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•   The DRA is an antenna that makes use of a radiating mode 

of a dielectric resonator (DR). 

 

•   It is a 3-dimensional device of any shape, 

     e.g., hemispherical, cylindrical, rectangular, 

     triangular, etc.  

 

•   Resonance frequency determined by the its dimensions and 

dielectric constant r. 

What is Dielectric Resonator Antenna (DRA) ? 
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Some DRAs : 



5 

Advantages of the DRA 

  

• Low cost 

• Low loss (no conductor loss) 

• Small size and light weight 

• Reasonable bandwidth (~10% for r ~10)  

• Easy of excitation 

• High radiation efficiency ( generally > 95%) 
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Excitation schemes  

(i) Microstrip line feed 
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feed line
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(ii) Aperture-couple feed 

Excitation schemes  
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(iii) Coaxial feed 

Excitation schemes  
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Bottom view Top view 

Coaxial feed 
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Bottom view Top view 

Aperture-coupled feed 
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Slot-fed DRA array using corporate 

microstrip feed network 

Corporate feedline for DRA array 
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Conformal-Strip Method  



Rectangular Dielectric 

Resonator Antennas 
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Proposed Antenna Geometry 
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Resonant frequency of TEmnl(y) mode 

Analytical Solution 

• Dielectric Waveguide Model (DWM) 
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Numerical Solution 

  Advantages 

  - Very simple 

  - High modeling capability for general EM structures 

  - No spurious modes nor large matrix manipulation 

  - Provide a very wideband frequency response 

• Finite-Difference Time-Domain (FDTD) method 

  Disadvantages 

  - Time consuming, powerful computer required 
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Baseband Gaussian pulse 
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  Uniform Cartesian grids 

  T = 0.083ns, t0 = 3T 

  10-cell-thick PML with polynomial spatial scaling  

  (m = 4 and κmax = 1) 

  total grid size : 80∆x 
 

 110∆y 
 

 112∆z 

  total time steps : 10000 

  ∆x = 0.715 mm, ∆y = 0.508 mm, ∆z = 0.5 mm  

Parameters 
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Input Impedance/S11 

• Reasonable agreement. 

• Wide Bandwidth of ~ 43%. 

• Dual resonant TE111
y and TE113

y modes are excited. 
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Resonant 
Modes 

Measured 
resonant 

frequencies  

Calculated resonant 
frequencies (FDTD) 

Predicted resonant 
frequencies (DWM) 
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error 
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• Reasonable agreement. 
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Field Distribution --- TE111
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E (xz) - plane H (yz) - plane(+x)(-x) (-y) (+y)
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  f = 3.5 GHz 

  f = 4.3 GHz 

Radiation Patterns 

• Broadside radiation patterns are observed. 

• Measured E-plane crosspolarized fields mainly caused by finite  

  ground plane diffraction.  



III. Circularly Polarized Design 

using a Parasitic Strip 
 



26 

Proposed Antenna Geometry 
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Input Impedance/S11 

• Reasonable agreement. 

• Bandwidth ~ 14%. 

• Two nearly-degenerate TE111(y) modes are excited. 

   CP operation 
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Axial Ratio in the boresight direction 

3-dB AR bandwidth is ~ 2.7%, which is a typical value for  

a singly-fed CP DRA. 

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
0

5

10

15

20

A
x

ia
l 

R
at

io
 (

d
B

)

Frequency (GHz)

Experiment
Theory



The H field of the DRA without and with parasitic 

strip (Top view) 

Without parasitic strip - LP field With parasitic strip - CP field 

3.4 GHz 3.4 GHz 

Feeding strip Feeding strip 

Parasitic 

strip 

29 
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Radiation Patterns (f = 3.4GHz, ) 

LHCP

RHCP

xz plane yz plane
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• A broadside radiation mode is observed. 

• For each radiation plane, the LHCP field is more than 20dB 

   stronger than the RHCP field. 

