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We are missing ac and dc equivalent circuit models
for the discontinuous conduction mode
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Change in characteristics at the CCM/DCM boundary

l Steady-state output voltage becomes strongly load-dependent
l Simpler dynamics: one pole and the RHP zero are moved to very high

frequency, and can normally be ignored

l Traditionally, boost and buck-boost converters are designed to operate
in DCM at full load

l All converters may operate in DCM at light load

So we need equivalent circuits that model the steady-state and small-
signal ac models of converters operating in DCM

The averaged switch approach will be employed
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11.1 Derivation of DCM averaged switch model:
buck-boost example
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Basic DCM equations:
ipk, vL, and d2 (Approximate method)
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Peak inductor current:

Average inductor voltage:

In DCM, the diode switches off when the
inductor current reaches zero. Hence, i(0)
= i(Ts) = 0, and the average inductor
voltage is zero. This is true even during
transients.
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Average switch network terminal voltages
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Average switch network terminal currents
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Average the i1(t) waveform:

Eliminate ipk:
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Similar analysis for i2(t) waveform leads to

i1(t) Ts
= 1

Ts
i1(t)dt

t

t + Ts

=
q1

Ts

The integral q1 is the area under the i1(t)
waveform during first subinterval. Use triangle
area formula:

q1 = i1(t)dt
t

t + Ts

= 1
2

d1Ts ipk

i1(t) Ts
=

d 1
2(t) Ts

2L
v1(t) Ts

i2(t) Ts
=

d 1
2(t) Ts

2L

v1(t) Ts

2

v2(t) Ts



Fundamentals of Power Electronics 9
Chapter 11: AC and DC equivalent circuit modeling
of the discontinuous conduction mode

Input port: Averaged equivalent circuit
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Output port: Averaged equivalent circuit
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The dependent power source
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• Must avoid open- and short-circuit
connections of power sources

• Power sink: negative  p(t)
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How the power source arises
in lossless two-port networks

In a lossless two-port network without internal energy storage:
instantaneous input power is equal to instantaneous output power

In all but a small number of special cases, the instantaneous power
throughput is dependent on the applied external source and load

If the instantaneous power depends only on the external elements
connected to one port, then the power is not dependent on the
characteristics of the elements connected to the other port. The other
port becomes a source of power, equal to the power flowing through
the first port

A power source (or power sink) element is obtained
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Properties of power sources

P1
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P1 + P2 + P3

P1P1

n1 : n2

Series and parallel
connection of power
sources

Reflection of power
source through a
transformer
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The loss-free resistor (LFR)
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Power entering input port is transferred to output port
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Averaged modeling of CCM and DCM switch networks
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Averaged switch model: buck-boost example
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Solution of averaged model: steady state
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Steady-state LFR solution

V
Vg

= ± R
Re

is a general result, for any system that can
be modeled as an LFR.

For the buck-boost converter, we have

Re(D) = 2L
D2Ts

Eliminate Re:

V
Vg

= –
D2TsR

2L
= – D

K

which agrees with the previous steady-state solution of Chapter 5.
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Steady-state LFR solution with ac terminal waveforms
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Averaged models of other DCM converters

• Determine averaged terminal waveforms of switch network

• In each case, averaged transistor waveforms obey Ohm’s law, while
averaged diode waveforms behave as dependent power source

• Can simply replace transistor and diode with the averaged model as
follows:
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DCM buck, boost
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Steady-state solution: DCM buck, boost
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Steady-state solution of DCM/LFR models

Table 11.1. CCM and DCM conversion ratios of basic converters

Converter M, CCM M, DCM

Buck D   2
1 + 1 + 4Re/R

Boost   11 – D   1 + 1 + 4R/Re

2

Buck-boost, Cuk   – D
1 – D

  – R
Re

SEPIC   D
1 – D

 R
Re

I > Icrit for CCM
I < Icrit for DCM

Icrit = 1 – D
D

Vg

Re(D)
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11.2 Small-signal ac modeling of the DCM switch network
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Linearization via Taylor series
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d f1 V1, V2, d
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+ higher–order nonlinear terms

Given the nonlinear equation

Expand in three-dimensional Taylor series about the quiescent
operating point: (for simple

notation,
drop angle
brackets)
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Equate dc and first-order ac terms

I1 = f1 V1, V2, D =
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Output port
same approach
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Output resistance parameter r2
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Small-signal DCM switch model parameters

–

+

+
–v1 r1 j1d g1v2

i1

g2v1 j2d r2

i2

v2

Tabl e 11.2. Small -signal DCM switch model parameters

Switch type g1 j1 r1 g2 j2 r2

Buck,
Fig. 11.16(a)

  1
Re

  2(1 – M)V1

DRe

 Re   2 – M
MRe

  2(1 – M)V1

DMRe

  M 2Re

Boost,
Fig. 11.16(b)
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(M – 1)2 Re

  2MV1

D(M – 1)Re

  (M – 1)2

M
Re

  2M – 1
(M – 1)2 Re

  2V1

D(M – 1)Re

  (M – 1)2Re

Gen two-switch
Fig. 11.7(a)

0   2V1
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  2M
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  2V1

