

WÜRTH ELEKTRONIK EISOS GMBH & CO. KG

EMC SEMINAR 2011

Agenda

• EMC

- Magnetic fields
- Filtering & Signals
- Insertion loss calculation
- Filter topologies

EMC - Definition

- Electro-Magnetic Compatibility
- The ability of electronic equipment and or systems to operate in its environment without causing unacceptable interferences.

EMC - Definition

Transmitter/Receiver

 devices which operate with other devices in one electro magnetic environment

Source / Transmitter

- mobile base station
- electro engine
- high power electronic
- mobile device (Laptop, PDA, Mobile phones etc.)
- discharge of static capacity
 - → ESD (Electro Static Discharge "Person")
 - → LEMP (Lighting Electro Magnetic Pulse)

- receivers (TV, Radio, ...)
- white & brown goods
- IT systems
- measurment and control tech. (e.g. sensors)

Load / Receiver

- medical electronics (e.g. pace maker)

EMC - Requirement

Beginning from definition EMC

- Basic requirement to devices:
- 1) decreasing of

2) prevention of

- emission
- 3) existence of noise immunity

effective protection **TO AND AGAINST** other electronic devices

EMC - Requirement

EMC - Effect

Economical point of view:

• Depends when you will start to design EMC conform

EMC - Norms

Since 1996 it is a must, that in EU all electronic devices are CE conform		
according to 2004/108/EC		

World wide:

- IEC 61000-1 Introduction, terms and conditions
- IEC 61000-2 Classification of electromagnetic environments
- IEC 61000-3 Limits and disturbance levels
- IEC 61000-4 Testing and measurement techniques
- IEC 61000-5 Installation and mitigation guidelines
- IEC 61000-6 Generic standards

European norms	<u>Emission</u>	<u>Immunity</u>
Information technology equipment	EN 55022 (P)	EN 55024 (P)
Industrial plant	EN 50081-2 (FG)	EN 50082-2 (FG)
Industrial, scientific and medical equipment RF equipment	EN 55011 (P)	EN 50082-2 (FG)
Signalling on low-voltage electrical installations	EN 50065 (P)	EN 50082-2 (FG)
Sound and television broadcast receivers	EN 55013 (P)	EN 55020 (P)
Requirements for household appliances, electric tools etc.	EN 55014-1 (P)	EN 55104-2 (P)

more than you expect

- EMC General solutions
- 1) Optimization of the layout:
 - \rightarrow situation:

one Problem but to many "solutions"/opinions

3) Shielding

EMC – Electromagnetic Wave

Frequency = 50kHz Wavelength (λ) = 6000 metres Frequency (F) = 500MHz Wavelength (λ) = 0.6 metres

EMC – Coupling Paths

- 1) Conductive
 - Coupling path between source and victim is formed by direct contact.
- 2) Capacitive
 - Electric field coupling
- 3) Inductive
 - Magnetic field coupling
- 4) Radiative
 - Source is the "transmitter" and victim is the "receiver"

EMC – Coupling Paths (Capacitive Coupling)

- Capacitive coupling between conductors cause parasitic currents
- Noise voltage increases with frequency. Higher frequency means more high frequency harmonics flow through the capacitor.
- Two wires with 2 mm diameter and spaced by 1 cm shows about 0.1pF of parasitic capacitance.

- Magnetic coupling between conductors causes parasitic induced voltages.
- Noise current increases with frequency.

• Two wires with 2mm diameter and spaced by 1cm, shows about 10nH/cm of parasitic inductance.

EMC – Coupling Paths

Magnetic Fields

Magnetic Fields - What does frequency mean?

- lat. frequentia = frequency, commonness
- ...describes some events within a dedicated space of time
- Mostly we talk about recurrent events periodic
- All waveforms are based on a basic wave (sin or cos)
 - \rightarrow fourier-series expansion
- Unwished superposition of these signals results in disturbance signals \rightarrow e.g. noise (a random signal/waveform with a constant amplitude)
- <u>One target of EMC</u>: suppressing / filtering these interferences

Magnetic Fields - What is an Inductor ? What is a coil?

