i) a Poisson model with a certain (known/assumed) spatial density

(ii) a diffuse prior model (discussed in [3]) which uses a constant that is irrelevant since it
cancels out.

Finally, the association probability of measurement i turns out to be the ratio of the innova-
tion Gaussian evaluated at this measurement over the sum of a constant and all the innovation
Gaussians. The constant accounts for the target detection probability, the gate probability and
the (expected) number of false measurements in the gate.

Each association probability can be shown to be given by the likelihood ratio for each mea-
surement (the ratio of the pdf of the measurement if it is correct to its pdf if it is false) divided
by the sum of all the likelihood ratios. This connects to the next approach where use will be
made of the joint likelihood ratio for all the measurements.

3 Low Observable TMA Using the ML-PDA Approach with

Target Features [17]

This section considers the problem of TMA (Target Motion Analysis) — estimation of the
trajectory parameters of a constant velocity target — with a passive sensor, which does not
provide full target position measurements. The methodology presented here applies equally to
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any target motion characterized by a deterministic equation, where the initial conditions (a finite
dimensional parameter vector) characterize in full the motion (see, e.g. [29]). In this case one can
use the (batch) ML parameter estimation, which is more powerful than state estimation when
the target motion is deterministic (it does not have to be linear). This allows the algorithm to
operate successfully at 6–9 dB lower SNR than recursive state estimators4. Furthermore, the
(batch) ML-PDA parameter estimator approach makes no approximation, unlike the (recursive)
PDAF state estimator. However, the ML-PDA estimator requires a numerical search, to be
discussed later.

3.1 The Amplitude Information Feature

The standard TMA consists of estimating the target’s position and its constant velocity
from bearings-only (wideband sonar) measurements corrupted by noise [3]. Narrowband passive
sonar tracking, where frequency measurements are also available, has been studied in [16]. The
advantages of narrowband sonar are that it does not require a maneuver of the platform for
target observability (ability to estimate the parameters of the target motion) and it enhances
the accuracy of the estimates. However, not all passive sonars have frequency information
available. In both cases, the intensity of the signal at the output of the signal processor, which
is referred to as measurement amplitude or amplitude information (AI), is used implicitly to
determine whether there is a valid measurement. This is usually done by comparing it with the
detection threshold, which is a design parameter; however, the amount of threshold exceedance,
which does carry valuable information for data association, is not used.

The measurement amplitude carries valuable information and its use in the estimation
process inproves the observability even though the amplitude information is not related to the
target state directly. Also superior global convergence properties are obtained.

We model the probability density function (pdf) of the envelope detector output (the AI)
when the signal is due to noise only as a unity power Rayleigh pdf (denoted as “Rayleigh(1)”)
and the signal originated from the target as another Rayleigh pdf. If the expected signal-to-
noise ratio5 (SNR) is d, the second Rayleigh density will have power 1+d and is denoted as
“Rayleigh(1+d)”.

A suitable threshold, denoted by τ , is used to declare a detection. The probability of de-
tection and the probability of false alarm are denoted by PD and PFA, respectively. Both PD

and PFA can be evaluated from the probability density functions of the measurements. Clearly,
in order to increase PD, the threshold τ must be lowered. However, this also increases PFA.
Therefore, depending on the SNR, τ must be selected to satisfy two conflicting requirements.6

The above density functions correspond to the signal at the envelope detector output before
thresholding. Those corresponding to the output of the threshold detector are renormalized
version of the above, divided by the threshold exceedance probability, PFA and PD, respectively.

Finally the amplitude likelihood ratio is the ratio of the last (renormalized) densities. This
ratio indicates the relative likelihood for a measurement being “good” vs. “bad” based on its
amplitude only.

4The improvement is necessarily limited because at very low SNR there is just not enough information in the
data to extract a track.

5This is the SNR in a resolution cell, to be denoted later as SNRC.
6For other probabilistic models of the detection process, different SNR values correspond to the same PD, PFA

pair. Compared to the Rician model receiver operating characteristic (ROC) curve, the Rayleigh model ROC
curve requires a higher SNR for the same pair (PD, PFA), i.e., the Rayleigh model considered here is pessimistic.
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3.2 Target and Measurement Models

We assume that n sets of measurements made at times t = t1, t2, . . . , tn are available.
For bearings-only estimation, the target motion is defined by a 4-dimensional parameter

vector x consisting of its position at a reference time and its (assumed constant) velocity. That
is, we assume deterministic target motion (no process noise [3]). Any other deterministic motion
can be handled within the same framework.

The state of the sensor platform xp, defined by its position and velocity (which can be
arbitrary), is assumed to be known.

The following additional assumptions about the statistical characteristics of the measure-
ments are also made [16]:

1. The measurements at two different sampling instants are, conditional on the target para-
meter vector, independent.

2. A bearing (azimuth) measurement that originated from the target at a particular sampling
instant is obtained by the sensor only once during the corresponding scan with known
probability PD and is corrupted by zero-mean additive Gaussian noise of known variance.

Due to the presence of false measurements it is not known which is the true measurement.

3. The false bearing measurements are distributed uniformly in the surveillance region.

4. The number of false measurements at a sampling instant obey a Poisson law with a known
expected number of false measurements in the surveillance region. This is determined by
the false alarm probability in a resolution cell (i.e., by the detection threshold at the sensor
and the cell volume).

For narrowband sonar (with frequency measurements) the target parameter vector x includes
as its fifth component the frequency emitted by the target, assumed constant. Due to the relative
motion between the target and platform at ti this frequency will be Doppler shifted when received
at the platform by the relative radial velocity between the target and the sensor platform.

The measurement vector consists of bearing, frequency and amplitude. The frequency mea-
surements are given by the true received (Doppler shifted) frequency, also corrupted by an
additive zero-mean Gaussian noise with known variance. It is also assumed that the bearing
and frequency measurement noises are conditionally independent and white. The bearing and
frequency measurements due to noise only are assumed to be uniformly distributed in the entire
surveillance region.

3.3 Maximum Likelihood Estimator Combined With PDA — The ML-PDA

In this section we discuss the maximum likelihood estimator combined with the PDA tech-
nique for both bearings-only tracking and narrowband sonar tracking.

