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Power Electronics Revolutionizing  Transportation 

 

 

 

 

 High power density and efficient power conversion is the key for  

• Electrification of automotive and aviation Industry 

• Management and grid integration of Distributed Energy Resources (DER), such as photovoltaic and wind 

 Wide bandgap devices (SiC and GaN) are adopted to achieve the goal over Si 

• Offers faster switching speed, thus, lower switching loss and overall volume reduction 

 Second Order Concerns Due to Faster Switching are Concern to System Reliability 

• Reflected wave, EMI noise, partial discharge, communication interface, integration interactions, etc 

• Health and Fault Monitoring  Condition Monitoring becomes very important 
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Source: NASA Source: Tesla Source: John Deere Source: US Navy Source: Hitachi 



Motivation: Why and how of it?  
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Power Electronic  

Reliability 
Component Wise Reliability Failure Analysis 

S. Yang, D. Xiang, A. Bryant, P. Mawby, L. Ran and P. Tavner, "Condition Monitoring for Device Reliability in Power Electronic Converters: A Review," in IEEE Transactions on Power Electronics, vol. 25, no. 

11, pp. 2734-2752, Nov. 2010, doi: 10.1109/TPEL.2010.2049377. 

Health 
Monitoring 

Analog 

Digital 

 High Density Data 

 Accuracy and speed 

X    Complexity 

 Flexibility and Scalability 

 Data-Driven Insights & Optimization 

 Robustness 

X    Speed  

X    Loss of Information 

 

 



Digital Twin- Origins/Timeline 
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Prof. Michael Grieves 

Purdue University : 2003 

• “Digital Twin was coined in terms of product life-

time management” 

• virtual product representations manually 

collected data 

John Vickers and Prof. Micheal Grieves 

NASA: 2010 

• More mature definition covering communication 

layer as well 

…………….. 

Digital Twin as a virtual representation of a physical 

product containing information about said product 

• It was for product lifetime management for aircraft 

systems. 

Digital Twin as consisting of three components,  

A physical product, a virtual representation of that product, and the bi-directional data connections 

that feed data from the physical to the virtual representation, and information and processes from 

the virtual representation to the physical. 

First white paper  NASA: 2012 

John Vickers and Prof. Micheal Grieves 

NASA: 2010 

• More mature definition covering communication 

layer as well 
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Digital Twin: Models Categorization 

Big Data Problem 

Big Data Solution 

Geomentric Data Used 

Some Equations used as features 



Health Management Categorization: Digital Twin 
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DT Used Cases 

1.Digitize: Any digitized information 

2.Visualize: Basic digital representation of a physical object 

3.Simulate: Simulation model of a physical system in its environment 

4.Emulate: Emulation model of the physical system with real software 

5.Extract: Extraction model of real-time data streams, physical to virtual system 

6.Orchestrate: Orchestration model for virtual control/updating of physical devices 

7.Predict: Prediction model to predict future behavior of the physical system 

DT based Life Cycle Phases 

1.Design: Designing a product based on DT. 

2.Build: Build more cost intensive physical counterparts for testing using Dt based 

geometric modeling. 

3.Operate: DT helps in maintaining operating levels. i.e Controls 

4.Maintain: Reliability and cyber threat detection during operation. 

5.Optimize: DT helps optimize operating condition or power flow amongst multiple 

systems. i.e Distributed networks 

6.Decommission: The decommissioning physical system based on DT based lifetime 

prediction. 

Hierarchical Levels 

1. Informational: Digital manuals and documents. 

2. Component: Virtual representations of individual parts. 

3. Product: Interoperable component representations. 

4. Process: Virtual representation of production processes. 

5. System: Digital twins for multiple processes. 

6. Multi-system: Integrated digital twins for diverse systems. 



Basics and Components of Digital Twin 
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Digital Twin Definition  
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 Digital twin is a virtual representation of a physical system. 

•  It shares same characteristics with its physical counterpart. 

