Differential Harmonics, Differential Mixers and IQ Mixer Measurements

Joel Dunsmore, Ph.D.
Agilent Fellow
Component Test R&D
Differential and I/Q Mixer Application

• The “Swiss-Army Knife” of applications

• Set any source to:
 – Any frequency
 – Any power
 – Any phase

• Then measure
 – Any receiver
 – At any of a number of frequencies

• With match corrected power measurements
Consider the fundamentals of differential devices

\[V_d^F = \frac{1}{2} (V_d + I_d Z_d), \quad V_d^R = \frac{1}{2} (V_d - I_d Z_d) \]

\[V_d = V_1 - V_3, \quad I_d = \frac{1}{2} (I_1 - I_3), \quad I_c = I_1 + I_3, \quad V_c = \frac{1}{2} (V_1 + V_3) \]

\[Z_d = 2Z_0, \quad Z_c = \frac{Z_0}{2} \]
Differential S-parameters can be derived for this configuration, for each mode

\[
a_d = \frac{V_d^F}{\sqrt{Z_d}}, \quad b_d = \frac{V_d^R}{\sqrt{Z_d}}, \quad a_c = \frac{V_c^F}{\sqrt{Z_c}}, \quad b_c = \frac{V_c^R}{\sqrt{Z_c}}
\]

\[
\begin{bmatrix}
 b_{d1} \\
 b_{d2}
\end{bmatrix} = \begin{bmatrix}
 S_{dd11} & S_{dd12} \\
 S_{dd21} & S_{dd22}
\end{bmatrix} \cdot \begin{bmatrix}
 a_{d1} \\
 a_{d2}
\end{bmatrix},
\begin{bmatrix}
 b_{c1} \\
 b_{c2}
\end{bmatrix} = \begin{bmatrix}
 S_{cc11} & S_{cc12} \\
 S_{cc21} & S_{cc22}
\end{bmatrix} \cdot \begin{bmatrix}
 a_{c1} \\
 a_{c2}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 b_{c1} \\
 b_{c2}
\end{bmatrix} = \begin{bmatrix}
 S_{cd11} & S_{cd12} \\
 S_{cd21} & S_{cd22}
\end{bmatrix} \cdot \begin{bmatrix}
 a_{d1} \\
 a_{d2}
\end{bmatrix},
\begin{bmatrix}
 b_{d1} \\
 b_{d2}
\end{bmatrix} = \begin{bmatrix}
 S_{dc11} & S_{dc12} \\
 S_{dc21} & S_{dc22}
\end{bmatrix} \cdot \begin{bmatrix}
 a_{c1} \\
 a_{c2}
\end{bmatrix}
\]
This can be configured into a single matrix

\[
\begin{bmatrix}
 b_{d1} \\
 b_{d2} \\
 b_{c1} \\
 b_{c2}
\end{bmatrix}
\begin{bmatrix}
 S_{dd11} & S_{dd12} & S_{dc11} & S_{dc12} \\
 S_{dd21} & S_{dd22} & S_{dc21} & S_{dc22} \\
 S_{cd11} & S_{cd12} & S_{cc11} & S_{cc12} \\
 S_{cd21} & S_{cd422} & S_{cc21} & S_{cc22}
\end{bmatrix}
\begin{bmatrix}
 a_{d1} \\
 a_{c2} \\
 a_{c1} \\
 a_{c2}
\end{bmatrix}
\]

Thus, 16 differential S-parameters are needed to fully describe a 2-port differential device
The differential parameters can be defined in terms of single-ended measurements from first principals

\[a_{d1} = \frac{(a_1 - a_3)}{\sqrt{2}}, \quad a_{c1} = \frac{(a_1 + a_3)}{\sqrt{2}}, \quad b_{d1} = \frac{(b_1 - b_3)}{\sqrt{2}}, \quad b_{c1} = \frac{(b_1 + b_3)}{\sqrt{2}} \]

\[S_{dd11} = \left. \frac{b_{d1}}{a_{d1}} \right|_{a_{c1}=a_{d2}=a_{c2}=0} \]

recognizing that \(a_{c1} = 0 \) which implies that \(a_3 = -a_1 \) so that \(a_{d1} = 2a_1 \)

\[S_{dd11} = \left(\frac{b_1 - b_3}{a_1 - a_3} \right) = \left(\frac{b_1 - b_3}{a_1 - (-a_1)} \right) = \left(\frac{b_1 - b_3}{2a_1} \right) \]
From this beginning, differential S-parameters can be computed from Single-Ended S-parameters

\[S_{dd11} = \left(\frac{b_1 - b_3}{2a_1} \right) = \left(\frac{\left[S_{11}a_1 + S_{13}a_3 \right] - \left[S_{31}a_1 + S_{33}a_3 \right]}{2a_1} \right) = \left(\frac{\left[S_{11}a_1 - S_{13}a_1 \right] - \left[S_{31}a_1 - S_{33}a_1 \right]}{2a_1} \right) \]

\[S_{dd11} = \frac{1}{2} \left(S_{11} - S_{13} - S_{31} + S_{33} \right) \]