If there are mi detections at time i we have the following mutually exclusive and exhaustive
events [4]:

The joint pdf of all the measurements at time i assuming that measurement j is the correct
one is the product of the pdfs of

• the kinematic components of measurement (bearing and frequency) j conditioned on the
(yet to be estimated) target motion parameter vector x — Gaussian with mean dependent
on x and (the known) xp
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• the feature (AI) components of measurement j (“target originated”, i.e., Rayleigh(1+d))

• the kinematic components of all the other measurements (assumed false) — uniform den-
sities (constant) in the surveillance region

• the feature (AI) components of all the false measurements — Rayleigh(1)

However, since one does not know which is the correct (target originated) measurement, one
has to average over all the possibilities — each measurement has prior probability of being the
correct one.

Using the total probability theorem, the target’s likelihood function at time i (i.e., based on
the measurement from frame i) is written as the sum of

• the joint pdf of all the measurements at time i conditioned on measurement j being the
correct one

• multiplied with the prior probability of measurement j being the correct one (same for all
j)

• over all j

The above also includes the event that none of the measurements is correct, i.e., the “no target
detection” event is accounted for. The result is a Gaussian-Rayleigh(1+d)–Uniform-Rayleigh(1)
mixture.

Instead of using the likelihood function it is convenient to use the likelihood ratio, obtained
by dividing the above by the pdf of all the measurements at time i given that they are all
false. This is a convenient normalization because it leads to many terms canceling and it is a
dimensionless quantity. To further improve the numerical conditioning of the expression to be
maximized later (to obtain the target parameter estimate) the logarithm of the likelihood ratio
is taken.

The target’s total likelihood ratio, accounting for all the measurement frames (all time i) is
then obtained by simply adding up the single-frame likelihood ratios. The Maximum Likelihood
Estimate (MLE) is obtained by finding the state x = x̂ that maximizes the total log-likelihood
ratio.

The same ML-PDA approach is also applicable to the estimation of the trajectory of an exoat-
mospheric ballistic missile [20, 29]. The modification of this fixed-batch ML-PDA estimator to
a flexible (sliding/expanding/contracting) procedure is discussed in Section 5 and demonstrated
with an actual EO data example.

3.4 Cramer-Rao Lower Bound for the Estimate

For an unbiased estimate, the Cramer-Rao lower bound (CRLB, see, i.e., [3]) states that
its mean square error is bounded from below by the inverse of the Fisher information matrix
(FIM). The FIM (in a “clean environment” — where PD=1 and PFA=0, i.e., with no extraneous
measurements) is given by the expected value of the outer product of the gradient of the log-
likelihood function with itself, evaluated at the true value of the state parameter.

As expounded in [17], the FIM is given in the present ML-PDA approach by the FIM from a
“clean environment” described above, multiplied by a scalar information reduction factor (IRF)
that accounts for the loss of information resulting from the presence of false measurements and
less-than-unity probability of detection.
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The IRF depends on the target PD and the expected number of false alarms per unit volume
in the measurement space. Since the IRF is between zero and 1, it leads to larger CRLB, i.e.,
larger parameter estimation variances — an unavoidable consequence of a “dirty environment”.

3.5 Results

Both the bearings-only and narrowband (with additional frequency measurements) sonar
problems with amplitude information were implemented to track a target moving at constant
velocity have been implemented. The results for the narrowband case are given below, ac-
companied by a discussion of the advantages of using amplitude information by comparing the
performances of the estimators with and without amplitude information.

In narrowband signal processing, different bands in the frequency domain are defined by an
appropriate resolution cell and a center frequency about which these bands are located. The
received signal is sampled and filtered in these bands before applying FFT and beamforming.
Then the angle of arrival is estimated using a suitable algorithm [24]. As explained earlier, the
received signal is declared as a valid measurement only if it exceeds the threshold τ . The thresh-
old value, together with the SNR, determines the probability of detection and the probability
of false alarm.

The signal processor was assumed to consist of the frequency band [500Hz, 1000Hz] with a
2048-point FFT. This results in a frequency cell Cγ = 500/2048 ≈ 0.25 Hz. Regarding azimuth
measurements, the sonar is assumed to have 60 equal beams, resulting in an azimuth cell Cθ

= 180o/60 = 3.0o. Assuming a uniform distribution in a cell, the frequency and azimuth
measurement standard deviations are given by7 σγ = 0.25/

√
12 = 0.0722 Hz and σθ = 3.0/

√
12

= 0.866o.
The SNRC in a cell8 was taken as 6.1dB and PD = 0.5.9 The corresponding SNR in a 1Hz

bandwidth (SNR1) is 0.1dB. These values give the detection threshold as τ = 2.64 and PFA =
0.0306. Dividing PFA by the volume of the resolution on cell CθCγ yields the expected number
of false alarms per unit volume as λ = 0.0407/deg · Hz.

The surveillance regions for azimuth and frequency were taken as the intervals [−20o, 20o]
and [747 Hz, 753 Hz]. The expected number of false alarms in the entire surveillance region (in
a frame) is 9.8. This means that for every true measurement that originated from the target
there are about 10 false alarms which exceed the threshold.

The estimated tracks were validated using a hypothesis testing procedure described in [17].
The track acceptance test was carried out with a miss probability of 5%.

To check the performance of the estimator, simulations were carried out with clutter only
(i.e., without a target) and also with a target present; measurements were generated accordingly.
Simulations were done in batches of 100 runs. When there was no target, irrespective of the
initial track parameter guess, the estimated track was always rejected. This corroborates the
accuracy of the validation algorithm given in [17].

For the set of simulations with a target, the following scenario was selected: the target
moves with velocity components of 10m/s west and 5m/s north starting from (5000m, 35000m).

7The “uniform” factor
√

12 corresponds to the worst case. In practice, σθ and σγ are functions of the 3dB-
bandwidth and of the SNR.

8The commonly used SNR, designated here as SNR1, is signal strength divided by the noise power in a 1Hz
bandwidth. SNRC is the signal power divided by the noise power in a resolution cell. The relationship between
them, for Cγ = 0.25Hz is SNRC = SNR1 − 6dB. SNRC is believed to be the more meaningful SNR because this
determines the ROC curve and, thus, PD and PFA.