DMRe

  M 2Re
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Small-signal ac model, DCM buck-boost example
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A more convenient way to model the buck and boost
small-signal DCM switch networks
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In any event, a small-signal two-port model is used, of the form
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Small-signal ac models of the DCM buck and boost
converters (more convenient forms)
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DCM small-signal transfer functions

l When expressed in terms of R, L, C, and M (not D), the small-
signal transfer functions are the same in DCM as in CCM

l Hence, DCM boost and buck-boost converters exhibit two poles
and one RHP zero in control-to-output transfer functions

l But , value of L is small in DCM. Hence

RHP zero appears at high frequency, usually greater than
switching frequency

Pole due to inductor dynamics appears at high frequency, near
to or greater than switching frequency

So DCM buck, boost, and buck-boost converters exhibit
essentially a single-pole response

l A simple approximation: let L → 0
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The simple approximation L → 0

Buck, boost, and buck-boost converter models all reduce to
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DCM switch network small-signal ac model

vg v

Transfer functions

Gvd(s) =
v

d
vg = 0
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Gd0

1 + s
ωp

Gd0 = j2 R || r2

ωp = 1
R || r2 C

Gvg(s) =
v

vg d = 0
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Gg0

1 + s
ωp

Gg0 = g2 R || r2 = M
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control-to-output

line-to-output
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Transfer function salient features

Tabl e 11.3.  Salient features of DCM converter small -signal transfer functions

Converter Gd0 Gg0 ωp

Buck   2V
D

1 – M
2 – M M   2 – M

(1 – M)RC

Boost   2V
D

M – 1
2M – 1 M   2M – 1

(M– 1)RC

Buck-boost  V
D M   2

RC
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DCM boost example

R = 12 Ω

L = 5 µH

C = 470 µF

fs = 100 kHz

The output voltage is regulated to be V = 36 V. It is desired to determine Gvd(s) at the

operating point where the load current is I = 3 A and the dc input voltage is Vg = 24 V.
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Evaluate simple model parameters

P = I V – Vg = 3 A 36 V – 24 V = 36 W

Re =
V g

2

P
=

(24 V)2

36 W
= 16 Ω

D = 2L
ReTs

=
2(5 µH)

(16 Ω)(10 µs)
= 0.25

Gd0 = 2V
D

M – 1
2M – 1

=
2(36 V)
(0.25)

(36 V)
(24 V)

– 1

2
(36 V)
(24 V)

– 1

= 72 V ⇒ 37 dBV

fp =
ωp

2π = 2M – 1
2π(M– 1)RC

=

2
(36 V)
(24 V)

– 1

2π (36 V)
(24 V)

– 1 (12 Ω)(470 µF)
= 112 Hz
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Control-to-output transfer function, boost example
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11.4 Summary of Key Points

1.  In the discontinuous conduction mode, the average transistor voltage
and current are proportional, and hence obey Ohm’s law. An
averaged equivalent circuit can be obtained by replacing the
transistor with an effective resistor Re(d). The average diode voltage
and current obey a power source characteristic, with power equal to
the power effectively dissipated by Re. In the averaged equivalent
circuit, the diode is replaced with a dependent power source.

2.  The two-port lossless network consisting of an effective resistor and
power source, which results from averaging the transistor and diode
waveforms of DCM converters, is called a loss-free resistor. This
network models the basic power-processing functions of DCM
converters, much in the same way that the ideal dc transformer
models the basic functions of CCM converters.

3.  The large-signal averaged model can be solved under equilibrium
conditions to determine the quiescent values of the converter currents
and voltages. Average power arguments can often be used.
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Key points

4.  A small-signal ac model for the DCM switch network can be
derived by perturbing and linearizing the loss-free resistor
network. The result has the form of a two-port y-parameter model.
The model describes the small-signal variations in the transistor
and diode currents, as functions of variations in the duty cycle and
in the transistor and diode ac voltage variations. This model is
most convenient for ac analysis of the buck-boost converter.

5.  To simplify the ac analysis of the DCM buck and boost converters,
it is convenient to define two other forms of the small-signal
switch model, corresponding to the switch networks of Figs.
10.16(a) and 10.16(b). These models are also y-parameter two-
port models, but have different parameter values.
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Key points

6.  Since the inductor value is small when the converter operates in
the discontinuous conduction mode, the inductor dynamics of the
DCM buck, boost, and buck-boost converters occur at high
frequency, above or just below the switching frequency. Hence, in
most cases the inductor dynamics can be ignored. In the small-
signal ac model, the inductance L is set to zero, and the
remaining model is solved relatively easily for the low-frequency
converter dynamics. The DCM buck, boost, and buck-boost
converters exhibit transfer functions containing a single low-
frequency dominant pole.

7.  It is also possible to adapt the CCM models developed in Chapter 7
to treat converters with switches that operate in  DCM, as well as
other switches discussed in later chapters. The switch conversion
ratio µ is a generalization of the duty cycle d of CCM switch
networks; this quantity can be substituted in place of d in any
CCM model. The result is a model that is valid for DCM operation.
Hence, existing CCM models can be adapted directly.
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8.  The conversion ratio µ of DCM switch networks is a function of the
applied voltage and current. As a result, the switch network
contains effective feedback. So the small-signal model of a DCM
converter can be expressed as the CCM converter model, plus
effective feedback representing the behavior of the DCM switch
network. Two effects of this feedback are increase of the
converter output impedance via current feedback, and decrease
of the Q-factor of the transfer function poles. The pole arising from
the inductor dynamics occurs at the crossover frequency of the
effective current feedback loop.


