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9.1.  Introduction

Output voltage of a
switching converter
depends on duty cycle
d, input voltage vg, and
load current iload.
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The dc regulator application

Objective: maintain constant
output voltage v(t) = V, in spite
of disturbances in vg(t) and
iload(t).

Typical variation in vg(t): 100Hz
or 120Hz ripple, produced by
rectifier circuit.

Load current variations: a significant step-change in load current, such
as from 50% to 100% of rated value, may be applied.

A typical output voltage regulation specification: 5V ± 0.1V.

Circuit elements are constructed to some specified tolerance. In high
volume manufacturing of converters, all output voltages must meet
specifications.
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The dc regulator application

So we cannot expect to set the duty cycle to a single value, and obtain
a given constant output voltage under all conditions.

Negative feedback: build a circuit that automatically adjusts the duty
cycle as necessary, to obtain the specified output voltage with high
accuracy, regardless of disturbances or component tolerances.
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Negative feedback:
a switching regulator system
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Negative feedback
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9.2.  Effect of negative feedback on the
network transfer functions

Small signal model: open-loop converter

Output voltage can be expressed as

where
v(s) = Gvd(s) d(s) + Gvg(s) vg(s) – Zout(s) i load(s)

Gvd(s) =
v(s)
d(s) vg = 0

i load = 0

Gvg(s) =
v(s)
vg(s) d = 0

i load = 0

Zout(s) = –
v(s)

i load(s) d = 0
vg = 0

+
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Voltage regulator system small-signal model

• Use small-signal
converter model

• Perturb and
linearize remainder
of feedback loop:

vref(t) = Vref + vref(t)

ve(t) = Ve + ve(t)

etc.
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Regulator system small-signal block diagram
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Solution of block diagram

v = vref

GcGvd / VM

1 + HGcGvd / VM

+ vg

Gvg

1 + HGcGvd / VM

– i load

Zout

1 + HGcGvd / VM

Manipulate block diagram to solve for       . Result isv(s)

which is of the form

v = vref
1
H

T
1 + T

+ vg

Gvg

1 + T
– i load

Zout

1 + T

with T(s) = H(s) Gc(s) Gvd(s) / VM = "loop gain"

Loop gain T(s) = products of the gains around the negative
feedback loop.
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9.2.1.  Feedback reduces the transfer functions
from disturbances to the output

Original (open-loop) line-to-output transfer function:

Gvg(s) =
v(s)
vg(s) d = 0

i load = 0

With addition of negative feedback, the line-to-output transfer function
becomes:

v(s)
vg(s) vref = 0

i load = 0

=
Gvg(s)

1 + T(s)

Feedback reduces the line-to-output transfer function by a factor of
1

1 + T(s)

If T(s) is large in magnitude, then the line-to-output transfer function
becomes small.
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Closed-loop output impedance

Original (open-loop) output impedance:

With addition of negative feedback, the output impedance becomes:

Feedback reduces the output impedance by a factor of
1

1 + T(s)

If T(s) is large in magnitude, then the output impedance is greatly
reduced in magnitude.

Zout(s) = –
v(s)

i load(s) d = 0
vg = 0

v(s)
– i load(s) vref = 0

vg = 0

=
Zout(s)

1 + T(s)
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9.2.2. Feedback causes the transfer function from the
reference input to the output to be insensitive to

variations in the gains in the forward path of the loop

Closed-loop transfer function from        to         is:

which is independent of the gains in the forward path of the loop.