9The estimator is not very sensitive to an incorrect PD. This is verified by running the estimator with an
incorrect PD on the data generated with a different PD. Differences up to 0.15 are tolerated by the estimator.
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Figure 1: Scenario and estimated tracks from 100 runs for narrowband sonar with AI

The (unknown) emitted signal frequency from the target is 750Hz. The true target parameter
is x = [5000m, 35000m,−10m/s, 5m/s, 750Hz]. The motion of the platform consisted of two
velocity legs in the northwest direction during the first half, and in the northeast direction
during the second half of the simulation period with a constant speed of 7.1m/s. Measurements
were taken at regular intervals of 30s. The observation period was 900s.

Figure 1 shows the scenario including the target true trajectory (solid line), platform trajec-
tory (dashed line) and the 95% probability regions of the position estimates at the initial and
final sampling instants based on the CRLB (with IRF). The initial and the final positions of the
trajectories are marked by “I” and “F” respectively. The purpose of the probability region is to
verify (visually) the validity of the CRLB as the actual parameter estimate covariance matrix
from a number of Monte Carlo runs [3]. A set of bearing, frequency and amplitude measure-
ments are shown in Figures 2, 3 and 4, respectively. Figure 1 also shows the 100 tracks formed
from the estimates. Note that in all but 6 runs (i.e., 94 runs) the estimated trajectory endpoints
fall in the corresponding 95% uncertainty ellipses.

Table 1 gives the numerical results from 100 runs. Here x is the average of the estimates, σ̂
the standard error of the estimates evaluated from 100 runs, and σCRLB the theoretical CRLB
derived in Section 3.4. The range of the rough grid search used to find the initial guesses to
start off the estimator are given by xinit.

The efficiency of the estimator was verified using the normalized estimation error squared
(NEES) [3] using the CRLB (with the IRF) as the covariance. Assuming approximately Gaussian
estimation error, the NEES is chi-square distributed with n degrees of freedom where n is the
number of estimated parameters. For the 94 accepted tracks the NEES was obtained as 5.46,
which lies within the 95% confidence region [4.39, 5.65]. Also note that each component of x is
within 2σ̂/

√
100 of the corresponding component of xtrue. This confirms that the estimator is

efficient, i.e., its covariance is indeed given by the CRLB (with the IRF). Viewing the CRLB
as the existing information in the measurements, one can state that the ML-PDA, shown to
be statistically efficient down to 6dB SNR, managed to extract all the existing information. It
should be pointed out that at lower SNR the CRLB is larger (i.e., there is inherently more
uncertainty) but we also lose the ability to meet this bound — the estimator is not efficient any
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Figure 2: Azimuth (bearing) measurements in a single run
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Figure 3: Frequency measurements in a single run
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Figure 4: Amplitude measurements in a single run

Unit xtrue xinit x σCRLB σ̂

m 5000 −12000 to 12000 4991 667 821
m 35000 49000 to 50000 35423 5576 5588

m/s −10 −16 to 5 −9.96 0.85 0.96
m/s 5 −4 to 9 4.87 4.89 4.99
Hz 750 747 to 751 749.52 2.371 2.531

Table 1: Results of 100 Monte Carlo runs for narrowband sonar with AI (SNRC = 6.1dB)
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more. The loss of efficiency is due to the nonlinearilities of the problem.

4 The IMMPDAF for Tracking Maneuvering Targets [19]

Some of the problems of interest in single-target tracking with a single sensor are tracking
maneuvering targets [3], tracking in the presence of clutter [4] and electronic countermeasures
(ECM). In addition to these tracking issues, to be complete, a tracking system for a sophisticated
electronically steered antenna radar has to consider radar scheduling, waveform selection and
detection threshold selection. Although many researchers have worked on these issues and many
algorithms are available, there had been no standard problem comparing the performances of
the various algorithms. Rectifying this, the first benchmark problem focusing only on tracking a
maneuvering target and pointing/scheduling a phased array radar was developed [8]. Of all the
algorithms considered for this problem, the interacting multiple model (IMM) estimator yielded
the best performance [7]. The second benchmark problem [9] included false alarms (FA) and
ECM — specifically, a standoff jammer (SOJ) and range gate pull off (RGPO) — as well as
several possible radar waveforms from which the resource allocator has to select one at every
revisit time. Results for this problem showed that the IMM and multiple hypothesis tracking
(MHT) algorithms were the best solutions [5, 19]. The MHT algorithm, while 1–2 orders of
magnitude costlier computationally than the IMMPDAF (IMM estimator with probabilistic data
association filter — PDAF — modules [4]) for the problem considered (as many as 40 hypotheses
are needed10), yielded comparable results with the IMMPDAF. The benchmark problem of [9]
was expanded in [10] to require the radar resource allocator/manager to select the operating
constant false alarm rate (CFAR) and include the effects of the SOJ on the direction of arrival
(DOA) measurements; also the SOJ power was increased to present a more challenging problem.
While in [9] the primary performance criterion for the tracking algorithm was minimization
of radar energy, the primary performance was changed in [10] to minimization of a weighted
combination of radar time and energy.

This section discusses the IMMPDAF technique for automatic track formation, maintenance
and termination. The coordinate selection for tracking, radar scheduling/pointing and the mod-
els used for mode-matched filtering (the modules inside the IMM estimator) are also discussed.
These cover the target tracking aspects of the solution to the benchmark problem and are based
on the benchmark problem tracking and sensor resource management [10, 19].

4.1 Coordinate Selection

For target tracking in track dwell mode of the radar, the number of detections at scan k
(time tk) is denoted by mk. The m-th detection report ζm(tk) (m = 1, 2, . . . ,mk) consists of
a time stamp tk, range rm, bearing bm, elevation em, amplitude information (AI) ρm given by
the measured SNR. In addition, one has the standard deviations of range, bearing and elevation
measurements. The latter two are calculated in real time because the depend on the SNR. (For
details on the different waveforms and their accuracies, see [10].)

