BioEnergy

Devinder Mahajan*

Director

Center for BioEnergy Research and Development (C-BERD

Stony Brook University (SBU) & Brookhaven National Laboratory (BNL)

STONY BROKK

ADVANCED ENERGY

Presented at: IEEE

JKH/KVEN

NATIONAL LABORATORY

September 15, 2009

Industry/University Cooperative Research Centers

*<u>dmahajan@notes.cc.sunysb.edu</u>

US DOE National Laboratories

Fermi

Argonne

Brookhaven

Thomas

Jefferson

NETL

Lawner Berkeley

Pacific Northwe

EED

Lawrence Livermore

Los Alamos Oak Ridge

Sandia

Defense Program Office of Science Energy Efficiency and Renewable Energy Office of Nuclear Energy Fossil Energy

Our Location

The Future Fuels Group (BNL/SBU)

<u>Students</u>

Graduate

- M. Eaton (Exxonmobil)
- M. Anjom (SBU)
- P. Kerkar
- Y. Hung
- S. Patel
- **CME Undergrads**
- 5-9 students/year

(SULI and Battelle Fellowships)

FUNDING

- National Science Foundation (NSF)
- U.S. Department of Energy (US DOE)
- BNL: Laboratory Directed R & D (LDRD)
- U.S. Department of Agriculture (USDA)
- SBU: Office of Vice President for Research
- Industry

Collaborators

- CR Krishna (BNL)
- T. Butcher (BNL)
- N. van der Lelie (BNL)
- K. Ro (USDA)
- P. Hunt (USDA)
- C. Clayton (SBU)
- T. Koga (SBU)
- M. Rafailovich (SBU)
- H. Zhang (SBU)
- M. Castaldi (Columbiad
- R. Coffin (NRL)
- R. Kleinberg (Schlumberg)

Farmingdale State Coll

H. Tawfik

10+ Students

SBU/BNL- Biomass Utilization Initiative

National Science Foundation- Engineering Directorate <u>I/UCRC (Industry/University Cooperative Research Center) Program</u>

National Center for BioEnergy R&D (C-BERD)

Founding Members

Kansas State University (K-State) North Carolina State University (NCSU) South Dakota School of Mines and Technology (SDSMT) South Dakota State University (SDSU) **Stony Brook University (SBU)** University of Hawaii (UH)

Stony Brook Site- Industry Members

NYSERDA National Grid E-Renewables Brookhaven National Laboratory AERTC Under discussion: 5

C-BERD Mission

Mission:

NSK

- To train students at all levels.
- Develop energy technologies based on renewables by working with industry.

Features

National Biofuels Center University consortium <u>Industry driven</u>- Initially 50-70 industries are expected to join. Industrial Advisory Board (IAB)

Focus Areas

Focus Area 1: Feedstock agronomy and supply Focus Area 2: Feedstock breeding and genomics Focus Area 3: Bioprocessing microbes and enzymes Focus Area 4: Biomass processing Focus Area 5: New platform technologies Focus Area 6: Modeling and Process lifecycle analysis

<u>Theme</u>

Efficient Biofuels production and storage Fuel utilization coupled with carbon sequestration

- Biogas upgrading using membranes templated with supercritical (Sc) CO₂.
- Advanced concept in C sequestration: CO₂ recycling by catalytic conversion into bioalcohols.
- Ultra-deep (< 5 ppm) sulfur removal from biomass-derived fuels: The nextgeneration nano catalyst based technology.
- High conversion once-through catalysis: Biomass-derived syngas to renewable diesel.
- Advanced concept in C sequestration: CO₂ recycling by catalytic conversion into bioalcohols.
- Biofuel combustion: combustion characteristics and emissions.
- PEM fuel cells (Bipolar plate technology): efficiency management with bioalcohols as fuel feed.
- H₂ production by thermophillic bacteria.
- Interaction of biofuels with skin tissue: Potential toxicity of oxygenated fuels.

Biofuels

Definition: Fuels derived from CO₂-net neutral feedstocks. Impact Sectors

- Transportation
- Utilities
- Manufacturing

Gasoline Consumption (2005): 140 billion gallons

Biofuels Market Share (2005): 4% gasoline consumption

Target Fuel	<u>2005/06</u>	<u>2007/08</u>	<u>2012</u>	<u>2025</u>
	billion ga	llons/year	(Proje	ected)
Bioethanol [U.S.]*	5	8.8	7.5†	60
Biodiesel [U.S.]**	0.6	1.3		
Bioethanol [Brazil]**	4.5		4.5	

*Corn based; **Data from NBB; ***Sugarcane **based (45% of the world total);** †Projected in 2005

Goal: Replace 75% oil imports by 2025.

Biomass to Fuels

- Siorefinery concept is appealing because it will use the existing infrastructure.
- Siomass to BioFuels- Next-generation technologies are needed.