This result applies equally well to dc values:

v(s)vref

v(s)
vref(s) vg = 0

i load = 0

= 1
H(s)

T(s)
1 + T(s)

If the loop gain is large in magnitude, i.e., || T || >> 1, then (1+T) ≈ T and
T/(1+T) ≈ T/T = 1. The transfer function then becomes

v(s)
vref(s)

≈ 1
H(s)

V
Vref

= 1
H(0)

T(0)
1 + T(0)

≈ 1
H(0)
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9.3.  Construction of the important quantities
1/(1+T) and T/(1+T)

Example

T(s) = T0

1 + s
ωz

1 + s
Qωp1

+ s
ωp1

2
1 + s

ωp2

At the crossover frequency fc, || T || = 1

fp1
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– 40 dB/decade
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fc fp2

– 20 dB/decade
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f

|| T ||

0 dB

–20 dB

–40 dB

20 dB

40 dB

60 dB

80 dB

– 40 dB/decade
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Approximating 1/(1+T) and T/(1+T)

T
1 + T

≈
1 for || T || >> 1
T for || T || << 1

1
1+T(s)

≈

1
T(s)

for || T || >> 1

1 for || T || << 1
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Example: construction of T/(1+T)

T
1 + T
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1 for || T || >> 1
T for || T || << 1
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Example: analytical expressions for approximate
reference to output transfer function

v(s)
vref(s)

= 1
H(s)

T(s)
1 + T(s)

≈ 1
H(s)

v(s)
vref(s)

= 1
H(s)

T(s)
1 + T(s)

≈
T(s)
H(s)

=
Gc(s)Gvd(s)

VM

At frequencies sufficiently less that the crossover frequency, the loop
gain T(s) has large magnitude. The transfer function from the reference
to the output becomes

This is the desired behavior: the output follows the reference
according to the ideal gain 1/H(s). The feedback loop works well at
frequencies where the loop gain T(s) has large magnitude.
At frequencies above the crossover frequency, || T || < 1. The quantity
T/(1+T) then has magnitude approximately equal to 1, and we obtain

This coincides with the open-loop transfer function from the reference
to the output. At frequencies where || T || < 1, the loop has essentially
no effect on the transfer function from the reference to the output.
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Same example: construction of 1/(1+T)

1
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Interpretation: how the loop rejects disturbances

Below the crossover frequency: f < fc
and || T || > 1

Then 1/(1+T) ≈ 1/T, and
disturbances are reduced in
magnitude by 1/ || T ||

Above the crossover frequency:  f > fc
and || T || < 1

Then 1/(1+T) ≈ 1, and the
feedback loop has essentially
no effect on disturbances

1
1+T(s)

≈

1
T(s)

for || T || >> 1

1 for || T || << 1
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Terminology: open-loop vs. closed-loop

Original transfer functions, before introduction of feedback (“open-loop
transfer functions”):

Upon introduction of feedback, these transfer functions become
(“closed-loop transfer functions”):

The loop gain:

Gvd(s) Gvg(s) Zout(s)

1
H(s)

T(s)
1 + T(s)

Gvg(s)
1 + T(s)

Zout(s)
1 + T(s)

T(s)
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9.4.  Stability

Even though the original open-loop system is stable, the closed-loop
transfer functions can be unstable and contain right half-plane poles. Even
when the closed-loop system is stable, the transient response can exhibit
undesirable ringing and overshoot, due to the high Q -factor of the closed-
loop poles in the vicinity of the crossover frequency.
When feedback destabilizes the system, the denominator (1+T(s)) terms in
the closed-loop transfer functions contain roots in the right half-plane (i.e.,
with positive real parts). If T(s) is a rational fraction of the form N(s) / D(s),
where N(s) and D(s) are polynomials, then we can write

T(s)
1 + T(s)

=

N(s)
D(s)

1 +
N(s)
D(s)

=
N(s)

N(s) + D(s)

1
1 + T(s)

= 1

1 +
N(s)
D(s)

=
D(s)

N(s) + D(s)

• Could evaluate stability by
evaluating N(s) + D(s), then
factoring to evaluate roots.
This is a lot of work, and is
not very illuminating.
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Determination of stability directly from T(s)

• Nyquist stability theorem:  general result.
• A special case of the Nyquist stability theorem: the phase margin test

Allows determination of closed-loop stability (i.e., whether 1/(1+T(s))
contains RHP poles) directly from the magnitude and phase of T(s).
A good design tool: yields insight into how T(s) should be shaped, to
obtain good performance in transfer functions containing 1/(1+T(s))
terms.
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9.4.1.  The phase margin test

A test on T(s), to determine whether 1/(1+T(s)) contains RHP poles.