 Applications: for installed physical systems in real time 

• Used to better understand: Noise and Operation 

• Optimize: Control and Power Sharing 

• Predict: Aging , Degradation and abnormalities 

• Monitor the performance  

 Basically, digital twin is a looped system implementation 

consisting of  

• Physical system 

• Sensors 

• Information processing unit and actuators 

• Communication 

 

Digital 
Twin 

Health 
Monitoring 

Fault 
Monitoring 

Prognosis 
Cyber 

Security 

Smart Energy 
Management 



Proposed Health Monitoring 
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System Level [1-5] 

 Less Invasive 

 Easy Implementation 

 Less Sensor 

 Less Accurate 

Monitoring Approach 

 Online 

 Offline 

Model 

 Physics Based 

 Data Driven 

 A.I. Based 

 Noise Injection Based 

 

 

Component Level  

[6-14] 

 More Invasive 

 Complex Hardware 

Implementation  

 More Sensor/circuitry 

 More Accurate 

 

Component Level System Level 

Component Level 

System Level 

System Level 

Component Level 

K. Choksi, A. B. Mirza, A. Zhou, D. Singh, M. Hijikata and F. Luo, "Self-Evolving Digital Twin-Based Online Health Monitoring of Multiphase Boost Converters," in IEEE Transactions on Power 

Electronics, vol. 38, no. 12, pp. 16100-16117, Dec. 2023, doi: 10.1109/TPEL.2023.3311710. 



Basic Mathematical Formulation 
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𝑓𝑜𝑏𝑗1 = (𝑖𝐿, 𝑀
𝑘 − 𝑖𝐿, 𝐴

𝑘)2
𝑛

𝑘=1

 𝑓𝑜𝑏𝑗2 = (𝑉𝐶, 𝑀
𝑘 − 𝑉𝐶, 𝐴

𝑘)2
𝑛

𝑘=1

 𝑓𝑜𝑏𝑗 = 𝛼𝑓𝑜𝑏𝑗2 + ß𝑓𝑜𝑏𝑗2 𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆: (𝑓𝑜𝑏𝑗) 

(𝐿, 𝐶, 𝑅𝐷𝑆𝑂𝑁, 𝑅𝑐, 𝑅𝐿) 

𝐿𝑚𝑖𝑛 < 𝐿 ≤ 𝐿𝑚𝑎𝑥 

𝐶𝑚𝑖𝑛 < 𝐶 ≤ 𝐶𝑚𝑎𝑥 

𝑅𝐷𝑆𝑂𝑁, 𝑚𝑖𝑛 < 𝑅𝐷𝑆𝑂𝑁 ≤ 𝑅𝐷𝑆𝑂𝑁, 𝑚𝑎𝑥 

𝑅𝑐, 𝑚𝑖𝑛 < 𝑅𝑐 ≤ 𝑅𝑐, 𝑚𝑎𝑥 

𝑅𝐿, 𝑚𝑖𝑛 < 𝑅𝐿 ≤ 𝑅𝐿, 𝑚𝑎𝑥 

𝑉𝐶, 𝑀 = 𝑓(𝐿, 𝐶, 𝑅𝐷𝑆𝑂𝑁, 𝑅𝑐, 𝑅𝐿) 

𝑖𝐿, 𝑀 = 𝑓(𝐿, 𝐶, 𝑅𝐷𝑆𝑂𝑁, 𝑅𝑐, 𝑅𝐿) 

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐: 

𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔: 

• 𝑉𝐶, 𝑀: Computed 

• 𝑖𝐿, 𝑀: Sensor Data 

• 𝑉𝐶, 𝐴: Computed 

• 𝑖𝐿, 𝐴: Sensor Data 

Boost Converter Hardware 
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State Equations: Piece Wise Linear Differential Equation 
• This can be solved using RK 4th order ODE  

• Compared with Physical System to get 𝑓𝑜𝑏𝑗 
• PSO can be used to estimate health of original system 

 



Digital Twin based Condition Monitoring: Flowchart 
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DT Performance 
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Uncoupled 4 Phase DT Modeling 

Experimental Setup Coupled 4 Phase DT Modeling 



Parameter Identification 
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Accuracy: 98% Accuracy: 84.6% 



Impact of Error: DT Accuracy 
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 Error due Analog to Digital Conversion 

• ADC Resolution 

• Sensor Resolution 

• Low Sampling Frequency 

• It is worth noting that Nyquist Shanon Theorem does not apply  

• As Triangular Wave are infinite bandwidth Waves 

 

 

 

 

 DC offset Error  

• Sensor Metastability 

• External EMI Noise 

• ADC Metastability 

 

 

 

  Synchronization Error 

• Non linear sampling delay 

• Non linear sensing delay 

• Communication delay 

 

 

 

 



Impact of Degredation 
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Summary 

• Digital twins will be an important part of power electronics 

• Condition Monitoring 

• Maintenance scheduling 

• Controls 

• Lifetime scheduling 

• Hierarchical DT based approaches 

• Fault monitoring compared to analog protection methods 
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• Development of system level meta heuristic condition monitoring approach for 

boost converter health monitoring.  

• Parameter identification: 84~96% 

• It is an online, robust, calibration free and non invasive approach 

• It is extendable to various interleaved boost converters 

Future Scope/work 
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