The AI is used here only to declare detections and select the radar waveform for the next
scan. Since the use of AI, for example, as in [21], can be counterproductive in discounting RGPO
measurements, which generally have higher SNR than target-originated measurements, AI is not

10A more recent IMM-MHT (as opposed to Kalman filter based MHT) required 6–8 hypotheses [5].
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utilized in the estimation process itself.11

For target tracking, the measurements and their covariance matrix are converted from spher-
ical coordinates to Cartesian coordinates and then the IMMPDAF is used on these converted
measurements. This conversion avoids the use of extended Kalman filters12 and makes the prob-
lem linear [4]. The debiased conversion, if needed (see [3]), also guarantees the consistency of
the covariances in all practical situations.

4.2 Track Formation

In the presence of false alarms, track formation is a crucial issue. Incorrect track initiation
will result in target loss. In [4] an automatic track formation/deletion algorithm in the presence
of clutter was presented based on the IMM algorithm. In the present benchmark problem a
noisy measurement corresponding to the target of interest is given in the first scan allowing to
form new tracks for each validated measurement (based on a velocity gate), as suggested in [4]
and as implemented in [19], at subsequent scans. However, this is expensive in terms of both
radar energy and computational load. In this implementation, track formation is simplified and
handled as follows:

Scan 1 (t=0s) As defined by the benchmark problem, there is only one (target-originated,
noisy) measurement. The position component of this measurement is used as the starting
point for the estimated track.

Scan 2 (t=0.1s) The radar illumination beam is pointed at the location of the first measure-
ment. This yields, possibly, more than one measurement and these measurements are gated
using the maximum possible velocity of the targets to avoid the formation of impossible
tracks. The maximum speed in each direction is assumed to be 500m/s.

The measurement in the first scan and the measurement with the highest SNR in the second
scan are used to form a track with the two-point initialization technique [3]. The track
splitting used in [4] and [19] was found unnecessary — the strongest validated measurement
was adequate. This technique yields the position and velocity estimates and the associated
covariance matrices in all three coordinates.

Scan 3 (t=0.2s) The pointing direction for the radar is given by the predicted position at
t = 0.2s using the estimates from scan 2. An IMMPDA filter with three models discussed
in the sequel is initialized with the estimates and covariance matrices obtained at the
second scan. The acceleration component for the third order model is assumed zero with
variance (amax)2, where amax = 70m/s2 is the maximum expected acceleration of the
target.

From scan 3 on, the track is maintained using the IMMPDAF as described in Section 4.3.
In order to maintain a high SNR for the target-originated measurement during track formation,
a high energy waveform is used. Also, at the second scan, 3 dwells are used to ensure target

11Using the AI would require a separate model for the RGPO intensity, which cannot be estimated in real time
due to its short duration and variability [21].

12This holds for linear motion models because in this case the measurements are also linear. Even range rate
measurements can be treated as linear under certain conditions. However, if one uses, e.g., a coordinated turn
motion model with unknown turn rate (see, e.g. [3]) then an EKF is still necessary because the turn rate enters
nonlinearly.

13



detection. This simplified approach cannot be used if the target-originated measurement is not
given at the first scan. In that case, the track formation technique in [4] can be used.

Immediate revisit (i.e., with the minimal sampling interval 0.1s) is carried out during track
formation because the initial velocity of the target is not known — in the first scan only the
position is measured and there is no a priori velocity. This means that in the second scan,
the radar must be pointed at the first scan position, assuming zero velocity. Waiting longer to
obtain the second measurement could result in the loss of the target-originated measurement
due to incorrect pointing. Also, in order to make the IMM mode probabilities converge to the
correct values as quickly as possible the target is revisited at a high rate.

4.3 Track Maintenance

The state vector of the target at tk is chosen as the position, velocity and acceleration in the 3
Cartesian coordinates. The measurement vector consists of the Cartesian position components
at tk.

Assuming that the target motion is linear in the Cartesian coordinate system, the state
equation for the target is a discrete white noise acceleration (WNA, 2-dimensional per coordi-
nate) or Wiener process acceleration (WPA, 3-dimensional per coordinate), decoupled between
coordinates. The predicted state and its covariance, and the predicted measurement and its
associated (innovation) covariance are calculated according to the standard linear procedures
[3].

4.3.1 Validation and Probabilistic Data Association

During track maintenance, each measurement at scan k is validated against the established
track. This is achieved by setting up a validation region centered around the predicted measure-
ment at tk given by an ellipsoid determined by the innovation covariance.

Since an IMM estimator [3] is used to model the various motion modes of the target, each
of its modules has a different predicted measurement and a different innovation covariance. As
discussed in [4] Sec. 4.5, it is necessary to use a common validation gate so the mode likelihood
functions have the same physical dimension so they can be compared.13 This gate should be
located at the weighted average of the mode-conditioned predicted measurements, with weights
the predicted mode probabilities. Since, in general, the mode with the largest process noise has
by far the largest innovation covariance, one can use this to determine the validation ellipsoid.

With the modules of the IMM estimator being PDAFs, the mode-conditioned estimation is
done as discussed in Sec. 2. The individual mode motion models are discussed later.

4.3.2 IMM Estimator Combined with the PDA Technique

In the IMM estimator it is assumed that at any time the target trajectory evolves according
to one of a finite number of models, which differ in their noise levels and/or structures [3].
By probabilistically combining the estimates of the filters, typically Kalman, matched to these
modes, an overall estimate is found. In the IMMPDAF the Kalman filter is replaced with the
PDA filter, which handles the data association.

13Since the likelihood functions are the joint probability density functions of the validated measurements, their
physical dimension is the inverse of the physical dimension of the measurement space raised to power of the
number of validated measurements. For example for m bearing frequency measurements, the physical dimension
of their likelihood functions is (deg·Hz)−m. Thus, having the same measurements in each mode likelihood function
makes them commensurate.
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Let r be the number of mode-matched filters used, M(tk) the index of the mode in effect in
the semi-open interval (tk−1, tk] and µj(tk) be the probability that mode j (j = 1, 2, . . . , r) is
in effect in the above interval given the data up to and including k. The mode transitions are
modeled by a Markov chain with transition probability discussed later in more detail. The state
estimates and their covariance matrix at tk conditioned on the j-th mode are denoted by x̂j(tk)
and Pj(tk), respectively.

The steps of the IMMPDAF are as follows [4]:

Step 1 — Mode interaction or mixing. The mode-conditioned state estimate and the as-
sociated covariances from the previous iteration are mixed to obtain the initial condition
for the mode-matched filters.