• The maximum gain is 5.7 dBic (not shown here).   
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Effects of feeding strip length l1 

• Input impedance changes substantially with l1.  

• AR is almost unchanged for different l1.  

• l1 can be adjusted to match the impedance without changing AR.  
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II. Frequency Tuning Technique 

 



The DRA for a paticular frequency may not be 

available from the comericial market. 

 

Fabrication tolerances cause errors between 

measured and calculated resonant frequencies. 

 

Frequency tuning methods:  

    (i)   loading-disk; and 

    (ii)  parasitic slot. 

Backgruond  



Frequency Tuning Technique 

- using a loading disk 

 



      Side view      Top view  

The slot-coupled DRA with a conducting loading 
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Hemispherical DRA: radius a = 12.5 mm, dielectric constant εr = 9.5. 

Coupling slot : length Ls , width Ws 

Open-circuit stub: length Lt 

Grounded dielectric slab: εrs = 2.33, height d = 1.57 mm 

Microstrip feedline: width Wf = 4.7 mm 



Calculated and measured return losses  

(Ls = 12 mm and Ws = 1 mm) 
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Calculated and measured radiation patterns 
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3.58 GHz (α = 52.8o and Lt = 13.6 mm) 

 Reasonable agreement 

between theory and 

experiment. 

 

 The effect of loading 

cap on field pattern is not 

significant. 

3.25 GHz (α = 26.38o and Lt = 4.42 mm) 



Calculated α and Lt for having a good return loss 

(minimum |S11| < -20dB)  
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The resonant frequency can be tuned by varying α  and Lt 

 α decreases from 26.38o to 0o (3.25 < fr < 3.5 GHz ) 

 α increases from 0o to 52.8o (3.5 < fr < 3.78 GHz) 



Impedance bandwidth 

 The bandwidth decreases after a loading cap is added. 

3.2 3.3 3.4 3.5 3.6 3.7
2

4

6

8

10

Frequency (GHz)

Im
p

ed
a
n

ce
 B

a
n

d
w

id
th

 (
%

)



Frequency Tuning Technique 

- using a parasitic slot 
 



        (a) Side view  

        (b) Top view  

The annular-slot-excited cavity-backed DRA  
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IV.  Omnidirectional Circularly 

Polarized DRA 
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CP DRAs concentrated on broadside-mode designs only. 

 Provide larger coverage. 

Advantages of omnidirectional CP antenna 
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Slotted omnidirectional CP DRA 

Design I: 
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Antenna configurations 
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Perspective view Front view 

 Dielectric cube with oblique slots (polarizer) fabricated on 
its four sidewalls. 

 
 Centrally fed by a coaxial probe extended from a SMA 

connector, whose flange used as the small ground plane. 
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             Prototype for 2.4 GHz WLAN design 

Top face and sidewalls Bottom face 

 

Design parameters 

r = 15, a = b = 39.4 mm, h = 33.4 mm, w = 9.4 mm,  

d =14.4 mm, r1 = 0.63 mm, l = 12.4 mm, g = 12.7 mm  

Photographs of the prototype 
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Simulated and measured results 

 Reflection coefficient 

 
 

Impedance bandwidth:                          AR bandwidth: 
Simulated: 20.3% (2.34-2.87 GHz)       Simulated: 8.2% (2.34-2.54 GHz)  
Measured: 24.4% (2.30-2.94 GHz)        Measured: 7.3% (2.39-2.57 GHz)  
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 Very good omnidirectional characteristic 
 
 In the horizontal plane, LHCP fields > RHCP fields by 

~20 dB .  

Simulated and measured radiation patterns 
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Simulated and measured antenna gain 
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Wideband omnidirectional CP antenna  

with parasitic metallic strips 

Design II: 
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Perspective view Front view 
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 Four parasitic metallic strips are embedded in the 
lateral slots to enhance the AR bandwidth. 
 

 The hollow circular cylinder is introduced to enhance 
the impedance bandwidth.  

