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17.1 The single-phase full-wave rectifier
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Full-wave rectifier with dc-side L-C filter

Two common reasons for including the dc-side L-C filter:

• Obtain good dc output voltage (large C) and acceptable ac line
current waveform (large L)

• Filter conducted EMI generated by dc load (small L and C)
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17.1.1  Continuous conduction mode
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CCM results, for L →∞ :
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17.1.2  Discontinuous conduction mode
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Small L

Typical ac line
waveforms for
DCM :

As L →0, ac
line current
approaches
impulse
functions
(peak
detection) As the inductance is reduced, the THD rapidly

increases, and the distortion factor decreases.

Typical distortion factor of a full-wave rectifier with no
inductor is in the range 55% to 65%, and is governed
by ac system inductance.
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17.1.3  Behavior when C is large

Solution of the
full-wave
rectifier circuit
for infinite C:

Define
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17.1.4  Minimizing THD when C is small
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Sometimes the L-C filter is present only to remove high-frequency
conducted EMI generated by the dc load, and is not intended to
modify the ac line current waveform. If L and C are both zero, then the
load resistor is connected directly to the output of the diode bridge,
and the ac line current waveform is purely sinusoidal.

An approximate argument: the L-C filter has negligible effect on the ac
line current waveform provided that the filter input impedance Zi has
zero phase shift at the second harmonic of the ac line frequency, 2 fL.
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Approximate THD
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Example

vg(t)
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THD = 3.6%

t10 ms 20 ms 30 ms 40 ms

Typical ac line current and voltage waveforms, near the boundary between continuous

and discontinuous modes and with small dc filter capacitor. f0/fL = 10, Q = 1
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17.2 The Three-Phase Bridge Rectifier
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17.2.1   Continuous conduction mode
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Fourier series:

• Similar to square wave, but
missing triplen harmonics

• THD = 31%

• Distortion factor = 3/π = 95.5%

• In comparison with single phase case:

the missing 60˚ of current improves the distortion factor from 90% to
95%, because the triplen harmonics are removed
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A typical CCM waveform

van(t)

ia(t)
THD = 31.9%

t10 ms 20 ms 30 ms 40 ms

vbn(t) vcn(t)

Inductor current contains sixth harmonic ripple (360 Hz for a 60 Hz ac
system). This ripple is superimposed on the ac line current waveform,
and influences the fifth and seventh harmonic content of ia(t).
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17.2.2  Discontinuous conduction mode
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Phase a current contains pulses at the positive and negative peaks of the
line-to-line voltages vab(t) and vac(t). Distortion factor and THD are increased.
Distortion factor of the typical waveform illustrated above is 71%.



Fundamentals of Power Electronics 13 Chapter 17:  Line-commutated rectifiers

17.3  Phase control
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Replace diodes with SCRs: Phase control waveforms:

Average (dc) output voltage:

V = 3
π 3 Vm sin(θ + 30˚)dθ

30˚+α

90˚+α

= 3 2
π VL-L, rms cos α
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Dc output voltage vs. delay angle  α
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17.3.1  Inverter mode

LIL

+

V

–

øa

øb

øc

3ø
ac

+
–

If the load is capable of supplying power, then the direction of power
flow can be reversed by reversal of the dc output voltage V. The delay
angle α must be greater than 90˚. The current direction is unchanged.
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17.3.2  Harmonics and power factor

Fourier series of ac line current waveform, for large dc-side inductance:

ia(t) = 4
nπ IL sin nπ

2
sin nπ

3
sin (nωt – nα)Σ

n = 1,5,7,11,...

∞

Same as uncontrolled rectifier case, except that waveform is delayed
by the angle α. This causes the current to lag, and decreases the
displacement factor. The power factor becomes:

power factor = 0.955 cos (α)

When the dc output voltage is small, then the delay angle α is close to
90˚ and the power factor becomes quite small. The rectifier apparently
consumes reactive power, as follows:

Q = 3 Ia, rmsVL-L, rms sin α = IL
3 2

π VL-L, rms sin α
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Real and reactive power in controlled rectifier
 at fundamental frequency
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17.4 Harmonic trap filters
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Harmonic traps
(series resonant networks)

A passive filter, having resonant zeroes tuned to the harmonic frequencies



Fundamentals of Power Electronics 19 Chapter 17:  Line-commutated rectifiers

Harmonic trap
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Rectifier
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ac source
model

Harmonic traps
(series resonant networks)Zs(s) = Zs'(s) + sLs'

Ac source:
model with
Thevenin-equiv
voltage source
and impedance
Zs’ (s). Filter often
contains series
inductor sLs’ .
Lump into
effective
impedance Zs(s):
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Filter transfer function
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Simple example
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Simple example: transfer function

f1
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Qp

1

L 1

L 1 + Ls

– 40 dB/decade

• Series resonance: fifth
harmonic trap

• Parallel resonance: C1
and Ls

• Parallel resonance
tends to increase
amplitude of third
harmonic

• Q of parallel
resonance is larger
than Q of series
resonance
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Example 2

Ls

ir

is
R1

L1

C1

5th harmonic
trap Z1

R2

L2

C2

7th harmonic
trap Z2

R3

L3

C3

11th harmonic
trap Z3



Fundamentals of Power Electronics 24 Chapter 17:  Line-commutated rectifiers

Approximate impedance asymptotes
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Transfer function asymptotes
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Bypass resistor

Rn

Ln

Cn

Rbp

Rn

Ln

Cn

Rbp

Cb

ωL 1

ωL s

Z1Zs

Z1 || Zs 1ωC
1

fp

f1

Rbp
fbp

f1

fp

1

– 40 dB/decade

fbp

– 20 dB/decade



Fundamentals of Power Electronics 27 Chapter 17:  Line-commutated rectifiers

Harmonic trap filter with high-frequency roll-off
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17.5 Transformer connections

Three-phase transformer connections can be used to shift the phase of the
voltages and currents

This shifted phase can be used to cancel out the low-order harmonics

Three-phase delta-wye transformer connection shifts phase by 30˚:
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Twelve-pulse rectifier
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Waveforms of 12 pulse rectifier
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• Ac line current contains
1st, 11th, 13th, 23rd, 25th,
etc. These harmonic
amplitudes vary as 1/n

• 5th, 7th, 17th, 19th, etc.
harmonics are eliminated
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Rectifiers with high pulse number

Eighteen-pulse rectifier:

• Use three six-pulse rectifiers

• Transformer connections shift phase by 0˚, +20˚, and –20˚

• No 5th, 7th, 11th, 13th harmonics

Twenty-four-pulse rectifier

• Use four six-pulse rectifiers

• Transformer connections shift phase by 0˚, 15˚, –15˚, and 30˚

• No 5th, 7th, 11th, 13th, 17th, or 19th harmonics

If p is pulse number, then rectifier produces line current harmonics of
number n = pk ± 1, with k = 0, 1, 2, ...