Biomass to Biodiesel

Biodiesel: Incentives for Expansion

- Energy Act of 1992
- USDA Commodity Credit Corporation's (CCC) Bioenergy Prog
- Energy Policy Act of 2005 [the Renewable Fuels Standard (RFS phase-in] – 2 Provisions
 - Supply Side- Provide 10¢/gallon tax credit to small producers of biodiesel. Available for the first 15 million gallons produced by a plant with <60 million gallons annual production capacity.
 - <u>Demand Side</u>- Fuel producers were required to include 4 billion gallons of renewable fuels by 2006, increasing to a minimum of 7.8 billion gallons by 2012.
- EPA Diesel Regulations
- Introduction of ultra-low sulfur diesel (ULSD)
- Biodiesel as lubricant additive (causes engine damage).
 - Addition of B2 restores lubricity.

Biodiesel: Production Methods

Biodiesel Production Methods

- Base catalyzed transesterification of oil
- Direct acid catalyzed transesterification of oil
- Convert oils into fatty acids and then to biodiesel

Biodiesel Production: The Reaction

Base catalyzed esterification reaction

CH ₂ OCOR"		CH₂OH		R'''COOR
CHOCOR"	+ 3 ROH Catalyst	снон	+	R"COOR
CH ₂ OCOR ⁴		CH ₂ OH		R'COOR
(100 lbs)	(10 lbs)	(10 lbs)		(100 lbs)
Dil or Fat	Alcohol (excess)	Glycerin		Biodiesel
Triglyceride)			Мо	no-alkyl ester

<u>Oil or Fat</u>: Soybean, Palmitic, oleic, stearic, linoleic acids <u>Catalyst</u>: KOH, NaOH <u>ROH</u>: MeOH, EtOH

Note the process needs MeOH or EtOH

Biodiesel Production: The Flowsheet

Base Catalyzed Esterification of Oils

Advantages

- Low T
- Low P
- Direct high conversion (~ 98%)

Biodiesel: Properties

ASTM Standard- D6751

- Reaction completion
- Glycerin removal
- Catalyst removal
- Free fatty acids removal

Fuel properties of biodiesel from Soybean oil

Ester	Viscosity	Cetane No.	ΔHg	T _{flash}	СР	PP
	mm²/s		kJ/kg	°C	°C	°C]
Methyl	4.08	46.2	39,800	191	2	+/-
Ethyl	4.41	48.2	40,000	174	1	-4 💋
Isopropyl		52.6	-	-	-9	-12
N-Butyl	5.24	51.7	40,700	185	-3	-7 🎽
						4
No. 2 Diesel	2.39	45.8	45,200	78	-19	-23

 Δ Hg = gross heat of combustion; T_{flash} = flash point (Penske Martins closed cup); CP = cloud point; PP = pour point

Biodiesel: Fuel Quality for Diesel Engines

- ASTM Specification for B100 for Blending has been developed, (D6751)
 - Changes being considered to improve quality
- Attempts are being made to address stability and compatibility with newer diesel technology concerns of engine manufacturers
 - Additional research required to define and test for stability
 - Lack of data relating stability and deposit formation in engine

Biodiesel: Production vs Capacity

Source: National Biodiesel Board. *Note:* Capacity given is on September 1 of each year.

Figure 1. U.S. biodiesel production and installed capacity for 2000 to 2006

Source: Carriquiry, M. Iowa State U.

Biodiesel: Economics

Assumptions

- Plant size: 60 million gallons
- Feedstock cost: 80%
- 7.5 lbs feedstock/gallon biodiesel
- Operating cost (excluding feedstock): \$0.42/gallon
- Credit for glycerin and other by-products: \$0.05/gallon

Net operating profit = Revenues – Operating cost (excluding capital and other fixed costs)

Table 1. Net operating returns for a biodiesel plant

]	Feedstock P	rice (\$/lb)		
		0.20	0.25	0.30	0.35	0.40
e	2.00	0.16	-0.21	-0.59	-0.96	-1.33
Prie	2.40	0.56	0.19	-0.19	-0.56	-0.93
gal	2.80	0.96	0.59	0.21	-0.16	-0.53
lies (\$/	3.20	1.36	0.99	0.61	0.24	-0.13
ži	3.60	1.76	1.39	1.01	0.64	0.27
	4.00	2.16	1.79	1.41	1.04	0.67

Source: Carriquiry, M. Iowa State U.

