
John Esterline 
Greenray Industries 

Compensation of Environmental Effects on Crystal 
Oscillators Using an Artificial Neural Network 

1 

The Long Island Chapter of the IEEE 

Microwave Theory & Techniques Society  



Topics 

 Introduction and background 

 Artificial Neural Network (ANN) overview  

 ANN oscillator compensation 

 Hardware configuration 

 Testing methodology 

 Various Compensations 

 Temperature, Trim, Hysteresis, Aging, Warm-up 

 Conclusion 

 Questions 

 

 2 



Introduction 

 Quartz crystals provide superior performance to most other 

resonator types and half been used widely since 1939 

 Small 

 Extremely high Q (>20,000 for AT, >1,000,000 for SC) 

 Superb temperature performance 

 

 Oscillator Types 

 XO 

 VCXO 

 TCXO 

 MCXO 

 OCXO 

 DCOCXO 
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Introduction 

 Quartz Crystal equivalent circuit 

 

 

 

 

 

 

 

 Crystal equivalent circuit 
 C1, R1, and L1 are the “Motional Parameters” 

 C0 holder capacitance 
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Introduction 

 Fractional Frequency Stability 

 Relative measure of frequency variation 

 

                 S=ΔF/F 

 
 i.e. (change in Freq. / Nominal Freq.) 

 

 Ex:  1Hz/100Hz = .01 = 1% 

         1Hz/1MHz = 1x10-6 = 1ppm 

         0.01Hz/10MHz = 1x10-9 = 1ppb 

 

 

 

 
5 



Introduction 

 TCXO (Temperature Compensated Crystal Oscillator) 

 

 Quartz has  natural frequency versus temperature 

response 

 

 Compensation circuit creates a temperature dependent 

voltage that changes the load capacitance the crystal 

sees 

 

 Classically done with thermistor resistor networks 

 

 Modern TCXO use a 5th order polynomial generator  

 

 

6 



Introduction 
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Generic TCXO Block Diagram 
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TCXO Introduction 

 Thermistor resistor network 

 

 

 

 

 

 

 

 

 Limitation on curve fitting 

 Manual selection of resistors 

 Difficult to miniaturize 
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TCXO Introduction 

 Polynomial Function generator 
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Conventional Crystal Packages 
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Modern Strip Crystal Packages 
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Artificial Neural Network Compensation 

 TCXO’s are limited in temperature stability 

performance because of the following factors: 

 Polynomial generator is limited in shape it can 

generate 

 Crystals are not perfect polynomials 

 

 Artificial Neural Network (ANN) is not inherently 

limited in shape 

 Can adapt to any shape  

 Just add neurons 
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Artificial Neural Network Overview 

 ANN Definition 

 

 A machine that is designed to model the way in which 

the brain performs a particular function or task of 

interest [4] 

 

 It achieves this function through the use of simple 

processing units called neurons 

 

 The ability to “learn” or modify its response to given 

stimuli 
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Artificial Neural Network Overview 

 Neuron Model 
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Artificial Neural Network Overview 

 Neuron Shorthand Model 
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Artificial Neural Network Overview 

 Neural Network Example 
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Activation Function Overview 

 Activation Function can be any function 

 Unipolar sigmoid has been chosen 
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Activation Function Overview 

     controls the slope  

 

     controls the amplitude  

 

     controls the delay (left/right position) 
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Activation Function Overview 

     controls the amplitude  
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Activation Function Overview 

     controls the slope  
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
Single Neuron Output (Sigmoid Activation Function)
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Activation Function Overview 

     controls the delay (left/right shift)  
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ANN Temperature Compensation 

 TCXOs compensation (-40 to +85 
 

C) 

 Thermistor resistor networks (+/-1.0ppm) 

 Polynomial function generator (+/-0.1ppm) 

 

 ANN provides superior curve fitting 

 +/-0.005ppm (-40 to +85 

 

C) 
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ANN Temperature Compensation 

 Network Configuration 

 

24 


















 



outbout

n

i

iioutout byY 
1



ANN Curve Fitting Example 

 Two Neurons and Linear Summer 
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ANN Curve Fitting Example 

 Two Neurons and Linear Summer 
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ANN Temperature Compensation 

 Block Diagram 
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ANN Temperature Compensation 

 Hardware Block Diagram 
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ANN Temperature Compensation 

 Actual Hardware 
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ANN Temperature Compensation 

 Used GRI 5mm x 7mm TCXO 

 Ceramic package 

 

 Uncompensated 

 ANN is primary compensation 

 

 Compensated 

 ANN is secondary compensation 
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ANN Compensation Results 

 Uncompensated performance 

 Stability of +/-15.74 ppm from -42 to +86 

 

C  
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ANN Compensation Results 

 ANN as primary compensation (25 neurons) 

 Stability of +/-0.035 ppm from -42 to +86 

 

C  
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ANN Compensation Results 

 5th Order compensated performance 

 Stability of +/-0.102 ppm from -42 to +86 

 

C  
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ANN Compensation Results 

 ANN as secondary compensation (33 neurons) 

 Stability of +/-0.005 ppm from -42 to +86 

 

C  
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ANN Compensation Results 
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ANN Temp Comp Summary 