The crossover frequency fc is defined as the frequency where

|| T(j2πfc) || = 1 ⇒ 0dB

The phase margin ϕm is determined from the phase of T(s) at fc , as
follows:

ϕm = 180˚ + ∠T(j2πfc)

If there is exactly one crossover frequency, and if T(s) contains no
RHP poles, then

the quantities T(s)/(1+T(s)) and 1/(1+T(s)) contain no RHP poles
whenever the phase margin ϕm is positive.
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Example: a loop gain leading to
a stable closed-loop system

∠T(j2πfc) = – 112˚

ϕm = 180˚ – 112˚ = + 68˚
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Example: a loop gain leading to
an unstable closed-loop system

∠T(j2πfc) = – 230˚

ϕm = 180˚ – 230˚ = – 50˚
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9.4.2.  The relation between phase margin
and closed-loop damping factor

How much phase margin is required?

A small positive phase margin leads to a stable closed-loop system
having complex poles near the crossover frequency with high Q. The
transient response exhibits overshoot and ringing.

Increasing the phase margin reduces the Q. Obtaining real poles, with
no overshoot and ringing, requires a large phase margin.
The relation between phase margin and closed-loop Q is quantified in
this section.
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A simple second-order system

Consider the
case where T(s)
can be well-
approximated in
the vicinity of the
crossover
frequency as

T(s) = 1
s
ω0

1 + s
ω2

0 dB

–20 dB

–40 dB

20 dB

40 dB

f

|| T ||

0˚

–90˚

–180˚

–270˚

∠ T

|| T || ∠ T

f0

– 90˚

f2

ϕm

f2

f2/10

10f2

f0
f

f0 f2
f 2

– 20 dB/decade

– 40 dB/decade



Fundamentals of Power Electronics Chapter 9: Controller design30

Closed-loop response

T(s) = 1
s
ω0

1 + s
ω2

T(s)
1 + T(s)

= 1
1 + 1

T(s)

= 1

1 + s
ω0

+ s2

ω0ω2

T(s)
1 + T(s)

= 1
1 + s

Qωc
+ s

ωc

2

If

Then

or,

where

ωc = ω0ω2 = 2π fc Q =
ω0

ωc
=

ω0

ω2
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Low-Q case

Q =
ω0

ωc
=

ω0

ω2 Q ωc = ω0
ωc

Q
= ω2

low-Q approximation:

0 dB
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20 dB
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T
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High-Q case

ωc = ω0ω2 = 2π fc Q =
ω0

ωc
=

ω0

ω2

f

|| T ||

f0

f2

f0
f

f0 f2
f 2

– 20 dB/decade

– 40 dB/decade

T
1 + T

fc = f0 f2

Q = f0/fc
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20 dB

40 dB

60 dB



Fundamentals of Power Electronics Chapter 9: Controller design33

Q vs. ϕm

Solve for exact crossover frequency, evaluate phase margin, express
as function of ϕm. Result is:

Q =
cos ϕm

sin ϕm

ϕm = tan-1 1 + 1 + 4Q4

2Q4
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Q vs. ϕm
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9.4.3.  Transient response vs. damping factor

Unit-step response of second-order system T(s)/(1+T(s))

v(t) = 1 +
2Q e -ωct/2Q

4Q2 – 1
sin

4Q2 – 1
2Q

ωc t + tan-1 4Q2 – 1

v(t) = 1 –
ω2

ω2 – ω1
e–ω1t –

ω1

ω1 – ω2
e–ω2t

ω1, ω2 =
ωc

2Q
1 ± 1 – 4Q2

Q > 0.5

Q < 0.5

peak v(t) = 1 + e– π / 4Q2 – 1

For Q > 0.5 , the peak value is
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Transient response vs. damping factor
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9.5.  Regulator design

