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Agenda

e Welcome and thank you for attending. Today | hope | can provide a overall better understanding of the practical

design aspects of managing conducted EMI in power systems. The topics we will cover in Part 2 of our two part

series will be:

The determination of input capacitance for our Buck Converter model continued from Part | of the series.
Measurement of insertion loss will be explained using circuit simulation.

How to determine if a given input filter network is stable with a particular DC-DC Converter.

Passive Differential and Common Mode Filter Schemes

The Picor Active EMI Filter Topology

Case histories and troubleshooting topics



e Consider the ideal buck converter shown below:
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This ripple current is responsible
for the differential mode EMI that

/ will be measured at the LISN.

We are concerned about these
ripple currents, as they are
responsible for the ripple voltage
measured at the node Vin. This
ripple voltage is the source for
the differential mode EMI that
occurs at the fundamental as well
as the much of the harmonic
content.



Input Capacitor Selection For Our Ideal Buck Converter

e The typical Buck regulator will usually require two different types of input capacitors. One type must carry all of
the high frequency switching ripple current and the second type must supply input voltage hold up time in the
event an input inductor is used to isolate the high frequency differential current from the source.

e X5R or X7R ceramic capacitors will be used to carry the high frequency ripple current because they have the
lowest ESR and ESL. In order to reduce the switching ripple voltage to an acceptable level, multiple ceramic
capacitors will be used in parallel to reduce the overall ESR and ESL even further. The equations that follow are
general in nature and do not include ESR and ESL when calculating the actual capacitance value required. For
designs that have very high ripple current with very fast transients, a more rigorous study may be required.

e The input bulk capacitor is required to prevent the input voltage from sagging below the converter under voltage
lockout during a load transient. A low ESR Oscon or Aluminum Electrolytic capacitor will be required if an input

inductor of a significant value is used or if the DC-DC requires EMI scans using a LISN.



Input Capacitor Selection - Ideal Buck Converter

10V to 15V input, 1.2V output at 15A max
Normal output is 7.5A with pulse load to 15A 20ms after start up
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Input Capacitor Selection - Ideal Buck Converter
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Input Capacitor Selection - Ideal Buck Converter
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- Vout’ Nmin ~ Vout

This equation is fairly accurate so
long as the inductor ripple
current is not a significant
percentage of the total output
current. Stated another way, the
higher the ripple current, the less
accurate the equation is.
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Input Capacitor Selection - Ideal Buck Converter
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Input Bulk Capacitor Selection - Ideal Buck Converter
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e Since we have an input inductor, C1 is isolated from Vin from
a transient standpoint.
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current until the input inductor current equals the converter

average current.
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Input Bulk Capacitor Selection - Ideal Buck Converter

e |f this converter were connected to a 50 Ohm LISN, the input

inductance would be 100uH (50uH in series with each lead). .
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Input Bulk Capacitor Selection - Ideal Buck Converter

e The RMS ripple current in Cbulk is:
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Measuring Insertion Loss Of A Filter

e Consider the EMI filter below. It is both a common mode and differential mode filter.

¢ First we will look at the differential mode measurement...............

Connect high bandwidth AC current probes to your
network analyzer. We are intending to measure the
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The filter must be DC biased so that the internal

capacitors assume the value with bias applied. Ceramic

capacitors capacitance value can change with DC bias.
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Use a signal injection isolation capacitor to keep DC
bias off the network analyzer. Use a 50 Ohm termination
resistor as shown. 12



Measuring Insertion Loss Of A Filter
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e Next, we will look at how to measure the common mode portion of the filter
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Measuring Insertion Loss Of A Filter

e Let’s measure our LC filter from the Buck Regulator example shown earlier
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The output impedance of the