 ANN as primary compensation needs new 

oscillator design 

 

 ANN as secondary compensation has better 

stability than many small ovens  

 

 Both have better stability than polynomial 

compensation 
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ANN Temp Comp Summary 

 TCXO Phase Noise performance 

 

 Multiple inputs could allow compensation of 

other environmental effects 

 Trim effect 

 

 Thermal Hysteresis 

 

 Warm-up 

 

 Aging 
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Trim Effect Compensation 

 Trim effect is a skewing of frequency versus 

temperature performance 

 

 Caused by being at a different point on the 

varactor reactance curve than when 

compensated 

 

 This degradation exists in all tunable xtal 

oscillators, but rarely specified anymore. 
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Trim Effect Compensation 

 Frequency versus load capacitance 
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Trim Effect Compensation 

 Trim Effect on Polynomial Generator 
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Trim Effect Compensation 

 Two input ANN for trim compensation 
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Trim Effect Compensation 

 Two input sigmoid response 

 

42 
 



Trim Effect Compensation 

 Trim effect compensation block diagram 
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Trim Effect Compensation 

 Trim Effect Compensation Hardware 
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Trim Effect Compensation 

 ANN temperature compensation applied first 
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Trim Effect Compensation 

 Baseline trim effect  
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Trim Effect Compensation 

 Trim Effect Compensation  
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Trim Effect Summary 

 ANN compensation of trim effect very effective 

 

 +/-20ppb relatively easy to achieve 

 

 Temp/trim compensation could be achieved as 

single ANN 

 

 Practically easier to implement as a separate 

network 
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Hysteresis Compensation 

 Thermal Hysteresis is a difference in the 

frequency versus temperature performance 

depending on thermal history 

 Temperature change and rate are both factors in 

thermal hysteresis 

 Rate causes an apparent hysteresis due to 

mismatch of the temperature sensor and the 

resonator 

 Temperature change causes “true” hysteresis 

which is thought to be stress induced 
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Hysteresis Compensation 

 TCXO’s are compensated by sweeping 

temperature and calculating solution, then 

repeating… 

 

 Different manufacturers choose different profiles 

Hot to Cold versus Cold to Hot 

 

 Greenray compensates Hot to Cold to eliminate 

moisture  issues 
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Hysteresis Compensation 

 Both “true” and “apparent” hysteresis need to be 

compensated  

 

 Very difficult because it is not trivial separating 

true from apparent hysteresis when various turn 

around points are encountered 

 

 More research needs to be done to gain an 

understanding of the mechanics of hysteresis  
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Hysteresis Compensation 

 Example of quartz thermal hysteresis 
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Hysteresis Compensation 

 Rate Effects 
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Hysteresis Compensation 

 Hysteresis compensation block diagram 
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Hysteresis Compensation 

 Hysteresis compensation block diagram 
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Hysteresis Compensation 

 Hysteresis at different turn around points (same rate) 
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Hysteresis Compensation 

 Hysteresis Comp  
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Hysteresis Summary 

 Partially reduced to practice 

 

 Need to better understand the effect thermal 

history has on frequency 

 

 Need to isolate rate effects (apparent hysteresis) 

from hysteresis (true hysteresis) 
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Aging/Warm-up Compensation 

 Aging is the long term frequency drift that takes 

place in quartz oscillators 

 “Good” aging is a  positive trending natural log 

function  

        f(t)=A(ln(Bt+1)+fo 

 

 “Bad” aging is a negative trending natural log 

function or negative linear function 

 Bad aging can come from outgassing of 

contaminants that mass load the blank (mass to 

frequency relationship is inverse) 
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Aging/Warm-up Compensation 

 Aging Plot (40MHz 9mmx7mm oscillator) 

 

60 



Aging/Warm-up Compensation 

 Warm-up Plot (≈27MHz oscillator) 
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Aging/Warm-up Compensation 

 Has not been reduced to practice 

 

 Although different phenomenon aging and 

warm-up could use a common ANN structure for 

compensation 

 

 Need to keep track of elapsed on time and off 

time    
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Aging/Warm-up Compensation 

 Proposed circuit block diagram  

   
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Aging/Warm-up Summary 

 Has not been reduced to practice 

 

 Difficulty in keeping track of off time 

 

 Might be viable for specific application with fixed 

amounts of off time 
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Conclusions 

 ANN is a superior curve fitter to any method 

currently or previously used in frequency control 

 For temperature compensation an order of 

magnitude improvement has been realized over 

other state of the art methods 

 For trim effect it provides a compensation that 

makes the DUT virtually immune to trim effect 

(most manufacturers ignore it) 

 Hysteresis is present on all crystal oscillators to 

some degree 
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Conclusions 

 With the ANN temperature compensation the 

hysteresis dominates as the source of error 

 Needs more research to better understand the 

phenomenon before compensation can be fully 

realized 

 Aging/WU compensation is also desirable 

 Difficulty in dealing with off time 

 Maybe suitable for fixed off time applications 
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Conclusions 

 ANN could be used for even more frequency 

control applications 

 Very versatile due to its adaptive nature 

 Not inherently limited in shape factor 
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Thank You 

 Questions 

 

 Comments 

 

 Concerns 
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