Challenges and Potential Solutions for Future Electric Aircraft : from an Academic Point of View

Fang Luo, Ph.D.

Director of the Spellman High Voltage Power Electronics Laboratory,

Empire Innovation Associate Professor,

Fang.Luo@stonybrook.edu

ECE Department, SUNY Stony Brook

2022 Power Electronics Symposium

IEEE L.I.

Nov 3rd , 2022

A Glance at Spellman HV PE Lab

PI: Fang Luo (Empire Innovation Associate Professor), Ph.D. Student: 16, M.S. Students: 3, **Undergraduate Students:2**

Research Area: High Performance Power Electronics Converter and Systems

Recent Projects:

- High density power/High efficiency/High Power converters 1.
- Power Module packaging
- 3. Converter System Control and lifetime management
- Ocean Energy and Offshore Wind Energy Systems
- Electric ground and air vehicles 5.
- HV Insulation and degradation modeling/testing 6.
- Microgrid for multi-source/energy storage renewable energy integration

High Performance WBG Modules

High Density Grid Tied Solar Converter (SiC)

Spellman

Modular Grid-tied Converter for Grid Control (SiC)

Semiconductor

GE Aviation

GE Renewable Energy

How can I fly it?

Enabling Technologies

Power Module Packaging

Flying Microgrid Control

Realtime Digital Twin for Prognostic and Diagnostic

Lifetime Management

1st Order Problem

2nd Order Problem

Cryogenic High Density Motor Drive (GaN)

High Density Grid Tied

Solar Converter (SiC)

Modular Grid-tied Converter for Grid Control (SiC)

EMI and Reflected Wave in Flying Microgrid/ **Active Filtering**

High Attitude Partial Discharge Testing and Modeling

PD/EMI

High Performance Power Converters

Multidisciplinary Co-Design Tool

EMI and Reflected Wave Filter Calculator

Nearfield Calculator

Math Tool: Improved Double Fourier Integral

Same flowchart can be used for weight optimization

Converter Development

Measured efficiency of 99.45%

2022-11-09

20 kW, 99% efficiency

Fang.luo@stonybrook.edu

6

Stony Brook Shrinking the Size: Power Module Development

Thermal-Mechanical-Electrical Co-designed Solution

HV PWM Waveform Testing on Power Module Substrate

0 Position (μm) 300

Space-charge simulation results under dc voltage. (a) Electric field distribution at 1 s. (b) Electric field distribution at 1800 s. (c) Space-charge distribution at 1 s. (d) Space-charge distribution at 1800 s.

Space-charge simulation results under dc voltage. (a) Electric field distribution at 1 s. (b) Electric field distribution at 1800 s. (c) Space-charge distribution at 1 s. (d) Space-charge distribution at 1800 s.

- PWM wave will influence space ٠ charge distribution in insulator
- Change of space charge will ٠ influence E-field distribution

PCB Under DC Excitation at Different Pressure

- ✓ Maximum creepage is ~2 mm
- PDIV: round pad > square pad > trace corner
- PDIV linearly increases with creepage at the same pressure
- The creepage range is not wide enough to see the saturation phenomenon, but the PDIV of round pad with 2 mm creepage is ~7500 V under DC voltage

> Partial discharge under DC and square wave at low pressure

- ✓ High voltage source: AC, DC & square wave
- ✓ Vacuum system: chamber & pump
- PD measurement: UHF (suitable for AC, DC) or SHF (AC, DC, and square wave)
- Specimen: surface and void defect (busbar, PCB, and substrate)

PD measurement testbench

SHF down-mixing measurement system **1-09**

PD signal of silicone elastomer

Stony Brook University

EMI and Reflected Wave

Conducted/Radiated EMI Testing

SiC Converter

Nearfield EMI Testing

Modified Induced Noise Testing

- Power current induced noise can cause damage to signal circuit
- Coupling coefficient is determined by signal loop size, orientation and grounding
- Improved super-positioning in the cabling system

Lifetime Management: Realtime Digital Twin

Self-evolving Realtime Digital Twin at SBU

- I. Differential Inductance: *L*_{DM}
- **2**. Inductors channel resistances: R_{L1} and R_{L2}
- 3. Switches on Resistances: R_{DSon1} and R_{DSon2}
- 4. Output Capacitor: *C*_{out}
- 5. Capacitor ESR: R_C

Converter component

voltage/current

be estimated

parameters can be calculated

through the HF slopes in I/O

By estimating the component

values, the converter's health

condition and its lifetime can

Plots compares the parameters estimated for 20 executions with mean value (bar)4

h: time step

Stony Brook What do we need: from a Professor's Point of view

- Enhanced power engineering courses are in strong demand
- Improved lab sessions are needed
- Interdisciplinary research and education

efforts: "learn from the legacy"

- Advanced engineering math tools are needed to address multidisciplinary modeling problem
- No problem is "someone else's problem"

Discussion

* Stony Brook NASA ULI- Cryogenic Power Conversion

Cryo-Cooled Motor Drive

COTS APS

Buffer

650 V GaN Device Testing

Stony Brook University

-RT -LN₂

MPP Inductor Testing

Switching Frequency (kHz)

Cryogenic Air Core Inductor

19