Problem: U.S. biodiesel based on soybean oil

Biodiesel Production- Challenges

Glycerol Utilization

- Better utilization of glycerin
- Improve Esterification
 - Processing steps

Fuel to diesel engine specifications

- Minimize impurities

Biomass to Bioethanol

Bioethanol

- Theoretical C Utilization: 67%
- CO₂: product of fermentation process
- Typical processing time: 48 hrs

Bioethanol Production- Schematics

Source: Waste Conversion Technologies, UCLA

Bioethanol Production Data

Feedstock	Ethanol Recovery rate/Feedstock gallons/ton
Sugarcano	10.5
Sugarbeets	24.8
Molasses	24.0
(Byproduct of Sugarcane/	
Sugarbeets	69.4
Raw sugar	135.4
Refined sugar	141
Corn Ethanol/bushel	
Wet milling	2.65
Dry milling	2.75
Ethanol yield	
Gallons/ton sucrose	
- Theoretical	163
- Expected	141

Data Source: USDA, 2006

Bioethanol Production: Economics

Data Source: USDA, 2006

Summary of estimated ethanol production costs, \$/gallon)

Cost	Corn	Milling	Sugar	Sugar	Molasses	Raw sugar	Refined	Braz	zil
ltem	Wet	Dry	cane	beets		(3)	sugar (3)	Sugar(4)	Sugar beets
Feedstock Cost(2)	0.40	0.53	1.48	1.58	0.91	3.12	3.61	0.30	0.957
Processing cost	0.63	0.52	0.92	0.77	0.36	0.36	0.36	0.51	1.92
Total Cost	1.03	1.05	2.40	2.35	1.27	3.48	3.97	0.81	2

1) Excludes capital costs.

2) Feedstock costs for U.S. corn wet and dry milling are net feedstock costs; feedstock costs for U.S. sugarcane and sugar beets are gross feedstock costs.

3) Excludes transportation costs.

4) Average of published estimates.

Present Bioethanol Production Data

Year	Capacity, Gallons
2000	1.6
2006	4.9
2009	11.5*

*Planned

Note: Ethanol energy content: 66% of gasoline

Source: FarmEcon.com (2007)

Present Bioethanol Production: Challenges

Process Related

- Inefficient utilization of feedstock (corn).
- Freshwater requirements for processing.

<u>Humanitarian</u>

- Food vs Fuel debate (recent riots in Asia and other countries with rising fuel prices).
- For each 1% rise in food prices, caloric intake among the poor drops 0.5% (World Bank Report).
- By 2025, 1.25 billion people will go hungry.

Summary- Ethanol and Biodiesel

Feedstock Issue

- Biodiesel: Vegetable oils and waste grease, etc
- Ethanol (U.S.): Corn based

Biomass to Biofuels: Next Generation Technologies

Maximize C conversion
Non-food feedstocks

Biomass Feedstock

"Billion ton" study (USDA/DOE)

<u>Agriculture</u>: Corn stover, wheat straw, soybean residue, <u>manure</u>, switchgrass, other energy crops.

Forest: Forest thinnings, fuelwoods, logging residues, wood processing and paper mill residues, urban wood wastes.

Biomass: Structural Units

Typical composition Carbohydrates/Sugars: 75% Lignin: 25%

<u>Cellulose</u>: Polymer and cross-linkages arrorg glucose units.

<u>Hemicellulose</u>: 5, 6 carbon sugars su acids, acetyl esters- more complicated cellulose.

Lignin: Phenolic polymers- impart strength plants.

Biomass to Biofuels: Possible Routes

Source: Chemical Engineering, October 2006

<u>Driver</u>: "Billion ton biomass is available in the U.S. (USDA/DOE Study). <u>Approach</u>: Depolymerize biomass to 1C feedstock and then recombine ("Thermochemical" Pathway). <u>Product Focus</u>: Transportation and Utility fuels

Biomass to Fuels

Thermochemical Route: Syngas Platform

<u>Challenge</u>: Total *Carbon* Utility with *Product* specificity.

Economical Biomass Processing- Targets

USDA Model

- Biomass collection: 2000 T/d over 50-mile radius.
- Biofuel Yield (per dry ton):
 - Mixed Alcohols: 77 gallons/ton
 - F-T liquids: 3000 barrels /d
- Simple process:
 - No gas recycle
 - Managed gas clean up
 - Maximum per pass C conversion (DOE 2012 goal: 50%)

Goal: Develop Atom-economical Processes

Interdisciplinary Materials Science/Chemistry/chemical Engineering Interface <u>Approach</u> Combine Process Engineering and Process Chemistry

Process Chemistry

Liquid Phase Low Temperature (LPLT) concept

- Single-site or Nano catalysis

Process Engineering

Heat management

- Microchannel Reactors

Process Chemistry

Controlled-site Catalysts: Synthesis Methods

Characteristics of Nanoparticles of Interest

- Produce in zero-oxidation state
- Convenient synthesis of nanoparticles.
- Potential to store nanoparticles for extended periods of time with minimum degradation.