And similarly for transmission:

\[S_{dd21} = \left(\frac{b_2 - b_4}{a_1 - a_3} \right) = \left(\frac{b_2 - b_4}{a_1 - (-a_1)} \right) = \left(\frac{b_2 - b_4}{2a_1} \right) \]

\[S_{dd21} = \left(\frac{b_2 - b_4}{2a_1} \right) = \left(\frac{\left[S_{21}a_1 + S_{23}a_3 \right] - \left[S_{41}a_1 + S_{43}a_3 \right]}{2a_1} \right) = \left(\frac{\left[S_{21}a_1 - S_{23}a_1 \right] - \left[S_{41}a_1 - S_{43}a_1 \right]}{2a_1} \right) \]

\[S_{dd21} = \frac{1}{2} \left(S_{21} - S_{23} - S_{41} + S_{43} \right) \]
We can use these definitions to define Harmonic Power, Mixer Conversion, Image Rejection, LO isolation

\[
d_{1} = \frac{a_{1} - a_{3}}{\sqrt{2}}, \quad d_{2} = \frac{b_{1} - b_{3}}{\sqrt{2}}, \quad d_{2,2} = \frac{b_{2,2} - b_{4,2}}{\sqrt{2}}
\]

Differential Harmonics (in dBC) are defined as:

\[
H_{2} = \frac{b_{2,2} - b_{4,2}}{a_{1} - a_{3}}, \quad H_{3} = \frac{b_{2,3} - b_{4,3}}{a_{1} - a_{3}}, \quad \ldots \quad H_{n} = \frac{b_{2,n} - b_{4,n}}{a_{1} - a_{3}}
\]

Differential Mixers have similarly defined signals

\[
b_{d(RF)} = b_{d(LO+IF)} = \frac{b_{2,(LO+RF)} - b_{4,(LO+RF)}}{\sqrt{2}}, \quad b_{d(Image)} = b_{d(LO+IF)} = \frac{b_{2,(LO-RF)} - b_{4,(LO-RF)}}{\sqrt{2}}
\]

\[
b_{d(LO - Isol)} = b_{d(LO)} = \frac{b_{2,(LO)} - b_{4,(LO)}}{\sqrt{2}}, \quad b_{d(RF - Isol)} = b_{d(LO+IF)} = \frac{b_{2,(RF)} - b_{4,(LO-RF)}}{\sqrt{2}}
\]
Use Case 1: Measuring Harmonics of Balanced Amplifiers

Test Requirements:
• Stimulate the input with balanced, differential signal
• Measure the input differential power
• Measure the output differential power
• Measure the output differential power at N harmonics, N a small integer (5)
• Provide corrected measurements of power, provide leveled input power
• Measure with swept frequency, swept power or swept phase input
• Function in pulsed mode

Wants:
• Provide leveled output power
First: Define the frequency lists for source and receivers

Each frequency defined will be measured by all the receivers

Editing a line brings up a dialog box

If coupled, some relative offset, and multiplier/divider can be set. If uncoupled, the just set start/stop.

Only linear frequencies are allowed.
Next Define Source behavior

Set which sources are going to be used during the measurement

Set the Power and Phase
Finally, Define the Parameters to Measure based on receivers

Use “Edit Parameters” To create new measurements
Create New Parameters based on measurements of ANY receiver at ANY frequency
Making True-mode (true differential) measurements

Two sources are controlled to set the differential input, and then the receivers are retuned to measure any other signal, such as output power or harmonics.
Differential signals must be actively adjusted for each new DUT S11 due to mismatch effects and requires special correction.

\[
\begin{align*}
a_1 &= \frac{(a_{1M} \text{ERF}_1 + b_{1M} \text{ESF}_1 - a_{1M} \text{ESF}_1 \cdot \text{EDF}_1)}{(a_{3M} \text{ERF}_3 + b_{3M} \text{ESF}_3 - a_{3M} \text{ESF}_3 \cdot \text{EDF}_3)} \cdot \frac{\text{ETF}_{31}}{\text{ERF}_1}
\end{align*}
\]
To test differential harmonic measurements, measure a single-ended amp then add a balun and test again.