Antenna configurations 
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Photographs of the prototype 

              

Top face and sidewalls Bottom face 

Design parameters 
 r = 15, a = b = 30 mm, h = 25 mm, r = 3 mm, w = 7 mm, d =10.5 mm 

 ls = 30.5 mm, ws = 1 mm, x0 = 6.4 mm, r1 = 0.63 mm, l = 19 mm.  

             Prototype for 3.4 GHz WiMAX design 
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Overlapping bandwidth: 22.0%; bandwidth widened by ~3 times. 

Simulated and measured reflection 

coefficient and axial ratio 

Axial Ratio (dB)
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Impedance bandwidth:  
Simulated: 22.3% (3.11-3.89 GHz)  
Measured: 24.5% (3.08-3.94 GHz)  

 
AR bandwidth: 
Simulated: 24.8% (3.11-3.99 GHz)  
Measured:  25.4% (3.16-4.08 GHz)  
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 Measured gain: wider bandwidth. 
 

 Measured antenna efficiency: 84-98% (3.1-3.9 GHz). 

 Antenna gain 

Simulated and measured results 

 Radiation efficiency 
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3.4 GHz 3.8GHz 

 LHCP fields > RHCP fields by more than 15 dB in horizontal plane.  
 Stable radiation patterns across the entire passband (3.1 – 3.9 GHz).  
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V. Dualband & Wideband DRAs 

 



(i) Rectangular DRA 
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 Dualband and wideband antennas are extensively used 

(e.g., WLAN) 

 Multi-element DRA [1] 

 - requiring more DR elements and space 

 Hybrid slot-DRA [2] 

 - coupling slot used as the feed and antenna 

 - inflexible in matching the impedance  

[1] Petosa, N. Simons, R. Siushansian, A. Ittipiboon and C. Michel, “Design and analysis of 

multisegmentdielectric resonator antennas,” IEEE Trans. AP, vol.48, pp.738-742, 2000.  

[2] Buerkle, K. Sarabandi, and H. Mosallaei, “Compact slot and dielectric resonator antenna with 

dual-resonance, broadband characteristics,” IEEE Trans. AP , vol. 53, pp.1020-1027, 1983.  

 

Background 
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• Wideband DRA [1] 

 

• Dualband DRA [2] 

 

• Trial-and-error approach is normally used 

 

• Systematic design approach is desirable 

[1] B. Li and K. W. Leung, “Strip-fed rectangular dielectric resonator antennas with/without a  

      parasitic patch,” IEEE Trans. Antennas Propagat., vol.53, pp.2200-2207, Jul.2005.  

[2] T. H. Chang and J. F. Kiang, “Dual-band split dielectric resonator antenna,” IEEE Trans. 

      Antennas Propagat., vol.55, no.11, pp.3155-3162, Nov.2007.  
 

Use of higher-order DRA 

mode  
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Design Formulas for Dual-Mode rectangular DRA 
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  The E-field should vanish on the PEC and the TE112 mode  

    cannot be excited properly. 

 The TE111 mode and TE113 mode are used in the dual- 

    mode design.  
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From the DWM model, the frequencies f1, f2 are given by: 
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in which                                 are wavenumbers in the 

dielectric, with c being the speed of light in vacuum.  
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3k1 > k2  or  3f1 > f2  

We have 

giving 

f2/f1 < 3  

which is the theoretical limit that is not known before. 
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1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
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 30r
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Error of      (%) 
1f 

f     f
2 1  / 

Compared with DWM results, errors of f1, f2 are both  

less than 2.5% for 1 < f2/f1≤2.8 ,  5 ≤εr  ≤70. 

  f1 kept constant at 2.4 GHz. 

Error analysis 
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A.  Example for Dual-band Rectangular DRA Design 

a = 20.8 mm, b = 10.5 mm, and d = 18.5 mm.  