...technical aspect:

 \rightarrow a piece of wire wound on something

What is the difference between Coil and Inductor?

Coil =

(many shapes)

(just inductance)

Inductor

As a function:

• A filter

• An energy-storage-part (short-time)

Magnetic Fields - What is an EMC ferrite?

.....technical aspect:

 \rightarrow sintered ferrite material applied to a wire

- As a function
- RF-Absorber
- frequency dependant filter
- Shapes:

Split ferrite

Toroid / sleeve ferrite

flat cores

ferrite plates

chip bead ferrite

multi hole ferrite

ferrite beads

Each electric powered wire generates a magnetic field

Field model

Field model

Field model

s-pole

Coil or Loop of Wire

Magnetic Fields - The magnetic field

Magnetic Fields – Permeability (Core material parameter)

Induction in air:

$$B = \mu_0 \cdot \mu_r \cdot H$$
$$B = \mu_0 \cdot H$$

Induction in Ferrite:

$$B = \mu_0 \cdot \mu_r \cdot H$$

$$B = \mu_0 \cdot H$$

linear function because $\mu r = 1 = \text{constant}$!
Material-
Frequency-
The relative permeability is:

$$B = \mu_0 \cdot \mu_r \cdot H$$

$$Material-$$

Frequency-
Temperature-
Current-
Pressure-

$$-\text{dependent parameter}$$

Magnetic Fields - What is permeability?

Relative Permeability

<u>Typical permeability µ_r :</u>

- \rightarrow describe the capacity of concentration of the magnetic flux in the material
- \rightarrow is a factor of energy needed to magnetize

hard magnetic

 μ_r

- Iron power / Superflux : 50 ~ 150
- Nickel Zinc :
- Manganese Zinc :

- 40 ~ 1500
- $300 \sim 20000$

 ΔB

more than you expect

Magnetic Fields - Magnetic Domains Simulation

Linear hysteresis loop

Rectangular hysteresis loop

Magnetostriction

Magnetic Fields – Permeability (Core material parameter)

Domain limits in a magnetic field

- the domain limits are melting together with higher magnetic flux

Magnetic Fields – Permeability (Core material parameter)

Domain limits in a magnetic field

- the domain limits are melting together with higher magnetic flux

Magnetic Fields – Permeability (Complex permeability)

Magnetic Fields – Permeability (Complex permeability)

Magnetic Field - Core material (Inductors {Storage})

knowledge of operating frequency

Magnetic Fields - Core material (Choke {Filter})

Magnetic Fields - Core material (Inductor / EMC Ferrite)

• Compare the Q_

Magnetic Fields - Core material (Inductor / EMC Ferrite)

1. Application: Storage inductor

Request: - lowest possible core losses at switching frequency

HIGH Q

2. Application: Absorber / Filter

Request – highest possible core losses at application frequency

LOW Q

Magnetic Fields - Shielded vs. Unshielded power inductor

Magnetic Fields - Conducted Emission Measurement

Buck Converter ST L4960/2.5A/fs 85-115KHz

Magnetic Fields - Conducted Emission Measurement

Power supply V 1.1

Magnetic Fields - Be Aware!

- Select the right parts for your application.
- Do not always look on cost

Very easy solution with a dramatic result!!!

Choke before

Choke after

Magnetic Fields - Core materials (Application)

Filter and Signal

Filter and Signal - Basics

The energy can not disappear it will be just transformed into other energy form \rightarrow law of conservation of energy

• e.g. electrical energy transformed into \rightarrow thermal energy

• the core losses from ferrite transform the noise energy into heat

MAIN TARGET:

Noise energy should not occur at all!

Filter and Signal - Basics

What is filtering?

- Useful to reduce coupling of noise from device A to device B
- Reduce noise emission
- Increase noise immunity
- The signal should be not affected

Efforts?