Step 2 — Mode-conditioned filtering. A PDAF is used for each mode to calculate the
mode-conditioned state estimates and covariances. In addition, we evaluate the likelihood
function Λj(tk) of each mode at tk using a Gaussian-uniform mixture consisting of a
product of

• the pdf of measurement j given that it is the target-originated innovation, assumed
Gaussian

• the pdf of the false measurements (the remaining ones) assumed uniform in the vali-
dation region volume

summed over each measurement being the correct one, with weight given by the prior
probability of this event (same for all the measurements).

This amounts to a Gaussian-uniform mixture. The above summation also accounts for the
probability that the target was not detected (or its measurement was not validated). The
probability of target detection PD is given by the target’s expected SNR.

Note that the likelihood function, as a pdf, has a physical dimension that depends on
the number of the measurements mk. Since ratios of these likelihood functions are to be
calculated, they all must have the same dimension, i.e., the same mk. Thus a common
validation region is vital for all the models in the IMMPDAF. Typically the “largest”
innovation covariance matrix corresponding to “noisiest” model covers the others and,
therefore, this can be used.

Step 3 — Mode update. The mode probabilities are updated based on the likelihood of each
mode using Bayes’ formula.

Step 4 — State combination. The mode-conditioned estimates and covariances are com-
bined to find the overall estimate x̂(tk) and its covariance matrix P (tk) are obtained
according to the mixture equation [3].

• The overall estimate is the sum of the all mode-conditioned estimates weighted by
the updated mode probabilities

• The overall covariance is the sum of all the mode-conditioned covariances weighted
by the updated mode probabilities plus the “spread of the means terms”.

Note that the above combination of the mode-conditioned estimates and covariances is
similar to what the PDAF does with the measurement conditioned update. The common
thread between these techniques is the fact that they account to the replacement of a
Gaussian mixture pdf with a moment matched single Gaussian (see [4] Sec. 1.4.16).
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4.3.3 The Models in the IMM Estimator

The selection of the model structures and their parameters is one of the critical aspects of
the implementation of IMMPDAF. Designing a good set of filters requires a priori knowledge
about the target motion, usually in the form of maximum accelerations and sojourn times in
various motion modes [3]. The tracks considered in the benchmark problem span a wide variety
of motion modes — from benign nearly constant velocity motions to maneuvers up to 7g. To
handle all possible motion modes and to handle automatic track formation and termination, the
following models are used:

Benign motion model (M 1). This second order (white noise acceleration — WNA) model
per coordinate with low process corresponds to the non-maneuvering intervals of the target
trajectory. For this model the process noise is, typically, assumed to model air turbulence.

Maneuver model (M 2). This second order model (WNA) with high noise level corresponds
to on-going maneuvers. For this model the process noise standard deviation is taken as
σv2

= αamax, where amax is the maximum acceleration in the corresponding modes and
0.5 < α ≤ 1 [3].

Maneuver detection model (M 3). This is a third order (Wiener process acceleration —
WPA) model with high level noise. For highly maneuvering targets, like military attack
aircraft, this model is useful for detecting the onset and termination of maneuvers. For
civilian air traffic surveillance [30], this model is not necessary.

For this model, the process noise standard deviation is chosen as σv3
= min{β∆aδ, amax},

where ∆a is the maximum acceleration increment per unit time (jerk) and δ is the sampling
interval and 0 < β ≤ 1 [3].

For the targets under consideration, amax = 70m/s2 and ∆a = 35m/s3. Using these values,
the process noise standard deviations were taken as14

σv1
= 3m/s2 (for non-maneuvering intervals).

σv2
= 35m/s2 (for maneuvering intervals).

σv3
= min{35δ, 70} (for maneuver start/termination).

In addition to the process noise levels, the elements of the Markov chain transition matrix
between the modes are also design parameters. Their selection depends on the sojourn time
in each motion mode. The transition probability depends on the expected sojourn time via
τi = δ/(1 − pii), where τi is the expected sojourn time of the i-th mode, pii is the probability of
transition from i-th mode to the same mode and δ is the sampling interval [3]. For the above
models, pii, i = 1, 2, 3 are calculated as pii = min {ui,max (li, 1 − δ/τi)}, where li = 0.1 and
ui = 0.9 are the lower and upper limits, respectively, for the ith model transition probability. The
expected sojourn times of 15, 4, and 2s, are assumed for modes M 1, M2 and M3, respectively.

The selection of the off-diagonal elements of the Markov transition matrix depends on the
switching characteristics among the various modes and is done as follows:

p12 = 0.1(1 − p11) p13 = 0.9(1 − p11)
p21 = 0.1(1 − p22) p23 = 0.9(1 − p22)
p31 = 0.3(1 − p33) p32 = 0.7(1 − p33)

The x, y, z components of the target dynamics are (assumed) uncoupled and the same
process noise is used in each coordinate.

14The benchmark requirement was to have a single estimator design for all targets.
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4.4 Track Termination

According to the benchmark problem a track is declared lost if the estimation error is greater
than the two-way beamwidth in angles or 1.5 radar range gates in range. In addition to this
problem-specific criterion, the IMMPDAF declares (on its own) track loss if the track is not
updated for 100s. Alternatively, one can include a “no target” model [4], which is useful for
automatic track termination, in the IMM mode set. In a more general tracking problem, where
the true target state is not known, the “no target” mode probability or the track update interval
would serve as the criterion for track termination and the IMMPDAF would provide a unified
framework for track formation, maintenance and termination.

4.5 Simulation Results

In this section results obtained using the algorithms discussed above are presented. The
computational requirements and root-mean-square errors (RMSE) are given.

The tracking algorithm using the IMMPDAF is tested on the following six benchmark
tracks15:

Target 1 A large military cargo aircraft with maneuvers up to 3g.

Target 2 A Learjet or commercial aircraft which is smaller and more maneuverable than target
1 with maneuvers up to 4g.

Target 3 A high speed medium bomber with maneuvers up to 4g.

Target 4 Another medium bomber with good maneuverability up to 6g.

Targets 5 & 6 Fighter or attack aircraft with very high maneuverability up to 7g.