Given: f1 = 3.47 GHz (WiMAX) 

            f2 = 5.2 GHz (WLAN), εr=10 

Using dual-mode 

formulas 
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Configuration of the dualband DRA 

b

a
d

Ground plane

Microstripline

Coupling

slot

LS
W

L

Wf

h

Substrate  rs

Rectangular 

DRA  r

z

y

x

W = 2.6 mm, L =10.6 mm, Ls=7.2 mm, Wf=1.94 mm, 

h=0.762mm, εrs= 2.93  
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Measured and simulated reflection coefficients  

Measured bandwidths:  

Lower band: 15% (3.25-3.78 GHz) covering WiMAX (3.4-3.7 GHz).  

Upper band: 8.3% (5.03-5.47 GHz) covering WLAN (5.15-5.35 GHz).  
  

3.2 3.6 4 4.4 4.8 5.2 5.6
-40

-30

-20

-10

0

HFSS Simulation      

Measurement  

Frequency (GHz)

Reflection coefficient |S  | (dB)11
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COMPARISON OF DESIGN, SIMULATED, AND MEASURED 

RESONANCE FREQUENCIES OF TE111
y AND TE113

y MODES  

Resonant 

Mode 

Measured 

frequency 

(GHz) 

Design  

frequency 

Simulated HFSS 

frequency 

f1,2 

(GHz) 

Error 

(%) 

fHFSS 

(GHz) 

Error 

(%) 

TE111
y 3.40 3.47 2.05 3.47 2.05 

TE113
y 

 

5.18 5.30 2.32 5.24 1.15 
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 TE111
y mode: measured (3.40 GHz), simulated (3.47 GHz).  

 Broadside radiation patterns are observed for both planes. 

 Co-polarized fields > cross-polarized fields by more than 20 dB in 

    the boresight direction. 

Measured and simulated radiation patterns  
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+x -y +y
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Measured and simulated radiation patterns  

 TE113
y mode: measured (5.18 GHz), simulated (5.24 GHz).  

 Broadside radiation patterns are observed for both planes. 

 Co-polarized fields > cross-polarized fields by more than 20 dB in 

    the boresight direction. 
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 TE111
y mode:  Maximum gain of 4.02 dBi at 3.48 GHz. 

 TE113
y mode: Maximum gain of 7.52 dBi at 5.13 GHz. 

 Electrically larger antenna has a higher antenna gain. 

Measured antenna gain 

3 3.5 4 4.5 5 5.5 6
-5

0

5

10
Gain (dBi)

Frequency (GHz)
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B.  Example for Wideband DRA Design 

a = 30.7 mm, b = 24.7 mm, and d = 47.7 mm.  

Given: f1 = 1.98 GHz (PCS) 

            f2 = 2.48 GHz (WLAN), εr=10 

Using formulas for 

dual-mode 

rectangular DRA 
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Configuration of the wideband DRA 

b

 Conducting 

feeding strip

 Coaxial 

aperture

a

d
W

l

Ground plane

Rectangular 

DRA  r

x

y

z

l = 17 mm, W = 1 mm  
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Measured and simulated reflection coefficients 

Measured bandwidths : 30.9% (1.83-2.50 GHz) 

PCS (1.85-1.99 GHz), UMTS (1.99-2.20 GHz)  

& WLAN (2.4-2.48 GHz)  

1.5 2 2.5 3
-40

-30

-20

-10

0

HFSS Simulation      

Measurement  

Reflection coefficient |S  | (dB)11

Frequency (GHz)
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Measured and simulated radiation patterns 

 

  Measured (2.16 GHz), simulated (2.11 GHz).  

  Broadside radiation patterns are observed. 

  Co-polarized fields > cross-polarized fields 

by more than 20 dB in the boresight direction. 
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Measured and simulated radiation patterns 

 

  Measured (2.41 GHz), simulated (2.46 GHz).  

  Broadside radiation patterns are observed. 