Typical specifications:
• Effect of load current variations on output voltage regulation

This is a limit on the maximum allowable output impedance
• Effect of input voltage variations on the output voltage
regulation
This limits the maximum allowable line-to-output transfer
function

• Transient response time
This requires a sufficiently high crossover frequency

• Overshoot and ringing
An adequate phase margin must be obtained

The regulator design problem: add compensator network Gc(s) to
modify T(s) such that all specifications are met.
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9.5.1.  Lead (PD) compensator

Gc(s) = Gc0

1 + s
ωz

1 + s
ωp

Improves phase
margin

f

|| Gc ||

∠ Gc

Gc0

0˚

fp

fz /10

fp/10 10fz

fϕmax

= fz fp

+ 45˚/decade

– 45˚/decade

fz

Gc0

fp

fz
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Lead compensator: maximum phase lead

fϕmax = fz fp

∠ Gc( fϕmax) = tan-1

fp

fz
–

fz
fp

2

fp

fz
=

1 + sin θ

1 – sin θ

1 10 100 1000

Maximum
phase lead

0˚

15˚

30˚

45˚

60˚

75˚

90˚

fp / fz
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Lead compensator design

To optimally obtain a compensator phase lead of θ at frequency fc, the
pole and zero frequencies should be chosen as follows:

fz = fc
1 – sin θ

1 + sin θ

fp = fc
1 + sin θ

1 – sin θ

If it is desired that the magnitude
of the compensator gain at fc be
unity, then Gc0 should be chosen
as

Gc0 =
fz
fp

f

|| Gc ||

∠ Gc

Gc0

0˚

fp

fz /10

fp/10 10fz

fϕmax

= fz fp

+ 45˚/decade

– 45˚/decade

fz

Gc0

fp

fz
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Example: lead compensation

f

|| T ||

0˚

–90˚

–180˚

–270˚

∠ T

|| T || ∠ T

T0

f0

0˚

fz
fc
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9.5.2.  Lag (PI) compensation

Gc(s) = Gc∞ 1 +
ωL
s

Improves low-
frequency loop gain
and regulation

f

|| Gc ||

∠ Gc

Gc∞

0˚

fL/10

+ 45˚/decade

fL

– 90˚

10fL

– 20 dB /decade
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Example: lag compensation

original
(uncompensated)
loop gain is

Tu(s) =
Tu0

1 + s
ω0

compensator:
Gc(s) = Gc∞ 1 +

ωL
s

Design strategy:
choose
Gc∞ to obtain desired
crossover frequency
ωL sufficiently low to
maintain adequate
phase margin

0 dB

–20 dB

–40 dB

20 dB

40 dB

f

90˚

0˚

–90˚

–180˚

Gc∞Tu0
fL

f0

Tu0

∠ Tu

|| Tu ||
f0

|| T ||

fc

∠ T

10fL

10f0 ϕm

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz
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Example, continued

Construction of 1/(1+T), lag compensator example:

0 dB

–20 dB

–40 dB

20 dB

40 dB

f

Gc∞Tu0
fL f0

|| T ||

fc

1
1 + T

fL f0
1

Gc∞ Tu0

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz
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9.5.3.  Combined (PID) compensator

Gc(s) = Gcm

1 +
ωL
s 1 + s

ωz

1 + s
ωp1

1 + s
ωp2

0 dB

–20 dB

–40 dB

20 dB

40 dB

f

|| Gc ||

∠ Gc

|| Gc || ∠ Gc

Gcm
fz

– 90˚

fp1

90˚

0˚

–90˚

–180˚

fz /10

fp1/10

10 fz

fL

fc

fL /10

10 fL

90˚/decade
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– 90˚/decade

fp2

fp2 /10

10 fp1
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9.5.4.  Design example

+
–

+

v(t)

–

vg(t)