@ input filter shows very high

peaking at the resonant

frequency of the input filter. This

= filter requires damping to prevent

this problem.
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Measuring Insertion Loss Of A Filter

e There are several ways to damp an input filter. A robust method is to add a series R-C in parallel with the
ceramic capacitors. The idea is that at the resonant frequency of the input filter, the series R of the parallel

combination is dominant.
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Measuring Insertion Loss Of A Filter

e The damping network
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Measuring Insertion Loss Of A Filter

e The Ideal Buck Model input voltage before damping and after damping transient response
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Avoiding Input Filter Instability — Using A Case History

A closed loop DC-DC converter exhibits a “negative input impedance”. This means that due to the internal
feedback loop and voltage feed forward circuitry, as the input voltage goes up, the input current goes down.
A DC-DC converters input impedance is lowest at low line and highest at high line. The input impedance can

be approximated by (for our Ideal Buck Regulator) ViNmin
RINpji = RIN

min min
(Vout'loutmaxj
n
Vinpin

=5

This means that if the output impedance of the input filter is 5 Ohms, we now have created a negative
resistance oscillator.
The onset of this instability is manifested by a sinusoidal input current and voltage oscillation that will

perturb the output and create all sorts of havoc, including overshoots and possible damage.
18



Avoiding Input Filter Instability — Using A Case History

e A military customer of ours designed in our ZVS Buck Regulator (P13302) and our MQPI-18 EMI Filter module

e The filter module is ultra small and can handle 7A. It provides both common mode and differential

attenuation. The customer did not need the common mode section but chose the filter because of it’s size

and high frequency performance. The ZVS Buck regulator switches at 1 MHz
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sssss
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Avoiding Input Filter Instability — Using A Case History

e First, the customer measured the raw EMI signature without any filter and saw very high EMI as expected.
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VICOR

Avoiding Input Filter Instability — Using A Case History

e Next, the customer installed the MQPI-18 filter measured the EMI signature again. He was thrilled
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Avoiding Input Filter Instability — Using A Case History

e He started to vary the line voltage. As he got to about 9.8V, the EMI plot went horrific. That’s when my phone

started ringing, | think.
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Avoiding Input Filter Instability — Using A Case History

e A current probe was connected to the LISN output cables. It revealed a very rich high current 2kHz sine wave.
The input voltage to the converter was ringing below the UV lockout, causing the converter to turn on and off

every 30ms. This resulted in the poor EMI plot, as the converter was oscillating on and off.
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Avoiding Input Filter Instability — Using A Case History
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Avoiding Input Filter Instability — Using A Case History

e The root cause of the instability was the LISN resonating with the ceramic capacitors inside the MQPI-18 filter
and the PI3302 input capacitors. The resonant frequency of 2kHz was responsible for the input filter
instability at low line. Adding a series R-C in parallel with the entry port provided the necessary damping of
the LISN and eliminated the instability. Taking a page out of the late great Johnnie Cochrane’s book, “You

must design with the LISN in mind!”
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Passive Discrete EMI Filter Example -
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The Picor QPI-21 Active EMI Filter Topology Simplified Block Diagram

Common Mode Current Sense
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The Picor QPI-21 Active EMI Filter Topology Simplified Block Diagram

“Y” capacitors
provide common
mode attenuation
and a required
return path for the
current sensing
transformer.

_m_

The differential
N inductor
provides
attenuation of
the differential
mode ripple

current.

. @

The floating
bias supply
provides bias
power for the
high speed
OPAMP, so it
can either
source or sink
high current as
required to
reduce the
common mode
noise.
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The Picor QPI-21 Active EMI Filter Topology Simplified Block Diagram

A stable DC bias
point is provided by
a separate DC
amplifier (not
shown) which
compensates for
the DCR loss in the
circuit.

The injection
capacitor
blocks the DC
bias from the
differential
amplifier from
connecting to
ground.