Potential Applications

- Catalytic synthesis of Ultra-Clean fuels.
- Low-temperature nano coatings.

⊗ Sonolysis and Thermal methods to synthesize nanoparticles.

Sonolysis

Theory (Suslick et al. Nature <u>353</u> 414 (1991))

- Involves acoustic cavitation. During this event: T > 5000K and P > 120 km are reached within the cavity.
- Harness this energy to break chemical bonds:

 $M(CO)_n \rightarrow))) \rightarrow nano "M"$

M: Mo, Fe

Solution The naked metal (zero-Valent) can be further complexed to produce supported nanosized materials.

XRD Data

Figure 2. X-ray powder diffraction patterns of sonochemically produced samples of (a) Fe and (b) Mo (Sonolysis conditions: Solvent: Hexadecane = 100 mL; T = 53°C; Fe(CO)₅ = 8 mmol;;Mo(CO)₆ = 4 mmol).

Fe and Mo Nano-sized particles

Sono Synthesis: TEM data of Fe and Mo

Product specifications Fe: amorphous, MPD ~ 10 nm Mo: Semi crystalline, MPD ~ 3 nm Purity: > 99.9% (oxide impurity)

Fischer-Tropsch (F-T) Synthesis

F-T Reaction

 $CO + 2 H_2 \rightarrow -(CH_2-)_n + H_2O$ $CO + H_2O \rightarrow CO_2 + H_2$

<u>Goal</u> Evaluate the activity of NANO-sized Fe-based catalyst for comparative performance.

F-T Data Summary

Catalyst loading = 4.6 wt%; Solvent: Ethylflopolyolefin-164; T = 513 K; P = 2770H₂/CO = 66%/34%;GHSV = 4.6 NL g Fe⁻¹.h⁻¹; Run time = 120 h

				10 C
Catalyst	NANO-2	NANO-1	MICRO	N.
MPD, nm	3	20-80	32,500	13
CO conversion	42.9	55.9	65.4	-
H ₂ /CO usage	1.46	1.53	1.19	20
Product Distribution (wt %)				
НС	31.8	30.5	28.4	1
CO ₂	31.7	39.0	46.6	
H ₂ O	36.5	30.5	25.0	
STY, Kg.KgFe ⁻¹ .h ⁻¹	0.40	0.56	0.38	

F-T Catalyst Characterization ⁵⁷Fe Mössbauer data

Fresh Samples at RT

Quenched Samples

 Fe₃O₄ and α-Fe₂O₃

 Cementite

 Haegg-Carbide

TEM Data: Quenched Samples

<u>Nano-2</u> (3 nm)

<u>Nano-1</u> (20-80 nm)

<u>Micro</u> (32,500 nm)

STY Versus Particle Size

<u>T = 513 K, 120 h on-line</u>

Material	Fresh	Quenched	STY	
	nm	nm	Kg.KgFe ⁻¹ .h ⁻¹	
NANO-2	3	10-20	0.40	:
NANO-1	20-80	30-50	0.56	~
MICRO	32,50	00 < 10	0.38	

F-T Study: Observations

- TEM data show that micro materials transforms into the smallest size particles: Micro (< 10 nm) < Nano-2 (10-20 nm) > Nano-1 (30-50).
- Potential of using this technique for bulk production of nano metal particles.

Process Engineering

÷

Process Engineering

Microchannel F-T Technology

Process Engineering

Velocys Steam Reformer

- Microchannel Reformer
- Same capacity
- 90% size reduction
- 33% capital cost reduction

Unique Facilities

Research Facility

- New York State funded \$45 million at SBU.
 - Build the Advanced Energy Research & Technology Center (AERTC)
- NSF C-BERD will be housed in this building.

Characterization Facilities

- Center for Functional Nanomaterials (CFN)
 - A U.S. Department of Energy (US DOE) \$85 million facility at BNL.

Biofuels: A Path to Sustainable Development

- ★ Resource consideration
 - >1 billion ton biomass is available
- ***** Distributive fuel production
 - "Small is beautiful"
- * Process and related chemistry need to be integrated for Product flexibility
 - Closely related process chemistry

* "Oxygenates (Alcohols) Economy"- A transition to "Hydrogen Economy"

Acknowledgments

Funding:

- National Science Foundation (NSF)
- New York State Energy Research & Development Authority (NYSERDA)
- BNL: LDRD funds.
- U.S. Department of Energy.
- AERTC Seed Grant.
- Industry

A Path forward for Liquid Biofuels

Motivation

- Past
 - Remote natural gas conversion pathways.
 - Coal-based IGCC power plants: peak-shaving fuel
- Present
 - Biomass conversion

-Finding sustainable sources of ENERGY is a global problem.

Events

2008 Advanced Energy Conference Long Island

> <u>2008</u> November 19-20

2009 November 18-19

www.aertc.org