28 V

–+

Compensator

HvPulse-width
modulator

vc

Transistor
gate driver

δ Gc(s)

H(s)

ve

Error
signal

Sensor
gain

iload

L
50 µH

C
500 µF

R
3 Ω

fs = 100 kHz

VM = 4 V vref

5 V
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Quiescent operating point

Input voltage Vg = 28V

Output V = 15V, Iload = 5A, R =  3Ω

Quiescent duty cycle D = 15/28 = 0.536

Reference voltage Vref = 5V

Quiescent value of control voltage Vc = DVM = 2.14V

Gain H(s) H = Vref/V = 5/15 = 1/3
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Small-signal model

+
–

+– 1 : D L

C R

+

v(s)

–

V
D2 d

V
R
d

Error
signal

+–

Compensator

Gc(s)

H(s)

1
VM T(s)

VM = 4 V

H = 1
3

vg(s)
iload (s)

ve (s) vc (s)

d(s)

vref  (= 0)

H(s) v(s)
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Open-loop control-to-output transfer function Gvd(s)

Gvd(s) = V
D

1
1 + s L

R + s2LC

Gvd(s) = Gd0
1

1 + s
Q0ω0

+ s
ω0

2

Gd0 = V
D = 28V

f0 =
ω0

2π
= 1

2π LC
= 1kHz

Q0 = R C
L = 9.5 ⇒ 19.5dB

standard form:

salient features:

f

0˚

–90˚

–180˚

–270˚

∠ Gvd

f0

|| Gvd || Gd0  = 28 V ⇒ 29 dBV

|| Gvd || ∠ Gvd

0 dBV

–20 dBV

–40 dBV

20 dBV

40 dBV

60 dBV

Q0 = 9.5 ⇒ 19.5 dB

10–1/2Q0 f0 = 900 Hz

101/2Q0 f0 = 1.1 kHz

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz
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Open-loop line-to-output transfer function
and output impedance

Gvg(s) = D 1
1 + s L

R + s2LC

Gvg(s) = Gg0
1

1 + s
Q0ω0

+ s
ω0

2

Zout(s) = R || 1
sC

|| sL = sL
1 + s L

R + s2LC

—same poles as control-to-output transfer function
standard form:

Output impedance:
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System block diagram

T(s) = Gc(s) 1
VM

Gvd(s) H(s)

T(s) =
Gc(s) H(s)

VM

V
D

1
1 + s

Q0ω0
+ s

ω0

2

+–

H(s)

1
VM Duty cycle

variation

Gc(s) Gvd (s)

Gvg(s)
Zout (s)

ac line
variation

Load current
variation

+

–+

Converter power stage
T(s)

VM = 4 V

H = 1
3

v(s)d(s)

vg(s)

vc(s)ve(s)

iload (s)

vref ( = 0 )
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Uncompensated loop gain (with Gc = 1)

With Gc = 1, the
loop gain is

Tu(s) = Tu0
1

1 + s
Q0ω0

+ s
ω0

2

Tu0 = H V
D VM

= 2.33 ⇒ 7.4dB

fc = 1.8 kHz, ϕm = 5˚

0 dB

–20 dB

–40 dB

20 dB

40 dB

f

|| Tu ||

0˚

–90˚

–180˚

–270˚

∠ Tu

|| Tu || ∠ Tu

Tu0     2.33 ⇒ 7.4 dB

f0
1 kHz

0˚ 10– 1
2Q f0 = 900 Hz

10
1

2Q f0 = 1.1 kHz

Q0 = 9.5 ⇒ 19.5 dB

– 40 dB/decade

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz
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Lead compensator design

• Obtain a crossover frequency of 5 kHz, with phase margin of 52˚
•  Tu has phase of approximately – 180˚ at 5 kHz, hence lead (PD)
compensator is needed to increase phase margin.