- → Filtering can be very difficult if signal and noise frequency are close to each other
- → if signal and noise frequency are far away from each other, then a filter design is very easy

Filter and Signal - Structured interference suppression

Recognize the coupling mode:

- Common mode noise
- Differential mode noise

Filter and Signal – Determining type of interference

Common mode or differential mode?

e.g. Common mode choke

e.g. chip bead ferrite

Filter and Signal - Common Mode Filter

The COMMON MODE signal does not cancel and an Inductive Impedance is created thereby acting as a filter

Reduction of noise

- from device to environment
- from environment to device

Conclusion:

- "almost" no influencing of the signal → Differential mode
- high attenuation of noise

 \rightarrow Common mode

THE ANIMATED CRASH

different kinds of noise:

Common mode noise

Differential mode noise

WE-CNSW Type 0805

Order Code	Impedance (Ω) @ 100 MHz	Rated voltage (V)	DCR (Ω)	Rated Currrent (mA)	Suitable for
744231061	67	50	0.25	400	
744231091	90	50	0.30	370	USB 2.0

When will the signal be attenuated?

the Differential mode impedance will also attenuate the signal

• The Common mode impedance will attenuate just the noise

Filter and Signal - Common Mode Choke

 What is the best solution to filter noise close to signal frequency?

Filter and Signal - Common mode choke (Construction)

<u>bifilar</u>

- Less differential impedance
- High capacitive coupling
- Less leakage inductance

<u>sectional</u>

- Low capacitive coupling
- High leakage inductance

- Power supply input /output filter
 - \rightarrow CMC for mains power
- High voltage application
- Measuring lines
- Switching power supply decoupling

- Data lines
 - \rightarrow USB, Fire-wire, CAN, etc.
- Power supply
- Measuring lines •
- Sensor lines

WE-SLM

Filter and Signal - Common mode choke (Construction)

WE-SL2 744227S sectional winding

WE-SL2 744227 bifilar winding

Filter and Signal - Common mode choke (Construction)

WE-split ferrite – Is it a CMC?

Yes, CMC with one winding

e.g. 74271712

comparable with bifilar winding CMC

Filter and Signal - Common mode choke (Ferrite core)

Increase the number of turns means:

compensation

Filter and Signal - USB 2.0 Filtering for common mode noise

Filter and Signal – USB 2.0 Filtering with WE-CNSW

Too much differential mode impedance distorts the USB 2.0 eye pattern

Magnetic fields Filtering & Signals Insertion loss calculation

Filter and Signal – CMC (Multiple usage "5in1")

• WE-MLS

EMC

→ can be easy designed at PCB layout connection 1 component for 5 application

Filter topologies

Optimal for power supply filtering (U < 60VDC); charger, sensors, etc.

Filter and Signal – CMC (Multiple usage "5in1")

• <u>Application WE-MLS:</u> power supply filtering

Filter and Signal - Common mode chokes (Line card)

Appearance of differential noises on the input line of a Flyback Converter

Filter and Signal - Common Mode Noise: Flyback Converter

Appearance of *common mode noises* on the input line of a Flyback Converter

Filter and Signal - Usual mains power filter

• Build your own one – possibility for above ~ 30 MHz as well

Insertion Loss

Insertion loss - Definition

$$\underline{\text{Impedance}} \Rightarrow \begin{bmatrix} Z_F = 10 \log \left(\frac{P_{in}}{P_{out}} \right) \end{bmatrix}$$

$$\underline{\text{System Attenuation}} \Rightarrow A = 20 \log \frac{Z_A + Z_F + Z_B}{Z_A + Z_B} \quad in \quad (dB)$$

Insertion loss - Definition

• practical values for source and load impedance

→ Grounding planes	1 2 Ω
\rightarrow Vcc distribution	10 … 20 Ω
\rightarrow Video- /Clock- /Data line	50 90 Ω
\rightarrow long data lines	90 >150 Ω

Original measurement

→ Application: Power supply

→ 20dB @ 200 MHz

Check the results

 \rightarrow Measuring the emission and compare the attenuation

- Choosing different system impedance
- Effect on video/clock/dataline system impedance (50Ω)

• <u>Possibility</u>: Attenuation too low

→ could be because of wrong system impedance estimation → increase the impedance of ferrite ($Z_F \sim 1000\Omega$)

- <u>Dependency</u> of system impedance (Source/Load) vs. attenuation
- \rightarrow high system impedances results in a low attenuation

