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Introduction

e Quartz crystals provide superior performance to most other
resonator types and half been used widely since 1939

m Small
m Extremely high Q (>20,000 for AT, >1,000,000 for SC)
m Superb temperature performance

e Oscillator Types
XO

VCXO
TCXO
MCXO
OCXO
DCOCXO
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Introduction

o]
e Quartz Crystal equivalent circuit
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e Crystal equivalent circuit
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Introduction

e Fractional Frequency Stability
e Relative measure of frequency variation

S=AF/F

e i.e. (change in Freqg./ Nominal Freq.)

e EX: 1Hz/100Hz =.01=1%
1Hz/1MHz = 1x10° = 1ppm
0.01Hz/10MHz = 1x107° = 1ppb
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Introduction
L]

e TCXO (Temperature Compensated Crystal Oscillator)

e Quartz has natural frequency versus temperature
response

e Compensation circuit creates a temperature dependent
voltage that changes the load capacitance the crystal
sees

e Classically done with thermistor resistor networks

e Modern TCXO use a 5" order polynomial generator
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Introduction
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Generic TCXO Block Diagram
<&
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TCXO Introduction

e Thermistor resistor network

YREF

Yaur

e Limitation on curve fitting
e Manual selection of resistors
e Difficult to miniaturize



TCXO Introduction
L]

e Polynomial Function generator
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Conventional Crystal Packages

Two-point Mount Package

Three- and Four-point Mount Package

Quartz
blank

Cover——

Seal
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Mounting
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J «—Top view
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Modern Strip Crystal Packages
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Artificial Neural Network Compensation
<&
e TCXQO’s are limited in temperature stability
performance because of the following factors:

m Polynomial generator is limited in shape it can
generate

m Crystals are not perfect polynomials

e Artificial Neural Network (ANN) is not inherently
limited in shape
m Can adapt to any shape
m Just add neurons
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Artificial Neural Network Overview
L]

e ANN Definition

m A machine that is designed to model the way in which
the brain performs a particular function or task of
Interest [4]

m [t achieves this function through the use of simple
processing units called neurons

m The ability to “learn” or modify its response to given
stimuli
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Artificial Neural Network Overview

e Neuron Model
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Artificial Neural Network Overview

e Neuron Shorthand Model
X1

(s
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Artificial Neural Network Overview

e Neural Network Example

M5
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Activation Function Overview

e Activation Function can be any function
e Unipolar sigmoid has been chosen

1
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Activation Function Overview
L]

e (controls the slope
e o controls the amplitude

e b controls the delay (left/right position)



Activation Function Overview

e @ controls the amplitude
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Activation Function Overview

e (controls the slope
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Activation Function Overview

e b controls the delay (left/right shift)

Single Neuron Output (Sigmoid Activation Function)
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ANN Temperature Compensation
<&

e TCXOs compensation (-40 to +85 C)

m Thermistor resistor networks (+/-1.0ppm)
m Polynomial function generator (+/-0.1ppm)

e ANN provides superior curve fitting
m +/-0.005ppm (-40 to +85 C)
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ANN Temperature Compensation

e Network Configuration
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ANN Curve Fitting Example

e Two Neurons and Linear Summer

Curve Fit of Parabola
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ANN Curve Fitting Example

e Two Neurons and Linear Summer
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ANN Temperature Compensation

e Block Diagram
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ANN Temperature Compensation
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<&
e Hardware Block Diagram
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ANN Temperature Compensation

e Actual Hardware




(Greenray)

ANN Temperature Compensation
<&

e Used GRI 5mm x 7mm TCXO
m Ceramic package

e Uncompensated
m ANN is primary compensation

e Compensated
m ANN is secondary compensation



ANN Compensation Results

e Uncompensated performance
e Stablility of +/-15.74 ppm from -42 to +86 C
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ANN Compensation Results
<&

e ANN as primary compensation (25 neurons)
e Stability of +/-0.035 ppm from -42 to +86 C
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ANN Compensation Results
|

e 51" Order compensated performance
e Stabllity of +/-0.102 ppm from -42 to +86 C

Frequency Versus Temperature Performance
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ANN Compensation Results
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e ANN as secondary compensation (33 neurons)
e Stability of +/-0.005 ppm from -42 to +86 C

Deviation (ppm)

0.010

0.005

0.000

-0.005

-0.010

-0.015

-0.020

Characterization Run

a7

e

——ANN
Compensated
T70-1

-60 -45 -30 -15 0 15 30 45 60 75 90
Temp (C)




ANN Compensation Results
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ANN Temp Comp Summary

e ANN as primary compensation needs new
oscillator design

e ANN as secondary compensation has better
stability than many small ovens

e Both have better stability than polynomial
compensation
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ANN Temp Comp Summary