• Lead compensator should have phase of + 52˚ at 5 kHz
•  Tu has magnitude of – 20.6 dB at 5 kHz
• Lead compensator gain should have magnitude of + 20.6 dB at 5 kHz
• Lead compensator pole and zero frequencies should be

fz = (5kHz)
1 – sin (52°)
1 + sin (52°)

= 1.7kHz

fp = (5kHz)
1 + sin (52°)
1 – sin (52°)

= 14.5kHz

• Compensator dc gain should be Gc0 =
fc
f0

2
1

Tu0

fz
fp

= 3.7 ⇒ 11.3dB
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Lead compensator Bode plot

fc
= fz fp0 dB

–20 dB

–40 dB

20 dB

40 dB

f

|| Gc ||

∠ Gc

|| Gc || ∠ Gc

Gc0

fz

0˚

fp
Gc0

fp

fz

90˚

0˚

–90˚

–180˚

fz /10
fp /10 10 fz

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz
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Loop gain, with lead compensator

T(s) = Tu0 Gc0

1 + s
ωz

1 + s
ωp

1 + s
Q0ω0

+ s
ω0

2

0 dB

–20 dB

–40 dB

20 dB

40 dB

f

|| T ||

0˚

–90˚

–180˚

–270˚

∠ T

|| T || ∠ T
T0  = 8.6 ⇒ 18.7 dB

f0
1 kHz

0˚

Q0 = 9.5 ⇒ 19.5 dB

fz

fp

1.7 kHz

14 kHz

fc
5 kHz

170 Hz

1.1 kHz

1.4 kHz

900 Hz

17 kHz

ϕm=52˚

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz
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1/(1+T), with lead compensator

• need more
low-frequency
loop gain

• hence, add
inverted zero
(PID controller)

0 dB

–20 dB

–40 dB

20 dB

40 dB

f

|| T || T0  = 8.6 ⇒ 18.7 dB

f0

Q0 = 9.5 ⇒ 19.5 dB

fz

fp

fc

Q0

1/T0  = 0.12 ⇒ – 18.7 dB
1

1 + T

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz



Fundamentals of Power Electronics Chapter 9: Controller design57

Improved compensator (PID)

Gc(s) = Gcm

1 + s
ωz

1 +
ωL
s

1 + s
ωp

• add inverted
zero to PD
compensator,
without
changing dc
gain or corner
frequencies

• choose fL to be
fc/10, so that
phase margin
is unchanged

0 dB

–20 dB

–40 dB

20 dB

40 dB

f

|| Gc ||

∠ Gc

|| Gc || ∠ Gc

Gcm
fz

– 90˚

fp

90˚

0˚

–90˚

–180˚

fz /10

fp /10

10 fz

fL

fc

fL /10

10 fL

90˚/decade

45˚/decade – 45˚/dec

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz
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T(s) and 1/(1+T(s)), with PID compensator

f

|| T ||

f0
fz

fp

fc

Q01
1 + T

fL

Q0

0 dB

–20 dB

–40 dB

20 dB

40 dB

60 dB

–60 dB

–80 dB

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz
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Line-to-output transfer function

D
Tu0Gcm

f

fz
fc

fL

v

v g

Open-loop || Gvg ||

Closed-loop
Gvg

1 + T

–40 dB

–60 dB

–80 dB

–20 dB

0 dB

20 dB

–100 dB

f0

Q0Gvg(0) = D

– 40 dB/decade

20 dB/decade

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz
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9.6.  Measurement of loop gains

Objective: experimentally determine loop gain T(s), by making
measurements at point A

Correct result is
T(s) = G1(s)

Z2(s)
Z1(s) + Z2(s)

G2(s) H(s)

+–

H(s)

+
–

Z1(s)

Z2(s)

A

+

vx(s)

–

T(s)

Block 1 Block 2

vref (s)
G1(s)ve(s)

ve(s) G2(s)vx(s) = v(s)
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Conventional approach: break loop,
measure T(s) as conventional transfer function

Tm(s) =
vy(s)
vx(s) vref = 0

vg = 0

measured gain is

Tm(s) = G1(s) G2(s) H(s)