Figure 5 shows the trajectory of target 6: The target maintains constant speed and course
for 30s before making a 7g turn at t = 30s. The new course is maintained for another 30s and
a 6g turn is performed while the throttle is reduced and the aircraft is nosed over in order to
rapidly decrease altitude. This turn-and-dive maneuver is accompanied by RGPO and the SOJ
happens to be in the mainlobe of the radar at the same time to maximize the tracking difficulty.
After 30s another 6g turn at full throttle is performed. Finally, constant velocity is maintained
after another 7g turn at t = 150s [10].

In Table 2, the performance measures and their averages for the IMMPDAF (in the presence
of FA, RGPO and SOJ [10, 19]) are given. During maneuvering periods the revisit intervals
were shorter. The averages are obtained by adding the corresponding performance metrics of
the six targets (with those of target 1 added twice due to its relative frequency in the real world)
and dividing the sum by 7. In the table, the maneuver density is the percentage of the total
time that the target acceleration exceeds 0.5g. The average floating point operation (FLOP)
count per second was obtained by dividing the total number of floating point operations by
the target track length. This is the computational requirement for target and jammer tracking,
neutralizing techniques for ECM and adaptive parameter selection for the estimator, i.e., it
excludes the computational load for the radar emulation.

15The tracking algorithm does not know the type of the target under track — the parameters are selected to
handle any target.
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Figure 5: A Trajectory of Target 6 (I - Initial Position, F - Final Position)

Time Max. Man. Sample Ave. Pos. Vel. Ave. Lost
Target Length Acc. Density Period Power RMSE RMSE Load Tracks

(s) (m/s
2
) (%) (s) (W) (m) (m/s) (kFLOPS) (%)

1 165 31 25 2.65 8.9 98.1 61.3 22.2 1
2 150 39 28.5 2.39 5.0 97.2 68.5 24.3 0
3 145 42 20 2.38 10.9 142.1 101.2 24.6 1
4 184 58 20 2.34 3.0 26.5 25.9 24.3 0
5 182 68 38 2.33 18.4 148.1 110.7 27.1 2
6 188 70 35 2.52 12.4 98.6 71.4 24.6 1

Ave. – – – 2.48 8.3 – – 24.5 –

Table 2: Performance of IMMPDAF in the Presence of False Alarms, Range Gate Pull-Off and
the Standoff Jammer

The average FLOP16 requirement is 25 kFLOPS, which can be compared with the FLOP
rate of 78 MFLOPS of a (by now obsolete) Pentium processor running at 133MHz. Thus,
the real-time implementation of the complete tracking system is possible for numerous such
targets simultaneously. With the average revisit interval of 2.5s, the FLOP requirement of the
IMMPDAF is 62.5 kFLOP/radar cycle. With the revisit time calculations taking about the
same amount of computation as a cycle of the IMMPDAF, but running at half the rate of
the Kalman Filter (which runs at constant rate), the IMMPDAF with adaptive revisit time is
about 10 times costlier computationally than a Kalman Filter. Due to its ability to save radar
resources, which are much more expensive than computational resources, the IMMPDAF is a
worthwhile and viable alternative to the Kalman filter, which is the standard “workhorse” in
many current tracking systems.17

16The FLOP count is obtained using the built-in MATLAB function flops. Note that these counts, which
are given in terms of thousands of floating point operations per second (kFLOPS) or millions of floating point
operations per second (MFLOPS), are rather pessimistic — the actual FLOP requirement would be considerably
lower. Nevertheless, this is the best estimate of the computational requirements at this point.

17Some systems still use the α-β filter as their “workmule”. As suggested by a well-known person in tracking,
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5 A Flexible-Window ML-PDA Estimator for Tracking LO Tar-
gets [12]

One difficulty with the ML-PDA approach of Section 3, which uses a fixed set of scans of
measurements as a batch, is the incorporation of non-informative scans when the target is not
present in the surveillance region for some consecutive scans. For example, if the target appears
within the surveillance region of the sensor after the first few scans, the estimator can be misled
by the pure clutter in those scans — the earlier scans contain no relevant information and the
incorporation of these into the estimator not only increases the amount of processing (without
adding any more information) but also results in less accurate estimates or even possible track
rejection. Also, a target could disappear from the surveillance region for a while during tracking
and reappear sometime later. Then, these scans contain little or no information about the target
and can potentially mislead the tracker.

In addition, the standard ML-PDA estimator assumes that the target SNR, the target veloc-
ity and the density of false alarms over the entire tracking period remain constant. In practice,
this may not be the case and then the standard ML-PDA estimator will not yield the desired
results. For example, the average target SNR may vary significantly as the target gets closer
to or moves away from the sensor. Also, the target might change its course and/or speed in-
termittently over time. For electro-optical (EO) sensors, depending on the time of the day and
weather, the number of false alarms may vary as well.

Because of these concerns, an estimator capable of handling time-varying SNR (with online
adaptation), false alarm density and slowly evolving course and speed is needed. While a recur-
sive estimator like the IMM-PDA is a candidate, in order to operate under low SNR conditions
in heavy clutter, a batch estimator is still preferred. In this section, the above problems are
addressed by introducing an estimator that uses the ML-PDA with AI adaptively in a sliding-
window fashion [12], rather than using all the measurements in a single batch as the standard
ML-PDA estimator does [17]. The initial time and the length of this sliding window are adjusted
adaptively based on the information content in the measurements in the window. Thus, scans
with little or no information content are eliminated and the window is moved over to scans with
“informative” measurements. This algorithm is also effective when the target is temporarily
lost and reappears later. In contrast, recursive algorithms will diverge in this situation and may
require an expensive track reinitiation. The standard batch estimator will be oblivious to the
disappearance and may lose the whole track. This section demonstrates the performance of the
adaptive sliding-window ML-PDA estimator on a real scenario with heavy clutter for tracking
a fast-moving aircraft using an EO sensor.

5.1 The Scenario

The adaptive ML-PDA algorithm was tested on an actual scenario consisting of 78 frames of
Long Wave Infrared (LWIR) IR data collected during the Laptex data collection, which occurred
in July 1996 at Crete, Greece. The sequence contains a single target — a fast-moving Mirage F1
fighter jet. The 920 × 480 pixel frames, taken at a rate of 1Hz were registered to compensate
for frame-to-frame line-of-sight (LOS) jitter. Figure 6 shows the last frame in the F1 Mirage
sequence, with the target detection surrounded by an ellipse.