<&
e TCXO Phase Noise performance

e Multiple inputs could allow compensation of
other environmental effects
m Trim effect
m Thermal Hysteresis

m \Warm-up

m Aging



(Greenray)

Trim Effect Compensation
|
e Trim effect is a skewing of frequency versus
temperature performance

e Caused by being at a different point on the
varactor reactance curve than when
compensated

e This degradation exists in all tunable xtal
oscillators, but rarely specified anymore.
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Trim Effect Compensation

e Frequency versus load capacitance

/\7 Frequency
-
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Trim Effect Compensation

e Trim Effect on Polynomial Generator
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+/-5ppm pull (+/-182.2ppb)
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Trim Effect Compensation

e Two input ANN for trim compensation




GReenRray)

Trim Effect Compensation

Igmoid response
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Trim Effect Compensation

<&
e Trim effect compensation block diagram
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Trim Effect Compensation

<&
e Trim Effect Compensation Hardware
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Trim Effect Compensation

e ANN temperature compensation applied first

ANN100-1 temperature compensation applied
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Trim Effect Compensation

e Baseline trim effect

ANN100-1 Trim Effect Baseline
+/-5ppm pull (+/-182.2ppb)
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Trim Effect Compensation

|
e Trim Effect Compensation

ANN2100-1 Trim Effect +/-5ppm pull
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Trim Effect Summary

e ANN compensation of trim effect very effective
e +/-20ppb relatively easy to achieve

e Temp/trim compensation could be achieved as
single ANN

e Practically easier to implement as a separate
network
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Hysteresis Compensation
<&
e Thermal Hysteresis is a difference in the
frequency versus temperature performance
depending on thermal history

e Temperature change and rate are both factors in
thermal hysteresis

e Rate causes an apparent hysteresis due to
mismatch of the temperature sensor and the

resonator

e Temperature change causes “true” hysteresis
which is thought to be stress induced
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Hysteresis Compensation

e TCXQO'’s are compensated by sweeping

temperature and calculating solution, then
repeating...

e Different manufacturers choose different profiles
Hot to Cold versus Cold to Hot

e Greenray compensates Hot to Cold to eliminate
moisture Issues
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Hysteresis Compensation

e Both “true” and “apparent” hysteresis need to be
compensated

e Very difficult because it is not trivial separating

true from apparent hysteresis when various turn
around points are encountered

e More research needs to be done to gain an
understanding of the mechanics of hysteresis
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Hysteresis Compensation

e Example of quartz thermal hysteresis
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Hysteresis Compensation

e Rate Effects
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Hysteresis Compensation

.|
e Hysteresis compensation block diagram
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Hysteresis Compensation

e Hysteresis compensation block diagram
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Hysteresis Compensation

e Hysteresis at different turn around points (same rate)
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Hysteresis Compensation
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L |
e Hysteresis Comp
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Hysteresis Summary

|
e Partially reduced to practice

e Need to better understand the effect thermal
history has on frequency

e Need to isolate rate effects (apparent hysteresis)
from hysteresis (true hysteresis)
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Aging/Warm-up Compensation

e Aging is the long term frequency drift that takes
place in quartz oscillators

e “Good” aging is a positive trending natural log
function

. f(t)=A(IN(Bt+1)+f,

e “Bad” aging is a negative trending natural log
function or negative linear function

e Bad aging can come from outgassing of
contaminants that mass load the blank (mass to
frequency relationship Is inverse)
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Aging/Warm-up Compensation

e Aging Plot (40MHz 9mmx7mm oscillator)
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Aging/Warm-up Compensation

e \Warm-up Plot (=27MHz oscillator)
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Aging/Warm-up Compensation

e Has not been reduced to practice

e Although different phenomenon aging and
warm-up could use a common ANN structure for
compensation

e Need to keep track of elapsed on time and off
time
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Aging/Warm-up Compensation

e Proposed circuit block diagram
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Aging/Warm-up Summary

e Has not been reduced to practice

e Difficulty in keeping track of off time

e Might be viable for specific application with fixed
amounts of off time
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Conclusions

e ANN Is a superior curve fitter to any method
currently or previously used in frequency control

e [or temperature compensation an order of
magnitude improvement has been realized over
other state of the art methods

e For trim effect it provides a compensation that
makes the DUT virtually immmune to trim effect
(most manufacturers ignore It)

e Hysteresis iIs present on all crystal oscillators to
some degree
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Conclusions

e With the ANN temperature compensation the
hysteresis dominates as the source of error

e Needs more research to better understand the
phenomenon before compensation can be fully
realized

e Aging/WU compensation is also desirable
e Difficulty in dealing with off time
e Maybe suitable for fixed off time applications
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Conclusions

e ANN could be used for even more frequency
control applications

e Very versatile due to its adaptive nature
e Not inherently limited in shape factor



(GREENRAE)
Thank You

e Questions

e Comments

e Concerns
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