The common
mode inductor
with current
sense winding
can be very
small (2uH)
made with
single turn
windings and a
multiple turn
current sense
winding. It
separates DM
from CM and
applies
common mode
current sense
to the
differential
amplifier.
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_

The Picor QPI-21 Active EMI Filter Topology Simplified Operation
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The Picor QPI-21 Active EMI Filter Topology Simplified Operation
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QPI-21 EMI Performance With And Without Active Loop

5 Agilent  14:66:43  Jun 29, 2811
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PCB area for a 9 Amp
common mode inductor is
longer and wider than the

14A QPI-21 filter, which
contains both differential
and common mode
circuitry. In addition, the
9A common mode
inductor is twice as high
as the QPI-21.

9 Amp Common Mode Filter Footprint
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VICOR

Active Filter Example

QPI-21
* 2.3W dissipation round trip @ 14A! Passive Solution
e Much smaller loop area, lower susceptibility . dissivati dtri
e EMI performance is less dependent on layout 3.5W ||55|pat|on round trip @ 9A
and magnetic components parasitics * Large loop area . . . i
e Critical layout is inside SiP and already done * Layout and magnetics quality are critical to high
e No derating until 65 degree ambient @ 14A frequle.ncly pe.rf;).rmarr\]cek H hich .
e EMI performance equivalent to two stage passive * Mu F'p € win |.ng choKes a.ve. 'gher par_asmc
<olution capacitance, which tends to limit attenuation

e Many more “Y” capacitors are required
e Solution grows significantly for a higher current
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Side By Side On The Same PCB!

Ex
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What To Do When Things Don’t Go Right With EMI

Remember my golden rule: Theory and practice MUST match. This will help your thought process when you get

frustrated.

Buy some good diagnostic tools like noise separation filters, a near field probe (these can be made fairly easily), an
old analog scope (perfect for EMI)

Don’t be afraid to experiment.

Call Picor

The next few slides will explain why troubleshooting EMI can be fun and challenging, despite what your manager

thinks!
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What To Do When Things Don’t Go Right With EMI| e

arker
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e We were asked to test our QPI-21 Active Filter with a certain B
200W power supply for a top customer to design into his high end
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e After the customer designed our filter into his system, he sent me the system stating he measured an EMI plot like

that shown below at very light load. It is failing Class A by almost 20 dB!!

i Agilent  21:45:03 Feb 5, 2012

Atten B dB
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I

L_IN

M_IN

U4

Noise separator indicated
DM noise, removing LISN
ground had no effect

Adding current probe here
showed virtually no noise
current leaving QPI-21.
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Ripple voltage was very
low here, did not match
EMI noise level

/

:LCS

T 100U

L% 0 I ce_1
4.7n T 4.7n T

WA+

WM

Adding load did not

change measured EMI at

all

| U3

High DM noise measured at LISN input,
synchronized to magnetic field at DC-
DC using near field probe
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41

I



What To Do When Things Don’t Go Right With EMI

42

N W n

‘ Q

o o
MM

/ Q

w 0T8N |

|

Qr21Lz
(6

TOC ™
N WA .

Power Input




VICOR

—
What To Do When Things Don’t Go Right With EMI

s Agilent  00:51:58 Feb 6, 2012

Atten @ dBE

361L.852 kHz
/| 36.46 dBpV

VEH 38 kHz

Moved Location Result
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What To Do When Things Don’t Go Right With EMI Final Thoughts

e Always try to make sure that the EMI filter is the closest component to the power entry ports. It is very easy to
create a sneak path due to stray magnetic fields that will bypass the filter.
e Trust your measurements. EMI proficiency is not magic. Most conducted noise problems are measureable and

traceable to a source.

e Try to design for EMI compliance up front. It becomes very difficult to move components around on a dense layout.
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In Summary.............

A method was presented to design the correct amount of input capacitance for a typical Buck regulator and conf
the results were confirmed using circuit simulation methods. We discussed the measurement of insertion loss and
filter impedances. A method to damp the input filter of a Buck regulator was also discussed.

A case history was presented to illustrate the problem of input filter stability and how to correct it.

A passive common mode and differential mode filter was presented.

The Picor QPI-21 Active Filter Topology was presented with circuit simulation and theory of operation.

Finally, a case history illustrating how to troubleshoot an EMI problem was discussed.
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