A sample detection list for the Mirage F1 sequence obtained at the end of preprocessing is
shown in Figure 7. Each ‘×’ in the figure represents a detection above the threshold. As it can

this filter should be outlawed.
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Figure 6: The last frame in the F1 Mirage sequence

be seen, the number of detections is overwhelming and only a sophisticated algorithm can find
the target.

5.2 The ML-PDA Estimator

In this section the target and measurement models used by the estimator in the tracking
algorithm are discussed and the statistical assumptions made by the algorithm are presented.
The ML-PDA estimator for these models is then outlined.

5.2.1 Target and Measurement Models

The ML-PDA tracking algorithm is used on the detection lists after the data pre-processing
phase. It is assumed that there are n detection lists obtained at times t = t1, t2, ..., tn. The
i-th detection list, where 1 ≤ i ≤ n, consists of mi detections at pixel positions (xij , yij) along
the X and Y directions. In addition to locations, the signal strength or amplitude, aij , of the
j-th detection in the i-th list, where 1 ≤ j ≤ mi, is also measured. Thus, assuming constant
velocity over a number of scans, the problem can be formulated as a 2-dimensional scenario
in the sensor’s focal plane array with the target motion defined by the 4-dimensional vector
consisting of the horizontal and vertical pixel positions of the target at a reference time and the
corresponding velocities along these directions, assumed constant.

A measurement can either originate from a true target or from a spurious source. In the
former case, each measurement is assumed to have been received only once in each scan with
a detection probability PD and to have been corrupted by zero-mean additive white Gaussian
noise of known variance, independent between the coordinates.

Thus, the joint probability density function of the position components of a target originated
measurement is the product of two Gaussians with means being known functions of the target
parameter vectors and variance given by the measurement noise variances. The false alarms are
assumed to be distributed uniformly in the surveillance region and their number at any sampling
instant obeys the Poisson probability mass function with known spatial density.
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Figure 7: Detection list corresponding to the frame in Figure 6

It has been shown in [17] that the performance of the ML-PDA estimator can be improved
by using amplitude information (AI) of the received signal in the estimation process itself,
in addition to thresholding. After the signal has been passed through the matched filter, an
envelope detector can be used to obtain the amplitude of the signal. The noise at the matched
filter output is assumed to be narrowband Gaussian. When this is fed through the envelope
detector, the output is Rayleigh distributed.

The ratio of the probability density functions at the output of the threshold detector corre-
sponding to detected measurements from the target and false alarms is the amplitude likelihood
ratio. This is a ratio of two Rayleigh densities with power 1+d, for target+noise, and unity
power for noise only, where d is the SNR. In IR applications the signal strength, while heavy-
tailed, is typically not Rayleigh. However, our experience on real data showed that the overall
track extraction results are not very sensitive to the intensity model — using more realistic
(mixture) models yielded the same results, so the simple Rayleigh models were kept.

5.2.2 The Maximum Likelihood - Probabilistic Data Association Estimator

The maximum likelihood estimator combined with the PDA approach is obtained, as in
Section 3 using the total probability theorem. The total log-likelihood ratio for the entire data
set is given as in Sec. 3, by a mixture of Gaussian-Rayleigh(1+d) with uniform-Rayleigh(1)
densities.

The Maximum Likelihood Estimate (MLE) is obtained by finding the vector x = x̂ that max-
imizes the total log-likelihood ratio. This maximization is performed using a quasi-Newton (vari-
able metric) method. This can equivalently be done by minimizing the negative log-likelihood
function. In our implementation of the MLE, the Davidon-Fletcher-Powell variant of the vari-
able metric method was used. This method is a Conjugate Gradient technique which finds the
minimum value of the function iteratively [27]. However, the negative log-likelihood function
may have several local minima, i.e., it has multiple modes. Due to this property, if the search
is initiated too far away from the global minimum, the line search algorithm may converge to a
local minimum. To remedy this, a multi-pass approach is used as in [17].
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5.3 The Adaptive ML-PDA

Usually, the measurement process begins before the target becomes visible, that is, the
target enters the surveillance region of the sensor some time after the sensor started to record
measurements. Also, the target may disappear from the surveillance region for a certain period
of time before reappearing. During these periods of blackout, the received measurements are
purely noise-only and the scans of data contain no information about the target under track.
Incorporating these scans into a tracker reduces its accuracy and efficiency. Thus, detecting
and rejecting these scans is important to ensure the fidelity of the estimator. This subsection
presents a method which uses the ML-PDA algorithm in a variable sliding-window fashion. In
this case, the algorithm uses only a subset of the data at a time rather than all of the frames
at once, to eliminate the use of scans that have no target. The initial time and the length of
the sliding window are adjusted adaptively based on the information content of the data —
the smallest window, and thus the fewest number of scans, required to identify the target is
determined online and adapted over time.

The key steps in the adaptive ML-PDA estimator are as follows:

1. Start with a window of minimum size.

2. Run the ML-PDA estimator within this window and carry out the validation test on the
estimates.

3. If the estimate is accepted (i.e., if the test is passed), and if the window is of minimum
size, accept the window. The next window is the present window advanced by one scan.
Go to step 2.

4. If the estimate is accepted, and if the window is greater than minimum size, try a shorter
window by removing the initial scan. Go to step 2 and accept the window only if estimates
are better than those from the previous window.

5. If the test fails and if the window is of minimum size, increase the window length to include
one more scan of measurements and, thus, increase the information content in the window.
Go to step 2.

6. If the test fails and if the window is greater than minimum size, eliminate the first scan,
which could contain pure noise only. Go to step 2.