Test1: Harmonics of an SE amp

Test2: Measure Harmonics using Differential Receivers
Example Measurement: Differential Output and Harmonics

Upper Compares 2nd Harmonic Result; Lower Compares 3rd Harmonic Result. Difference maybe due to hybrid effects (different loss at fundamental and harmonic
Calibration for Differential Output Power:

• Calibration for mismatch and response must use stimulus source for characterizing error terms

• During the measurement, output power mismatch terms (S22) need to be characterized with the input source off

• Match correction can be independently selected for any source, using any receivers, and any frequency range
 – User defined receivers allows match correction on a variety of complex situations such as sources passed through high-power amplifiers and using external couplers; and external sources applied through the test set.
Source definition page includes match correction choices

Match Correction
- Match Correction On
- Test Receiver: b1
- Reference Receiver: a1
- Match Frequency Range: F1
Planned: Use Case 2 : Measuring Harmonics of SE- Balanced Amplifiers

Test Requirements:
- Stimulate the input with leveled input signal
- Measure the input power
- Measure the output differential power
- Measure the output differential power at N harmonics, N a small integer (5)
- Provide corrected measurements of power, provide leveled input power
- Measure with swept frequency, swept power or swept phase input
- Function in pulsed mode

Wants:
- Provide leveled output power

Notes: In this case there is NO phase controlled source, just offset harmonics and balanced power
Example Measurement: Single-ended and Differential Mixer, with Harmonics

Harmonics are in dBc Values
Use Case: Dual Mixer;

Key measurement difficulty is relative phase response between the two paths of the mixer.

Drive both mixers with identical signals, measure the relative output (magnitude and phase).
Dual Mixer: Creating the Frequency Plan - start
Dual Mixer: Creating the Frequency Plan – set the input frequencies
Dual Mixer: Creating the Frequency Plan – add the LO, fixed 10 GHz
Dual Mixer: Creating the Frequency Plan – Add the output receiver frequencies

<table>
<thead>
<tr>
<th>Range Name</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>0.5000000000 GHz</td>
</tr>
<tr>
<td>F2</td>
<td>CW Freq 10.0000 MHz</td>
</tr>
<tr>
<td>F3</td>
<td>0.5000000000 GHz</td>
</tr>
</tbody>
</table>

F2 Range Settings

- **Frequency**
 - Start/Stop
 - Start: 500.000000 MHz
 - Stop: 1000000000 MHz
- **IFBW**: 1000 kHz

Sources

<table>
<thead>
<tr>
<th>Source Name</th>
<th>State</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 1</td>
<td>Active</td>
<td></td>
</tr>
<tr>
<td>Port 2</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>Port 3</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>Port 4</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>Port 1 Src2</td>
<td>Off</td>
<td></td>
</tr>
</tbody>
</table>

Coupling

- **Couple to**: F1
- **Offset**: F2
- **Multiplier**: 1
- **Divisor**: 1

Output = Frequency * Multiplier / Divisor + Offset

Buttons

- OK
- Cancel
- Apply
- Help
Dual Mixer: Creating the Frequency Plan – Final frequency Plan
Dual Mixer: Setup the sources, start with port 1
Dual Mixer: Setup the sources, add port 3, and make it match P1 phase.
Dual Mixer: Setup the sources, add the PSG
Dual Mixer: Setup the sources, add the PSG
Let’s try to understand Source State: It’s flexible but maybe a little confusing

Always On: Always On

Active: turn on during measurement sweep

Uncontrolled: don’t write to the source at all.

Off: Sometimes OFF unless the source is needed for match correction on that port.
We need match correction for the RF output of the dual mixer
Dual Mixer: setup the mixer Parameters (relative phase input and output, overall relative phase)
Dual Mixer: Parameter List uses equation editor, so you can ‘hack’ the xml file to create any parameter.
Dual Mixer: Now the new parameter shows up.
Dual Mixer: Let’s also add gain P2 and gain Port 4, and while were at it, LO leakage to each port.
Use Case 4 – Balanced Mixer

Test Requirements:
• Stimulate the input with balanced signal
• Measure the input differential power
• Measure the output differential power
• Measure output at both LO+Input (main signal) and LO-Input (Image signal)
 • As of function of frequency
 • As a function of input phase
• LO may be embedded.
• Provide match corrected measurements of power, provide leveled input power.
Wants
• Measure higher order products of m*LO+-n*Input
IQ Mixers and Modulators and Down Converters
IQ Mixers and Modulators and Down Converters
Making IQ Mixer Measurements