  Co-polarized fields > cross-polarized fields by more 

than 20 dB in the boresight direction. 
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Measured antenna gain 

 The maximum gain of 6.98 dBi at 2.47GHz. 

 TE113
y -mode gain > TE111

y -mode gain.  

  

1.6 1.8 2 2.2 2.4 2.6 2.8
0

2

4

6

8

Frequency (GHz)

Gain (dBi)



(ii) Cylindrical DRA 
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2

0

22

irzii kkk  
Ground plane

z

a

Cylindrical 

DRA 

h



r

  kρi & kzi :dielectric wavenumbers along the  & z directions 

 

  k0i = 2fi/c : wavenumber in air 

(1) 

Resonance frequency of the HEMmnr mode of the cylindrical DRA 

i = 1, 2 for f1, f2 

f1 : HEM111 mode frequency 

f2 : HEM113 mode frequency 
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



z
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a


Infinite 
dielectric rod

Resonance frequency of the HEMmnr mode of the cylindrical DRA 

For k: 

22
0)1(' iiri kkk   

where 

is the radial wavenumber outside the  

dielectric rod 

 

Jm(x) : Bessel function of the first kind   

Km(x): modified Bessel function of the second kind. 

(2) 

(3) 

D. Kajfez and P. Guillon, “Dielectric resonators,”  Norwood, MA, Artech House, Inc., 1986. 
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h

z



 r

Infinite dielectric 
slab 












 
 

zi

ziirr

i

zi

k

kk

p

hk
22

01 )1(
tan
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For kz: approximated by the 

TM01-mode wavenumber  

Resonance frequency of cylindrical DRA 

(i = 1, 2 for f1, f2)  

where p1 = 1 and p2 = 3 

correspond to the HEM111 and 

HEM113 modes, respectively. 

(4) 

R. K. Mongia and P. Bhartia, “Dielectric resonator antennas- a review and general design relations for 

resonant frequency bandwidth,” International Journal of Microwave and Millimeter-Wave Computer-

Aided Engineering, vol. 4, no. 3, pp 230-247, 1994. 
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






















0996.1982.3162.123.19

02.160713.4511.115.36

07.3682402.42.6253.680

11650034800937.0234.07.489

(1) 

f1 : HEM111 mode frequency (lower band)  

f2 : HEM113 mode frequency (upper band) 
Ground plane

z

a

Cylindrical 

DRA 

h



r

Design formula of ratio h/a for given f1, f2, and r 

Using the covariance matrix adaptation 

evolutionary strategy again, 
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0057.0114.6659.5429.4

0814.179764.00368.0152.0

01.3049973.0005.00571.0

109328.310700152.0751.1109.1

= 

(2) 

Design formula of radius a 

Radius a can be found by inserting h/a into (2) below: 

After a is found, h can be determined from h/a. 

Maximum error of a: 2.1% for 1  h/a  3.5,  9  r  27  

Maximum error of h: 3.0% for 1.28  h/a  1.85,  9  r  27  
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A. Example for dualband cylindrical DRA design 

a = 17.9 mm & h = 42.5 mm  

Given: f1 = 1.71 GHz (DCS:1.71- 1.88 GHz ) 

            f2 = 2.4 GHz (WLAN:2.4 - 2.48 GHz ),  

            εr=9.4 

Using formulas 

(1) & (2) 
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Matching slotExcitation 

strip
Via

x

y

Cylindrical 

DRA  r

a

Aperture

Feedline

Ground plane

Wf

Ws
DsLs

 

a

h



x

z Cylindrical 

DRA  r

Matching slot
Via

Feedline

d

Ground planeAperture 

for via

Excitation strip

w 

l 

Configuration of the dualband LP DRA 

Top view Side view 

a = 18.7 mm, h = 42.5 mm, r = 9.4, l = 12.5 mm, w = 1 mm,  

Ls = 20 mm, Ws = 1.5 mm, and Ds = 12.75 mm. 