7. Stop when all scans are used.

The algorithm is described below.
In order to specify the exact steps in the estimator, the following variables are defined:

W = Current window length

Wmin = Minimum window length

Z(ti) = Scan (set) of measurements at time ti

To illustrate the adaptive algorithm, consider a scenario where a sensor records 10 scans of
measurements over a surveillance region. The target, however, appears in this region (i.e., its
intensity exceeds the threshold) only after the second scan (i.e., from the third scan onwards).
This case is illustrated in Figure 8. The first two scans are useless, because they contain only
noise.
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Figure 9: Adaptive ML-PDA algorithm applied to the scenario illustrated above
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Consider the smallest window size required for a detection to be 5. Then the algorithm will
evolve as shown in Figure 9. First, for the sake of illustration, assume that a single “noisy”
scan present in the data set is sufficient to cause the MLE to fail the hypothesis test for track
acceptance. The algorithm tries to expand the window to include an additional scan if a track
detection is not made. This is done because an additional scan of data may bring enough
additional information to detect the target track. The algorithm next tries to cut down the
window size by removing the initial scan. This is done to check whether a better estimate can
be obtained without this scan. If this initial scan is noise only, then it degrades the accuracy of
the estimate. If a better estimate is found (i.e., a more accurate estimate) without this scan, the
latter is eliminated. Thus, as in the example given above, the algorithm expands at the front
(most recent scan used) and contracts at the rear end of the window to find the best window
that produces the strongest detection, based on the validation test.

Since this algorithm can yield, due to data “dropouts”, several track segments, if one desires
to connect them, the technique of [23] can be used.

5.4 Results

5.4.1 Estimation Results

The Mirage F1 data set on which this algorithm was exercised consists of 78 scans or frames
of LWIR data. The target appears late in this scenario and moves towards the sensor. There
are about 600 detections per frame. In this implementation the parameters shown in Table 3
were chosen.

Parameter Value

σ1 1.25
σ2 1.25

Min Window Size, W 10
Initial target SNR, d0 9.5

PDC 0.70
α 0.85

πm 5%
v̄ 5.0
σ̄v 0.15
K 4

Table 3: Parameters used in the ML-PDA Algorithm for the F1 Mirage Jet

The choice of these parameters is explained as follows:

• σ1 and σ2 are the standard deviations along the horizontal and vertical axes respectively.
The value of 1.25 for both variables models the results of the preprocessing.

• The minimum window size, Wmin, was chosen to be 10. The algorithm will expand this
window if a target is not detected in 10 frames. Initially a shorter window was used, but
the estimates appeared to be unstable. Therefore, less than 10 scans is assumed to be
ineffective at producing an accurate estimate.

• The initial target SNR, d0, was chosen as 9.5 dB because the average SNR of all the
detections over the frames is approximately 9.0 dB. However, in most frames, numerous
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Figure 10: Progress of the Algorithm showing Windows with Detections.

random spikes were noted. In the first frame, where a target is unlikely to be present, a
single spike of 15.0 dB is noted. These spikes, however, cannot and should not be modeled
as the target SNR.

• A constant probability of detection (PDC) of 0.7 was chosen. A value that is too high
would bring down the detection threshold and increase PFA.

• α is the parameter used to update the estimated target SNR with an α filter [3]. A high
value is chosen for the purpose of detecting a distant target that approaches the sensor
over time and to account for the presence of occasional spikes of noise. Thus, the estimated
SNR is less dependent on a detection that could originate from a noisy source and, thus,
set the bar too high for future detections.

• πm is the miss probability (probabilities of rejecting a correct track).

• v̄ and σ̄v are used in the multi-pass approach of the optimization algorithm [16, 17].

• The number of passes K in the multi-pass approach of the optimization algorithm was
chosen as 4 (this is not a significant burden because, as discussed later, the initialization
of the search is by far the most time consuming part).

To get a better idea of the detection process, Figure 10 depicts the windows where the target
has been detected.

From the above results, note the following:

• The first detection uses 22 scans and occurs at scan 28. This occurs because the initial
scans have low-information content as the target appears late in the frame of surveillance.
The IMM-MHT algorithm [28] required 38 scans for a detection, while the IMMPDA [22]
required 39 scans. Some spurious detections were noticed at earlier scans, but these were
rejected.
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• The next few detection windows produce similar target estimates. This is because a large
number of scans repeat themselves in these windows.

• After the initial detections, there is a ‘jump’ in the scan number at which a detection is
made. In addition, the estimates, particularly the velocity estimates, deteriorate. This
could either indicate that the target has suddenly disappeared (became less visible) from
the region of surveillance or that the target made a maneuver.

• From scan 44 onward, the algorithm stabilizes for several next windows. At scan 52,
however, there is another ‘jump’ in detection windows. This is also followed by a drop in the
estimated target SNR, as explained above. This, however, indicates that the algorithm can
adjust itself and restart after a target has become suddenly invisible. Recursive algorithms
will diverge in this case.

• From scan 54 onward, the algorithm stabilizes, as indicated by the estimates. Also, a
detection is made for every increasing window, because the target has come closer to the
sensor and, thus, is more visible. This is noted by the sharp rise in the estimated target
SNR after scan 54.

• The above results provide an understanding of the target’s behavior. The results suggest
that the Mirage F1 appears late in the area of surveillance and moves towards the sen-
sor. However, initially it remains barely visible and possibly undergoes maneuvers. As it
approaches the sensor, it becomes more and more visible and, thus, easier to detect.

5.4.2 Computational Load

The adaptive ML-PDA tracker took 442s, including the time for data input/output, on a
Pentium III Processor running at 550MHz to process the 78 scans of the Mirage F1 data. This
translates into about 5.67s per frame (or 5.67s running time for 1s data), including input/output
time. An efficient implementation on a dedicated processor can easily make the algorithm real-
time capable on a newer processor. Also, by paralellizing the initial grid search, which required
more than 90% of the time, the adaptive ML-PDA estimator can be made even more efficient.

6 Summary

In this article we presented the use of the PDA technique for different tracking problems.
Specifically, the PDA approach was used for parameter estimation as well as recursive state
estimation. As an example of parameter estimation, track formation of a low observable target
using a nonlinear Maximum Likelihood estimator in conjunction with the PDA technique with
passive (sonar) measurements was presented. The use of the PDA technique in conjunction
with the IMM estimator, resulting in the IMMPDAF, was presented as an example of recursive
estimation on a benchmark radar tracking problem in the presence of ECM. Also presented was
an adaptive variable-sliding-window PDA-based ML estimator that retains the advantages of the
batch (parameter) estimator while being capable of tracking the motion of maneuvering targets.
This was illustrated on an real EO surveillance problem. These applications demonstrate the
usefulness of the PDA approach for a wide variety of real tracking problems.
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