Filter Topologies

Filter Topologies - Recommended filter topologies Load Impedance Source Impedance high low LC circuit (Induct/Cap) high high Capacitor Filter high or Pi Filter (low pass filter) high or unknown unknown low low Inductor Filter low or low or Tee Filter (low pass filter) unknown unknown

Filter Topologies – Test Board

-41.94 dBm

Filter Topologies – Test Board (Vcc Decoupling)

(1)

Freq

200 MHz

Filter Topologies – Test Board (Vcc Decoupling) [C Filter]

Filter Topologies – Test Board (Vcc Decoupling) [C Filter Results]

Filter Topologies – Test Board (Vcc Decoupling) [LC Filter]

Step 2: 1uF Cap. & Ferrite

Filter Topologies – Test Board (Vcc Decoupling) [LC Filter Result]

Filter Topologies – Test Board (Vcc Decoupling) [PI Filter]

Filter Topologies – Test Board (Vcc Decoupling) [PI Filter]

Simulation – Conducted Emissions without filter (Example 1)

Simulation – Conducted Emissions with filter (Example 1)

EMC Magnetic fields Filtering & Signals Insertion loss calculation Filter topologies

Simulation – Conducted Emissions (Example 2)

- Chip Bead
- Differential Choke
- Bifilar wound CMC
- Sectional wound CMC

Simulation – Conducted Emissions Test Setup (Example 2)

- No load
- 1.5A load at 300KHz fsw

Simulation – Conducted Emissions Test Setup (Example 2)

Line Impedance Stabilization Network (LISN)

The 1 μ F in combination with the 50 μ H inductor is the filter that isolates the mains from the EUT. The 50 μ H inductor isolates the noise generated by the EUT from the mains. The 0.1 μ F couples the noise generated by the EUT to the EMC analyzer or receiver. At frequencies above 150 kHz, the EUT signals are presented with a 50- Ω impedance.

Isolates DUT (device under test) from

Power Source (typically mains) Noise

Simulation – Conducted Emissions Test Setup (Example 2)

EMC Magnetic fields Filtering & Signals Insertion loss calculation Filter topologies

more than you expect

Simulation – Conducted Emissions Test Setup (Example 2)

- DC/DC Converter
- Input Voltage20V-25V
- Output Voltage12V/6.25A
- Fsw: 300KHz

Testcondition:

- no load
- max. load 1.5A

Simulation – Conducted Emissions Example 2 Chip Bead Ferrite

Chip Bead 530Ω / 3A

WÜRTH ELEN

Simulation – Conducted Emissions Example 2 Chip Bead Ferrite Result

Spectrum Analyzer

Ref Level 107.00 dBuV

20 dB

M2

Dgr Trc

1 1

1 1

1 1

1 1

1 1

1 MHz

Stimulus

Att

1AP Clrw

100 dBuV-

90 dBuV-

80 dBuV-70 dBµV·

60 dBuV

50 dBuV

40 dBuV-

30 dBuV-

Marker

No

1

2

3

4

Start 150.0 kHz

Type

٥

1N

2N

ЗN

4N

5N

22.08.2008

WÜRTH ELEKTRONIK

Simulation – Conducted Emissions Example 2 Chip Bead Ferrite Result

742 792 515

Simulation – Conducted Emissions Example 2 Differential Choke

744 743 221 (220uH)

Simulation – Conducted Emissions Example 2 Differential Choke Result

Att

1AP Cirw

100 dBuV-

90 dBµV-

80 dBuV-

70 dBµV·

60 dBuV

50 dBuV

40 dBuV-

30 dBuV-

Marker

No

1

2

3

4

744 743 221 (220uH)

Simulation – Conducted Emissions Example 2 Bifilar CMC

4.7mH Bifilar winding Common Mode Choke

WÜRTH ELE

Simulation – Conducted Emissions Example 2 Bifilar CMC Result

Load is 1.5A

And...CMC

For Demonstration Purposes Only!