+–

H(s)

+
–

Z1(s)

Z2(s)

Block 1 Block 2
dc bias

VCC

0

Tm(s)

+

vx(s)

–

vref (s)
G1(s)ve(s)

ve(s) G2(s)vx(s) = v(s)

–

vy(s)

+

vz
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Measured vs. actual loop gain

T(s) = G1(s)
Z2(s)

Z1(s) + Z2(s)
G2(s) H(s)

Tm(s) = G1(s) G2(s) H(s)

Tm(s) = T(s) 1 +
Z1(s)
Z2(s)

Tm(s) ≈ T(s) provided that Z2 >> Z1

Actual loop gain:

Measured loop gain:

Express Tm as function of T:



Fundamentals of Power Electronics Chapter 9: Controller design63

Discussion

• Breaking the loop disrupts the loading of block 2 on block 1.
A suitable injection point must be found, where loading is not
significant.

• Breaking the loop disrupts the dc biasing and quiescent operating
point.
A potentiometer must be used, to correctly bias the input to block 2.
In the common case where the dc loop gain is large, it is very
difficult to correctly set the dc bias.

• It would be desirable to avoid breaking the loop, such that the biasing
circuits of the system itself set the quiescent operating point.
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9.6.1.  Voltage injection

• Ac injection source vz is connected between blocks 1 and 2
• Dc bias is determined by biasing circuits of the system itself
• Injection source does modify loading of block 2 on block 1

+–

H(s)

+
–

Z2(s)

Block 1 Block 2

0

Tv(s)

Z1(s) Zs(s)

–                   +

+

vx(s)

–

vref (s)
G1(s)ve(s)

ve(s) G2(s)vx(s) = v(s)

–

vy(s)

+

vz
i(s)
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Voltage injection: measured transfer function Tv(s)

Network analyzer
measures

Tv(s) =
vy(s)

vx(s) vref = 0

vg = 0

Solve block diagram:
ve(s) = – H(s) G2(s) vx(s)

– vy(s) = G1(s) ve(s) – i(s) Z1(s)

– vy(s) = – vx(s) G2(s) H(s) G1(s) – i(s) Z1(s)

Hence

with
i(s) =

vx(s)
Z2(s)

Substitute:

vy(s) = vx(s) G1(s) G2(s) H(s) +
Z1(s)
Z2(s)

which leads to the measured gain

Tv(s) = G1(s) G2(s) H(s) +
Z1(s)
Z2(s)

+–

H(s)

+
–

Z2(s)

Block 1 Block 2

0

Tv(s)

Z1(s) Zs(s)

–                   +

+

vx(s)

–

vref (s)
G1(s)ve(s)

ve(s) G2(s)vx(s) = v(s)

–

vy(s)

+

vz
i(s)
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Comparison of Tv(s) with T(s)

T(s) = G1(s)
Z2(s)

Z1(s) + Z2(s)
G2(s) H(s)

Actual loop gain is Gain measured via voltage
injection:

Tv(s) = G1(s) G2(s) H(s) +
Z1(s)
Z2(s)

Express Tv(s) in terms of T(s):

Tv(s) = T(s) 1 +
Z1(s)
Z2(s)

+
Z1(s)
Z2(s)

Condition for accurate measurement:

Tv(s) ≈ T(s) provided (i) Z1(s) << Z2(s) , and

(ii) T(s) >>
Z1(s)
Z2(s)
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Example: voltage injection

Z1(s) = 50Ω
Z2(s) = 500Ω
Z1(s)
Z2(s)

= 0.1 ⇒ – 20dB

suppose actual T(s) = 104

1 + s
2π 10Hz

1 + s
2π 100kHz

1 +
Z1(s)
Z2(s)

= 1.1 ⇒ 0.83dB

+
–

+–50 Ω

500 Ω

Block 1 Block 2

+

vx(s)

–

–

vy(s)

+

vz
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Example: measured Tv(s) and actual T(s)

Tv(s) = T(s) 1 +
Z1(s)
Z2(s)

+
Z1(s)
Z2(s)

f

|| T ||

0 dB

–20 dB

–40 dB

20 dB

40 dB

60 dB

80 dB

100 dB

|| Tv ||

Z1

Z2

⇒ – 20 dB || Tv ||

|| T ||

10 Hz 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz
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9.6.2.  Current injection

Ti(s) =
i y(s)

i x(s) vref = 0

vg = 0

+–

H(s)

+
–

Z2(s)

Block 1 Block 2

0

Ti (s)

Z1(s)

Zs(s)

ix(s)

vref (s)
G1(s)ve(s)

ve(s) G2(s)vx(s) = v(s)

iy(s)

iz (s)
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Current injection

It can be shown that

Ti(s) = T(s) 1 +
Z2(s)
Z1(s)

+
Z2(s)
Z1(s)

Conditions for obtaining accurate
measurement:

Injection source impedance Zs
is irrelevant. We could inject
using a Thevenin-equivalent
voltage source:

(i) Z2(s) << Z1(s) , and

(ii) T(s) >>
Z2(s)
Z1(s)

Rs

Cb

ix(s)iy(s) iz (s)

vz (s)
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9.6.3.  Measurement of unstable systems

• Injection source impedance Zs
does not affect measurement

• Increasing Zs reduces loop
gain of circuit, tending to
stabilize system

• Original (unstable) loop gain is
measured (not including Zs ),
while circuit operates stabily

+–

H(s)

+
–

Z2(s)

Block 1 Block 2

0

Tv (s)

Z1(s)
Rext

Lext

Zs(s)

–                                 +

+

vx(s)

–

vref (s)
G1(s)ve(s)

ve(s) G2(s)vx(s) = v(s)

–

vy(s)

+

vz
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9.7.  Summary of key points

1. Negative feedback causes the system output to closely follow the
reference input, according to the gain 1/H(s). The influence on the
output of disturbances and variation of gains in the forward path is
reduced.

2. The loop gain T(s) is equal to the products of the gains in the
forward and feedback paths. The loop gain is a measure of how well
the feedback system works: a large loop gain leads to better
regulation of the output. The crossover frequency fc is the frequency
at which the loop gain T has unity magnitude, and is a measure of
the bandwidth of the control system.
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Summary of key points

3. The introduction of feedback causes the transfer functions from
disturbances to the output to be multiplied by the factor 1/(1+T(s)). At
frequencies where T is large in magnitude (i.e., below the crossover
frequency), this factor is approximately equal to 1/T(s). Hence, the
influence of low-frequency disturbances on the output is reduced by a
factor of 1/T(s). At frequencies where T is small in magnitude (i.e.,
above the crossover frequency), the factor is approximately equal to 1.
The feedback loop then has no effect. Closed-loop disturbance-to-
output transfer functions, such as the line-to-output transfer function or
the output impedance, can easily be constructed using the algebra-on-
the-graph method.

4. Stability can be assessed using the phase margin test. The phase of T
is evaluated at the crossover frequency, and the stability of the
important closed-loop quantities T/(1+T) and 1/(1+T) is then deduced.
Inadequate phase margin leads to ringing and overshoot in the system
transient response, and peaking in the closed-loop transfer functions.
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Summary of key points

5. Compensators are added in the forward paths of feedback loops to
shape the loop gain, such that desired performance is obtained.
Lead compensators, or PD controllers, are added to improve the
phase margin and extend the control system bandwidth. PI
controllers are used to increase the low-frequency loop gain, to
improve the rejection of low-frequency disturbances and reduce the
steady-state error.

6. Loop gains can be experimentally measured by use of voltage or
current injection. This approach avoids the problem of establishing
the correct quiescent operating conditions in the system, a common
difficulty in systems having a large dc loop gain. An injection point
must be found where interstage loading is not significant. Unstable
loop gains can also be measured.