 Radius a has been slightly increased to reduce the merging effect  
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0

Frequency (GHz)

HFSS Simulation      

Measurement  

Reflection Coefficient |S11| (dB)

Measured and Simulated Reflection coefficients 

Reasonable agreement  

Lower band impedance bandwidth: 15.5% (1.70-2.00 GHz) 

Upper band impedance bandwidth: 3.7% (2.39-2.48 GHz)   
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Measured and simulated radiation patterns 

HEM111 mode: measured (1.8 GHz), simulated (1.8 GHz) 

HEM113 mode: measured (2.42 GHz), simulated (2.45 GHz) 

(a) (b) 

Broadside radiation patterns are observed. 

Co-polarized fields > cross-polarized fields by more than 20 dB in the 

boresight direction. 
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1.6 1.65 1.7 1.75 1.8 1.85 1.9
0

2

4

6

Frequency (GHz)

Lower band gain (dBi)

HFSS Simulation      

Measurement  

Frequency (GHz)

Upper band gain (dBi)

2.3 2.35 2.4 2.45 2.5 2.55
0

2

4

6

8

1010

8

6

4

2

0
2.3 2.35 2.52.4 2.45 2.55

 Measured and simulated gain 

 HEM111 mode: Maximum measured gain of ~6 dBi (1.75 GHz) 

 HEM113 mode: Maximum measured gain of ~ 8 dBi (2.43 GHz) 
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L2

L3

L1

W2
W0

WS

W3 W1

LS

DS

Input port

Via

Cylindrical 

DRA  r

x 

ya

quadrature
coupler

Dualband

grounding
via

To

plane
Ground

port
Isolation

slot
Matching

strip
Excitation

via
To grounding

Dualband CP DRA 

a = 18.7 mm, h = 42.5 mm, r = 9.4, l = 12.5 mm, w = 1 mm, Ls = 21 mm, Ws = 1.5 mm, Ds = 

12.75 mm, L1 = 26.9 mm, L2 =26.5 mm, L3 = 56.65 mm, W0 = 4.66 mm, W1 = 7.3 mm, W2 = 

4.44 mm, and W3 = 0.46 mm. 

 

a

h



x

z Cylindrical 

DRA  r

Matching slot
Via

Feedline

d

Ground planeAperture 

for via

Excitation strip

w 

l 

Top view Side view 



 

1.6 1.8 2 2.2 2.4 2.6
-40
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-20

-10

0
Reflection Coefficient |S11| (dB)

Frequency (GHz)

HFSS Simulation      

Measurement  

Reasonable agreement 

Lower band bandwidth:18.9% (1.58-1.91 GHz).  

Upper band bandwidth:7.8% (2.33-2.52 GHz). 

Measured and simulated reflection coefficients 
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1.6 1.65 1.7 1.75 1.8 1.85 1.9
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Lower band AR (dB)

Frequency (GHz)

HFSS Simulation      

Measurement  

Upper band AR (dB)

Frequency (GHz)
2.3 2.4 2.5

0

2

4

6

88

6

4

2

0
2.3 2.4 2.5

Measured and simulated axial ratios (ARs) 

Reasonable agreement  

Lower band AR bandwidth: 12.4% (1.67-1.89 GHz)  

Upper band AR bandwidth: 7.4% (2.34-2.52GHz)  
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Measured and simulated radiation patterns 

(a) (b) 

HEM111 mode: measured (1.8 GHz), simulated (1.8 GHz) 

HEM113 mode: measured (2.42 GHz), simulated (2.45 GHz) 

Broadside radiation patterns are observed. 

LHCP fields > RHCP fields by ~20 dB in the boresight direction. 
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B. Example for wideband cylidnrical DRA design 

a = 10.3 mm & h = 34.3 mm  

Given: f1 = 2.90 GHz, f2 = 3.72 GHz, εr= 9.4 

Using formula 

(5) & (6) 
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Cylindrical 
DRA  r

Conducting 

feeding strip
Coaxial 

aperture

l

w h
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Ground plane

z

x

y
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Reflection Coefficient |S11| (dB)

Frequency (GHz)

HFSS Simulation      

Measurement  

Configuration Reflection coefficient 

a = 10.3 mm, h = 34.3 mm, r = 9.4,  

l = 12 mm, and w = 1 mm. 