4.7mH Bifilar winding Common Mode Choke

744 272 472

no load >

Simulation – Conducted Emissions Example 2 Bifilar CMC Result

Spectrum Analyzer Print Ref Level 107.00 dBuV RBW 10 kHz Print SWT 299 ms C VBW 30 kHz Mode Auto Sweep Att 20 dB Screen 1AP Cirw 1 MHz M5[1] 59.26 dBµV 100 dBµV-1.4908 MHz M1[1] 83.91 dBµ\ 90 dBµV-297.9 kHz Device MÞ Setup 80 dBuV 70 dBµV Device M5 60 dBuV 2 50 dBµV Colors 40 dBuV Comment Start 150.0 kHz Stop 30.0 MHz Marker No Type Dgr Trc Stimulus Response Func Func.Result Install 1N 1 1 297.9 kHz 83.91 dBµV 1 Printer 1 1 2 2N 594.1 kHz 77.88 dBµV ЗN 1 1 891.9 kHz 63.88 dBµV 4N 1 1 1.1936 MHz 63.59 dBµV 1 1 5N 1.4908 MHz 59.26 dBµV 21.08.2008 23:23:48 l ÷ Measuring... ٥

load 1.5A>

4.7mH Bifilar winding Common Mode Choke

Simulation – Conducted Emissions Example 2 CMC Sectional

Sectional common mode choke 47mH

Simulation – Conducted Emissions Example 3 CMC Sectional

CMC 47mH Sectional Winding Leakage Inductance Ls~ 250uH (5% of L)

Sectional common mode choke 47mH

Simulation – Conducted Emissions Example 2 CMC Sectional Result

Sectional common mode choke 47mH

no load >

Simulation – Conducted Emissions Example 2 Conclusion

• High frequency noise appears under load (Noise is differential mode)

Chip Bead Ferrite

- Without a load there is some affect at high frequencies, but with a load the bead pre-magnetizes and there is no effect at all.

Differential Choke

- Attenuates low frequency noise because of SRF
- Bifilar common mode choke

- Does not attenuate because of very low leakage inductance

Sectional common mode choke

- Attenuates both high and low frequencies because of leakage inductance and high SRF

Filter topologies – LC-Filter

design tip: avoid over current (low dump)

Filter topologies – LC-Filter

design tip: avoid over current (low dump)

- SMD-Ferrite safe from low dump current
- not a PI-Filter
 - \rightarrow capacitor C1 is just for stabilization

L Filter SMD-Ferrite WE-CBF

- Using the core losses R=f(f)
- Transform differential noise energy into heat

L Filter SMD-Ferrite WE-CBF

IMPORTANT:

Check equivalent circuit

Filter topologies C-Filter

- Expand the filter with an additional frequency dependent component
 - \rightarrow with a Capacitor
- Series inductance L_S
 - → SMD-typical: 1 nH ... 5nH
- Losses (ESR) R_S
- → SMD-typical: 20 mΩ ... 300 mΩ (1 Ω)

Filter topologies – LC-Filter

Filter and Signal - Low pass filter

...are most popular used filter for EMI

Low pass filter - insertion loss

more than you expect

Grounded filter

- most important condition for an LC filter
 → extremely good connection from capacitor to ground
- the filter efficiency will be depreciated from additional impedances
 - \rightarrow parasitic from capacitor connection (long legs)
 - \rightarrow layout design (to long trace)
 - \rightarrow from construction (ground pins, or bolts for PCB mounting)

Grounded filter

inductive coupling from filter input to capacitor ground

• capacitive coupling – will increase for higher frequencies

- parasitic inductance from to long traces
 - \rightarrow 1mm trace means approx. 1nH
 - → per via 0,5 nH
- no connection to chassis/case
- bad position of filter output

Unexpected effects – who smile more?

THE TAX INSPECTOR

(penalty up to 50,000 EUR)

Bonus - We are world wide available for you !

Headquarter in Germany, office: USA, UK, Sweden, France, Ireland, Italy, Austria, Spain, Switzerland, Nederland, Czech Rep., Hungary, Singapore, China and Taiwan

 Distribution rest World:

RS-Components, Farnell, Digikey

Production plant in: China, Taiwan, Mexico, USA, Bulgaria, Czech Rep. and Germany

Bonus - You can reach us:

