

LabVIEW User Group Meeting

New York Metro Area (Farmingdale)

2015-12-03

Agenda

1. DMC

2. Design Patterns – What? Why?

3. Basic Tools

4. Simple Patterns

5. Reference Architectures

Company Overview

employees &

growing

75+
Established in 1996, offices in New York,

Boston,

Chicago, Denver and Houston

Industries Served:
Automotive

Bio-medical

Chemical and Food Processing

Defense

Electronics/Semiconductor

Fuel Cells/Alternative Energy

Hydraulics

Laboratory Testing

Machine Tool

Material Handling

Medical Devices

Packaging

Pharmaceutical

Printing & Textiles

Certifications

DESIGN
PATTERNS

• Save development time

• Improve Modularity

• Increase Readability

• Take advantage of proven code/architecture

• SMoRES

Why should I use design patterns?

Scalable: extending to N+1 should be simple

Modular: the application is broken into well-defined

components that can stand on their own

Reusable: the code structured in a way that it could be

reused in different applications

Extensible: new features can be added easily

Simple: simplest solution that meets all of the

requirements

SMoRES – criteria for a well designed application

Scalable: extending to N+1 should be simple

Modular: the application is broken into well-defined

components that can stand on their own

Reusable: the code structured in a way that it could be

reused in different applications

Extensible: new features can be added easily

Simple: simplest solution that meets all of the

requirements

SMoRES – criteria for a well designed application

Scalable: extending to N+1 should be simple

Modular: the application is broken into well-defined

components that can stand on their own

Reusable: the code structured in a way that it could be

reused in different applications

Extensible: new features can be added easily

Simple: simplest solution that meets all of the

requirements

SMoRES – criteria for a well designed application

Scalable: extending to N+1 should be simple

Modular: the application is broken into well-defined

components that can stand on their own

Reusable: the code structured in a way that it could be

reused in different applications

Extensible: new features can be added easily

Simple: simplest solution that meets all of the

requirements

SMoRES – criteria for a well designed application

Scalable: extending to N+1 should be simple

Modular: the application is broken into well-defined

components that can stand on their own

Reusable: the code structured in a way that it could be

reused in different applications

Extensible: new features can be added easily

Simple: simplest solution that meets all of the

requirements

SMoRES – criteria for a well designed application

Basic Tools

• For/While Loops

• Shift Registers

• Enums

• Case Structures

• Event Structures

• Queues

Simple
Patterns

• Functional Global Variables

• State Machine

• Event Driven User Interface

Need: share data across a large application

• Local Variables?

• Global Variables?

Functional Global Variables

How does it work?
1. Functional Global is a Non-Reentrant SubVI

2. Actions can be performed on data

3. Enumerator (input) selects action, case structure action engine

4. Stores data in un-initialed shift register

5. Loop only executes once

Functional Global Variables

Functional Global Variables

Need: execute a sequence of events but the order is
determined programmatically (usually user driven)

State Machine

Dynamic Sequence

State Machine

How does it work?
1. Case structure inside of a While-loop

2. Each state in the case structure holds code to be executed in its state

3. Each state has decision making code that determines next state

4. Enumerators (case selector) is used to pass next state via shift registers

State Machine

Need: to detect user actions without slowing your
application/missing them

• Event structure within While-loop

• Blocking function until event is registered or timeout

• Event structure configured to choose which events are
registered (button presses, mouse click, etc)

Event Driven User Interface

How does it work?
1. Operating system broadcasts system

events (mouse click, key press, button
click) to applications

2. Registered events are captured by event
structure and executes appropriate case

3. Event structure returns information about
events to case

4. Event structure enqueues events that
occur while it’s busy

Event Driven User Interface

Reference
Architectures

• Producer/Consumer or
Master/Slave

• Queued State Machine &
Event-driven User Interface

• Daemon

• SEA Monster

• ??? (Yours!)

Need: to execute code in parallel and communicate
between them

Producer/Consumer

How it works:
1. Master loop with one or more

slave loops

2. Master loop controls execution of
slaves

3. Allows for asynchronous execution
of loops

4. Decouples processes to allow
multi-threading

5. Communication between loops

Producer/Consumer

Queue-based communication

• Adding elements to the queue

• Dequeueing elements from the
queue

Producer/Consumer

Need: to enqueue events from a user that control the
sequence of events in a state machine

• Event-driven user interface as a producer loop

• State machine as a consumer loop

• Communication between the loops using an event
queue

Queued State Machine & Event-Driven Producer/Consumer

How it works:
1. Events are captured by producer

loop

2. Producer places data on the queue
3. Consumer loop dequeues data
4. State machine in consumer loop

executes on data

5. Parallel processes communicate with
state machine using queue
references

Queued State Machine & Event Driven Producer/Consumer

Hello World!

Queued State Machine & Event Driven Producer/Consumer

What is a daemon?

• Used to create and launch applications that run
invisibly in the background
• Auto-save
• TCP/UDP messaging
• Garbage collection of temp files

• Perform low-priority monitoring and/or maintenance
or communication based processes

Daemon

Self-launching:

• Daemon must keep an open
reference to itself to keep from
being purged

Standard Launched:

• Launcher must transfer
responsibility for reference to
daemon VI

• Launcher must not close
reference to daemon

Daemon

Need: a very powerful, flexible, prebuilt/proven architecture
to speed up development time for complex applications

Solution: internally developed (over the last 15 years)
architecture based on a queued state machine & event-
driven user interface producer/consumer model.

S – States

E – Events

A – Actions

DMC SEA Monster

DMC SEA Monster

Event Scheduler
asynchronously “injects”
events into Event Queue

DMC SEA Monster

DMC SEA Monster Logic Editor

DMC SEA Monster Logic Editor

DMC SEA Monster Logic Editor

??? (Yours!)

Too many to list - many readily available NI whitepapers

References

Questions?

End Presentation

While Loop

Appendix - Tools

Shift Register

For Loop

Appendix - Tools

Tunnel

Enums & Case Structures

Appendix - Tools

Case Selector

Enum

Event Structures

Appendix - Tools