• Special Characteristics of IQ mixer and modulators
 – Image Signal is suppressed
 – Output signal can be on either side of the LO, depending upon the phase of the Q single
 – Provides direct modulation without the need for image filters
 – Key performance criteria:
 • LO Suppression
 • Image Suppression
 – Often requires determining LO, I and Q offsets for optimum performance
 • Very slow and difficult to determine over a wide frequency range.
IQ Mixer Mixer: Setup the sources, make the phase 90 degrees
IQ mixer theory

\[a_I = \frac{V_I^F}{\sqrt{Z_0}}, \quad a_Q = \frac{V_Q^F}{\sqrt{Z_0}}, \quad IQ_power = a_I + j \cdot a_Q \]

User defined parameters can make use of the equation editor to determine the overall input power.
Let's look at a 90 degree Hybrid
Let's look at a 90 degree Hybrid
Now Measure it with 0 and 90 degree true-mode drive on the input ports, and sweep frequency
IQ Measurements: Output of Hybrid, across frequency. Phase of IQ set to + or – 90 deg.
IQ Mixers: Measure just one side (in normal Scalar Mixer Mode, and in IQ Mode)
IQ Mixers: Measure just one side (in normal Scalar Mixer Mode, and in IQ Mode)
IQ Mixers: Measure just one side: Add Match Correction

IQ Mixer with one side open (ripple is gone)

Normal Mixer Mode

Image Signal
IQ Mixers: Both sides connected now shows image rejection! And increased IQ gain.

Image Signal
Phase of IQ
Mag Balance of IQ
IQ Mixer with one side open (ripple is gone)
IQ Measurements: IQ input power, output power, image power, LO power vs frequency
IQ Measurements: Output Gain, Image Gain, vs IQ Phase Skew: Fix CW and Sweep Phase
IQ Measurements: Output gain, Image Gain vs IQ Amplitude Skew

Image Signal
Other Measurement Configurations can make use of External Sources

- Use an arb (currently supported for 81150A and 81160A arbs) to generate IF signal input up to 500 MHz
- User external PSG or MXG to generate I/Q Balanced signal or Balanced LO (utilizing an external test set for switching).
- Use external PSGs and MXG an all 8 receivers (no match correction)
Wideband I/Q Mxr. using ARB Match RF, LO; Balanced Everything, with phase controlled LO, I/Q

Test Requirements:
• Stimulate the input with balanced, I Signal
• Stimulate the input with balanced, Q Signal
• Stimulate the LO with a Balanced Signal
• Set phase of I vs. Q
• Measure the input differential power
• Measure the output differential power
• Measure output at both LO+Input (main signal) and LO-Input (Image signal)
 • As of function of frequency
 • As a function of I/Q phase
• Provide corrected measurements of power, provide leveled input power
 • Open: How to calibrate mag and phase I and Q outputs from the ARB
• Issue: Controlling ARB (generic exe?)
• Cover SE cases for RF, LO (subset of balanced)
Wants
• Measure higher order products of m*LO+-n*Input
- Wideband I/Q mixer measurement w/extension test set
 Match corrected I/Q, RF; Balanced Everything, with phase controlled LO

Test Requirements:
• Stimulate the input with balanced, I Signal
• Stimulate the input with balanced, Q Signal
• Stimulate the LO with a Balanced Signal
• Set phase of I vs. Q
• Measure the input differential power
• Measure the output differential power
• Measure output at both LO+Input (main signal) and LO-Input (Image signal)
 • As of function of frequency
 • As a function of I/Q phase
• Provide corrected measurements of power, provide leveled input power
 • Open: How to calibrate mag and phase of PSG1 and PSG2 paths.
• How to control 6 or 8 port paths (test set control?)

Wants
• Measure higher order products of m*LO+-n*Input
- Wideband I/Q mixer measurement, No match correction on port 3 or 4 (I-, Q-) or on C or D receiver (output),

Test Requirements:
- Stimulate the input with balanced, I Signal
- Stimulate the input with balanced, Q Signal
- Set phase of I vs. Q
- Measure the input differential power
- Measure the output differential power
- Measure output at both LO+Input (main signal) and LO-Input (Image signal)
 - As of function of frequency
 - As a function of I/Q phase
- Provide corrected measurements of power, provide leveled input power
 - Open: How to calibrate C & D receivers.
- Support SE case for RF out (subset) Wants
- Measure higher order products of m*LO+-n*Input
Summary:

- New software control methods allow users to create very sophisticated stimulus conditions at microwave frequencies.
- Match corrected calibration implies that de-embedding is possible, meaning on-wafer and in-fixture applications are now possible.
- Flexible receiver control allows a single channel to make multiple phase-related measurements in a single acquisition.
- Full match correction on all receivers improves accuracy.
- Really hard to do all the control…don’t look under the covers.

These capabilities were only dreamed of… Dreams Made Real!