

UNITED CHEMI-CON, INC.

DC Link Capacitor Life Prediction from FFT Analysis of Ripple Current

George Iftimie / Engineering Manager United Chemi-Con.Inc / Nippon Chemi-Con Group

Green Technology DLCAP™

Contents

- **1.** Typical double rectifier circuit for an appliance application.
 - **1.1DC** Link capacitor ripple current analysis with the SPICE simulation with resistive load.
- **2. DC Link ripple current FFT analysis**
- 3. Ripple current calculation to convert the rated ripple current at 120Hz for provided FFT analysis data

3.1 Frequency Multiplier coefficient (K) Characteristics

3.2 Converted RMS current to rated ripple current on the data sheet

4. Life Equation

4.1 Case study of Calculated Life at Ta=85°C, 65°C and a Temperature Profile

5. Life prediction by a capacitor SPICE Thermal Model.

1. Typical double rectifier circuit for an appliance application.

1.1 DC Link capacitor ripple current analysis with the SPICE simulation with resistive load.

2. DC Link ripple current FFT analysis

Find out rms ripple current for each frequency to convert to a rated ripple current to predict a capacitor life.

3. Ripple current calculation to convert the rated ripple current at 120Hz for provided FFT analysis data

he converted total RMS ripple current Ix =
$$\sqrt{\sum_{n=1}^{14} \left(\frac{\ln}{\ln n}\right)^2}$$

Kn is the multiplier each frequency components for to the rated ripple current at 60H. Figure-3 is created for Table -1 below. See data sheet of KMS series .

RATED RIPPLE CURRENT MULTIPLIERS

Т

Frequency Multipliers Table-1 Coefficient: K

Frequency(Hz)	50	120	300	1k	10k	50k
160 to 250V _{do}	0.81	1.00	1.17	1.32	1.45	1.50
315 to 450Vdc	0.77	1.00	1.16	1.30	1.41	1.43
500Vdc	0.70	1.00	1.16	1.30	1.41	1.43

Kn for each Frequency Fn, see Figure-4 shows the frequency multipliers graph which is cleated form approximate expression of Table-1 above.

3.1 Frequency Multiplier coefficient (K) Characteristics

3.2 Converted RMS current to rated ripple current on the data sheet

Rated ripple current, Io = 2.66Arms at 120Hz

See page-7 Item.5 "What is the frequency Multiplier" in the report sent the "Whirlpool project-UCC 3-17-2014"

2.53A is less than the rated ripple current 2.66A rms.

Source: Report by R.Holling / R.Ferreira 2/26/2014. EKMS251VSN192MR40S-United Chemi-Con Lifetime-Estimation

4 Life Equation

Lx=Lr*2^(To-Tx)/10*2^(To- T)/k*(Vo/Vx)^{4.4} Vo/Vx < 1.25

The foundation of life equation is based the Arrhenius' Law . However it will be slightly different by type of capacitors. Large screw type including snap-in type will be used following equation. We, Nippon Chemi-Con use the life equations based on the tremendous of life data to verify it. Total volume of production for small(SMD) to large (screw type) are approx., 1-2 billions pcs per/month.

An example:

Lx: Calculated Life

```
Lr: Rated life on the data sheet \rightarrow 3000 hrs for KMS
```

To: Rated Temperature \rightarrow 105°C

```
Tx: Ambient temperature
```

```
\DeltaTo: Specified by manufacture \rightarrow 5°C for KMS
```

```
\Delta T: Self-heat. \Delta To^*(Ix/Io)^2
```

Io: Rated ripple current

Ix: Actual ripple current.

NOTE: if ΔT has already been measured, use the number.

Vo: Rated voltage → 250V Vx: Actual voltage → 140* $\sqrt{2}$ = 198V 250/198 = 1.26 → use 1.25 Vo/Vx = (1.25)^{4.4} = 2.67

4.1 Case study of Calculated Life at Ta=85°C, 65°C and a Temperature Profile

5. Life prediction by a capacitor SPICE Thermal Model.

Lx=Lr*2^(To-Tx)/10*2^(⊿To- ⊿T)/k*(Vo/Vx)^{4.4}

 ΔT : Self-heat core temperature is a key parameter to calculate the life.

- 1) Thermal model to simulate self-heat core temperature.
- 2) Actual temperature test data. (this is the bet way)

Technical Point of Contact

Technical: George Iftimie <u>giftimie@chemi-con.com</u> Engineering Manager UNITED CHEMI-CON 1701 Golf Road, 1-1200 Rolling Meadows, IL60008 Phone:(847)696-2000

GREEN TECHNOLOGY IS THE KEY FOR OUR PLANET TO SURVIVE

Thank you

UNITED CHEMI-CON.Inc, Nippon Chemi-Con Group

www.chemi-con.com