Good agreement 

Measured impedance bandwidth: 

23.5% (3-3.8 GHz)  

Wideband LP cylindrical DRA 
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Frequency (GHz)

Antenna Gain (dBi)

HFSS Simulation      

Measurement  

 Measured and simulated gain 

 HEM111 mode: Maximum measured gain of ~7 dBi (3.29 GHz) 

 HEM113 mode: Maximum measured gain of ~10 dBi (3.83 GHz) 
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Via

d

Ground planeAperture 

for via
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Wideband quadrature coupler

a = 10.3 mm, h = 34.3 mm, r = 9.4, l = 11.5 mm, w = 1 mm,  

L1  = 14.67 mm, W0  = 1.94 mm, and W1 = 3.21 mm.  

Wideband CP cylindrical DRA 

Top view Side view 



99 

 

3 3.2 3.4 3.6 3.8 4

-30

-20

-10

0

Frequency (GHz)

Reflection Coefficient |S11| (dB)

HFSS Simulation      

Measurement  

 

3 3.2 3.4 3.6 3.8 4
0

2

4

6

8

Frequency (GHz)

Axial ratio (dB)

HFSS Simulation      

Measurement  

Measured 3-dB AR bandwidth : 

24.7% (3.05-3.91 GHz). 

Measured impedance bandwidth: 

25.5% (3.04-3.93 GHz).  

Wideband CP DRA 

Reflection coefficient Axial ratio 



VI. Dualfunction DRAs 
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Advantage 
 System size and cost can be reduced by 

using dualfunction DRAs. 

 

Additional functions  

- Packaging cover 

- Oscillator 
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Packaging Cover 
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Conventional 

Aperture Metallic supports

for grounding 

Dielectric resonator 
antenna/oscillator  
load and packaging 
cover

Metal ground

Power supply

z

y

Front view

h
H

Microstrip

feedline

d

Transistor (other 

RF components 

not shown)

Proposal 
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Antenna Configuration 

Aperture

Feedline and the

RF/MIC circuits

Metal ground

Coaxial line

Dielectric resonator antenna

     and packaging cover
Metallic supports 

for grounding

H

h
y

z

Side view
 

Coaxial

x

y
Microstrip 

 feedline

Aperture

L

W

a

b

Top view

Resonant frequency 

f0 = 2.4GHz 

 

Parameters:  

• Hollow DRA: 

   L=30mm, W=29mm,  

   H=15mm, & r =12 

 

• Metallic Cavity: 

  a = 15mm, b = 21.6mm, h = 5mm 

  Top face : Duroid r =2.94 

                   thickness 0.762mm 

  Aperture: 0.2063 e        
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Design Procedure (Simulation): 

          Step 2  

Remove the lower center  

portion concentrically to  

form a notched DRA.  

As a result, the resonant   

frequency >2.4GHz 

          Step 3  

Cover the two sides with the 

same material. Move the 

frequency back to 2.4GHz 

by increasing the thickness. 

(thickness ↑  f0 ↓ ) 

          Step 1  

Use the DWM to design 

a solid rectangular DRA 

at 2.4-GHz fundamental 

TE111 Mode. 

x 

z 
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Experimental Verification: 

  

   

 - Hard-clad foam (r ≈1) is used to form the     

   container.  

 

 - ECCOSTOCK HiK Powder of r =12 is used as   

    the dielectric material.  
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(Passive hollow RDRA with a metallic cavity) 

•Good agreement. 

•Bandwidth ~ 5.6%. 

• Measured resonance frequency: 2.42GHz (error < 0.83%)  
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(a) (b)

x-z plane y-z plane

Radiation Patterns 

(Passive hollow DRA with a metallic cavity) 

•  Broadside TE111
y
  mode is observed. 

•  Co-polarized fields  generally stronger than the cross- 

    polarized fields by 20dB in the boresight direction.  
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A A

DRA DRA

Return 
Loss

Return 
Loss

Receiver Transmitter

DRA (passive)

DRA (active, receiver)

DRA (active, transmitter)

Return Loss of the Active Integrated Antenna 

• Integrated with Agilent AG302-86 low noise amplifier (LNA) 

   (gain of 13.6dB at 2.4GHz)  

• LNA prematched to 50 at the input. 

• A small hole is drilled on the ground plane to supply the DC bias to the LNA. 
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cross-pol (passive)

cross-pol (active)

Amplified Radiation Pattern 

• Compared to the passive DRA, the active DRA has a gain of 

   7 - 12dB across the observation angle from -90o to  90o. 

• The gain is less than the specification due to unavoidable  

  impedance variations and imperfections in the measurement.  



Dielectric Resonator Antenna 

Oscillator (DRAO) 
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• The DRA is used  as the oscillator load,  

   named as DRAO.  

Methodology 

• The reflection amplifier method is used to  

   design the antenna oscillator. 
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DRAjX
Zin=Rin+Xin

Lm

Transistor

C

ZL=RL+XL

DRAO Schematic Diagram 

- Oscillate condition: XL+Xin=0 & RL<|Rin| 

-   DRA first replaced by a 50 load at 1.85GHz. 
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L

w

Top view

Microstrip

feedlineAperture

y

x

Lm Ls

La

Wa

Transistor (other 

RF components 

not shown)

Resonance frequency 

fo = 1.85GHz at TE111
y
 

 

Parameters:  

DRA 

L=52.2mm,  

W=42.4mm,  

H=26.1mm,  

r = 6. 

 

Aperture 

La = 0.3561e, Wa = 2mm 

Ls = 9.5 mm, Lm = 40 mm.   

 

Duroid substrate 

rs=2.94, d=0.762mm 

 

Antenna Configuration: 
Dielectric resonator    
antenna and 

oscillating load

Microstrip

feedline Aperture

Ground

L

H

z

x

Substrate

Side view

d

Transistor (other 

RF components 

not shown)

r



115 

Return Loss and Input Impedance 

•   Good agreement. 

•   Bandwidth ~ 22.14%. 

•   Resonance frequency: Measured 1.86GHz 

                                         Simulated 1.83GHz (1.5% error). 
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Spectrum of the Free-running DRAO 

•  Transmitting power Pt = 16.4dBm 

•  DC-RF efficiency: ~ 13% (2-25% in the literature). 

•  Phase noise: 103dBc/Hz at 5MHz offset 

•  Second harmonic < fundamental by 22dB 
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Radiation Pattern 

•  Broadside TE111
y
 is observed. 

•  Co-polarized fields are generally 20dB stronger  

   than the cross-polarized fields in the boresight direction.  

Solid DRAO (measur.)

Passive Solid DRA (measur.)

HFSS Simulation
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DRA can be of any shape. Can it be made like a swan? 

Yes! 

DRA is simple made of dielectric. Can glass be used for  

the dielectric? 

It leads to probably the most beautiful antenna in  

the world ……. 

Yes! 



Glass-Swan DRA 

Distinguished Lecture 

Transparent antennas: From 2D to 3D 
119 
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• The DRA can be easily excited with various excitation schemes. 

 

•  Frequency tuning of the DRA can be achieved by using  

   a loading-disk or parasitic slot. 
 

•  The dualband and wideband DRAs can be easily designed using 

higher-order modes. 

 

•  Compact omnidirectional CP DRAs have been presented 

 

•  Dualfuncton DRAs for packaging and oscillator designs have 

been demonstrated. 

 

  

 

   Conclusion 
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Q & A 


